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Locally advanced esophageal adenocarcinoma remains difficult to treat and 
the ecological and evolutionary dynamics responsible for resistance and 
recurrence are incompletely understood. Here, we performed longitudinal 
multiomic analysis of patients with esophageal adenocarcinoma in the 
MEMORI trial. Multi-region multi-timepoint whole-exome and paired 
transcriptome sequencing was performed on 27 patients before, during and 
after neoadjuvant treatment. We found major transcriptomic changes during 
treatment with upregulation of immune, stromal and oncogenic pathways. 
Genetic data revealed that clonal sweeps through treatment were rare. 
Imaging mass cytometry and T cell receptor sequencing revealed remodeling 
of the tumor microenvironment during treatment. The presence of genetic 
immune escape, a less-cytotoxic T cell phenotype and a lack of clonal T cell 
expansions were linked to poor treatment response. In summary, there were 
widespread transcriptional and environmental changes through treatment, 
with limited clonal replacement, suggestive of phenotypic plasticity.

Esophageal cancer is the sixth most common cause of cancer-related 
death worldwide, with a median overall survival of <1 year1. Incidence 
rates for esophageal adenocarcinoma (EAC) have risen sharply and it 
is now the predominant subtype in high-income countries2. Patients 
with locally advanced EAC are treated with neoadjuvant chemotherapy 
(CTx) or radiochemotherapy (RCTx) followed by surgical resection3. 
Although neoadjuvant treatment confers a survival benefit over resec-
tion alone, 50–60% of tumors are resistant to neoadjuvant therapy, 

leading to an overall poor outcome with a 5-year survival of less than 
50% (refs. 3,4). Immune-checkpoint blocking treatments seem to have 
some potential in EAC5–7, but have not revolutionized the standard of 
care in the perioperative setting8.

Despite the advances in perioperative treatment strategies for 
patients with EAC, the molecular understanding of both treatment 
resistance mechanisms and the modulating effect of neoadjuvant 
treatment are poorly understood. Translational studies showed that 
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an important predictor for response to combined immune-checkpoint 
blockade (ICB) and CTx in the neoadjuvant setting18.

There is a major practical challenge in collecting longitudinal sam-
ples over space and time from solid tumors, limiting the availability of this 
valuable data. Here we have performed multi-region, multi-timepoint 
whole-exome sequencing (WES) at high depth (mean 300×) of locally 
advanced EAC to identify mutations and track clonal dynamics across 
time and space, with matched RNA sequencing (RNA-seq) to characterize 
phenotype changes, and imaging mass cytometry (IMC) and T cell recep-
tor (TCR) sequencing to characterize immune infiltrates and stromal cell 
dynamics. Our comprehensive analysis provides a holistic multiomic 
view of the dynamic changes in EAC and its microenvironment through  
neoadjuvant treatment.

Results
Longitudinal profiling in nonresponder and responder EAC
EAC patients in the MEMORI trial19 underwent baseline 18F-FDG-PET 
(18-fluorodesoxyglucose positron emission tomography) followed by 

response to neoadjuvant treatment correlated with enrichment of 
lymphocytes, high immune-checkpoint molecules and p53 pathway 
enrichment in the treatment-naive tumor9; however, longitudinal analy-
ses to determine ecological and evolutionary dynamics, which could 
discriminate pre-existing and progressively developing factors leading 
to treatment resistance are lacking.

Sequencing studies have examined the genetic alterations in 
EACs during treatment to understand evolutionary dynamics that 
may lead to treatment resistance10–12. The translational goal of these 
studies is to translate measures of the evolutionary dynamics into 
treatment-predictive biomarkers; however, there is growing evidence 
that genetic evolution alone does not fully explain resistance evolu-
tion13. Tumor plasticity, defined as cellular phenotype changes in the 
absence of underlying genetic change, is associated with treatment 
resistance in multiple cancer types14–16. Furthermore, there is mounting 
evidence that the efficacy of chemotherapies also relies on activating 
antitumor immune responses17. Translational results from the PANDA 
trial highlighted measures of the tumor microenvironment (TME) as 
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Fig. 1 | Experimental workflow and overview of the study cohort. a, Flowchart 
summarizing patient treatment and study design, including respective 
neoadjuvant treatment, sample acquisition and analyses. FOLFOX, oxaliplatin 
and 5-FU; EOX, epirubicin, oxaliplatin and capecitabine; WES, whole-exome 
sequencing; RNA-seq, RNA-sequencing; IMC, imaging mass cytometry;  

TCR-seq, T cell receptor sequencing. b,c, Overview of the study cohort of NRPs 
(b) and REPs (c) with indication of samples present for each type of data analysis. 
Samples from different timepoints are indicated with different shapes. Age, age 
at diagnosis; Brg, Becker remission grade.
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one cycle of neoadjuvant platinum-based chemotherapy (CTx), with 
metabolic response assessed at day 14–21 by 18F-FDG-PET. Responders 
(REPs; as shown by PET–CT scan) continued to receive chemotherapy, 
whereas nonresponders (NRPs) by PET–CT were switched to intensified 
radiochemotherapy (RCTx); for detailed information see Methods. The 
clinical trial outcomes have been fully reported previously19 and here 
we report on subsequent molecular genetic analyses of a completed 
trial. Of screened MEMORI patients, 13% (n = 21) were excluded due to 
no/low FDG uptake in the primary tumor19. FDG uptake intensity was 
not associated with global transcriptomic differences (Extended Data 
Fig. 1a), suggesting no major stratification in biologically different 
subgroups based on initial PET signal intensity. Pathological response 
in the post-treatment sample was assessed via tumor regression grades 
according to Becker20. Overall, 70% of NRPs showed remission grade I, 
compared to only 35% of REPs (Extended Data Fig. 1b); however, despite 
the addition of RCTx leading to an augmented histological response 
rate, poor early metabolic response was still associated with inferior 
progression-free survival and overall survival (Extended Data Fig. 1c,d). 
Analogous results were reported in the AGITG DOCTOR trial21. Given 
that initial PET-measured metabolic response correlated with outcome, 
our study design therefore aimed to analyze ecological and evolution-
ary dynamics in REPs and NRPs to understand the cellular and molecular 
effect of different treatment modalities in EAC.

Longitudinal molecular analysis was performed on 10 NRPs and  
17 REPs (Fig. 1a). From most patients, three cancer samples were  
collected: one pretreatment biopsy (timepoint A), one biopsy after 
the first cycle of platinum-based chemotherapy (timepoint B) and 
the surgical cancer resection specimen sample after completion of 
neoadjuvant treatment (timepoint C) (Fig. 1a–c). For two patients 
(REP10 and REP11) we performed more extensive multi-timepoint and 
multi-region sampling (≥6 samples per patient).

After clinical and histopathological review (Supplementary Table 1) 
all samples were microdissected (Methods) and whole-exome sequenced 
(22 tumor samples from NRPs and 48 tumor samples from REPs; at 
mean coverage of 300× (range 44–478×) with matched blood germline 
control at mean coverage of 282× (Supplementary Table 2). We called 
single-nucleotide variants (SNVs), indels and copy number alterations 
(CNAs). Tumor cellularity was not significantly different between time-
points (Extended Data Fig. 2a). Matched bulk 3′ RNA-seq was performed 
on 26 samples from NRPs and 54 samples from REPs (Supplementary 
Table 3). Immune composition during treatment was analyzed with a 
21-marker IMC panel (39 regions of interest (ROIs) from 16 NRP samples 
and 74 ROIs from 27 REPs samples; Fig. 1b,c). Bulk TCR sequencing was 
performed on 18 samples from REPs and 9 samples from NRPs (Fig. 1b,c).

Limited evidence for clonal selection during treatment
We first assessed genetic changes in REPs and NRPs (Fig. 2a–c), finding 
an average mutational burden of 23.09 SNVs/Mb (range 7.5–127.7 SNVs 
per Mb) in treatment-naive EAC, consistent with previous literature 
after accounting for our higher sequencing depth22,23.

The overall SNV burden between pre- and post-treatment samples 
showed neither a significant difference in the overall cohort (Fig. 2a) 
nor when stratified by initial response (Fig. 2b).

We assessed changes in mutation clonality, reasoning that if 
treatment drove clonal selection, we might see increased clonal and/
or subclonal mutational burden between pre- and post-treatment; 
however, no significant difference was detected for either mutation 
class (Fig. 2c), nor after stratifying by the treatment that was given 
(Extended Data Fig. 2b,c).

To probe clonal dynamics, we constructed SNV-based phyloge-
netic trees for 13 patients with multi-timepoint and multi-region sam-
ples (≥3 samples) (Fig. 2d and Extended Data Fig. 2d)24. The majority of 
phylogenetic trees were visually ‘balanced’ with similar clade lengths 
for all samples. We observed progressive clonal sweeps during neo-
adjuvant treatment in only one sample (NRP9; Fig. 2d and Extended 
Data Fig. 2d). In all other cases, samples from timepoint C were either 
most similar to precursor clones of samples from timepoints A and B 
(for example REP22), or most similar to a clone detected at timepoint 
A (for example REP10). Notably, patients with multi-region sampling 
(REP10 and REP11) showed more similarity between samples from dif-
ferent timepoints than between multi-region samples. A parsimonious 
explanation of these observations is that the cancer was a mosaic of 
clones, and inferred clonal relationships between timepoints and/or 
spatial samples were determined by spatial sampling rather than by a 
clonal sweep driven by treatment.

Known high-frequency driver events such as TP53 and CDKN2A 
were mostly truncal on the phylogenetic trees, indicating that these 
drivers persisted through treatment. TP53 SNVs were present in 17 
patients (Figs. 2d and 3e and Extended Data Fig. 2d) and TP53 indels in 
4 out of 27 patients (Figs. 2d and 3e and Extended Data Fig. 2d), with 14 
out of 23 patients with ≥2 samples harboring clonal TP53 alterations 
present in all samples. CDKN2A SNVs were present in two patients 
(Fig. 3e and Extended Data Fig. 2d) and CDKN2A indels in four patients 
(Figs. 2d and 3e) with clonal genetic CDKN2A alterations in 5 out of 23 
patients with ≥2 samples (Figs. 2d and 3e), consistent with previous 
literature22,23,25,26. We examined the phylogenetic trees from 11 patients 
with sequencing from pre- and post-treatment timepoints, finding in 
6 patients that there were new low-frequency putative drivers (those 
mutated in <5% of samples in IntOGen cohorts) post-treatment and in 
the remaining 5 patients there were no new drivers post-treatment. 
This suggests no major changes in the clonal make-up for the majority 
of patients during neoadjuvant treatment.

dN/dS analyses (the ratio of nonsynonymous to synonymous 
substitutions) to detect evidence of clonal selection of treatment 
induced SNVs showed dN/dS~1 for treatment-naive and RCTx induced 
SNVs, indicating no evidence of selection. dN/dS of 0.8 (CI 0.7–0.96) 
for CTx-induced SNVs showed weak evidence of negative selection 
(Supplementary Table 5).

As distinct treatment regimens have been associated with spe-
cific mutational footprints27, we computed mutational signatures 
for our cohort. SNVs from our phylogenetic trees were classified into 
treatment-naive SNVs, SNVs acquired during chemotherapy exposure 
(CTx-SNVs) and SNVs acquired during RCTx exposure (RCTx-SNVs). 
Treatment-naive SNVs, CTx-SNVs and RCTx-SNVs showed significant 
differences in their six-channel mutation signatures (chi-squared 
test P < 0.001), with an increase in C > A mutations during CTx, 

Fig. 2 | Evolutionary dynamics of mutations during neoadjuvant treatment 
in EAC. a–c, Violin plots showing the distribution of mutational burden during 
neoadjuvant treatment for all patients (a), stratified by treatment response 
(b) and stratified by clonality of mutation (c). Mutations of each sample were 
classified as clonal or subclonal based on the copy number and cellularity 
adjusted cancer cell fraction. P values in a–c were calculated by the two-sided 
Wilcoxon test. d, Selected phylogenetic trees with clade length indicating 
the number of shared mutations between samples. Timepoint of samples are 
annotated at the tip of the clades with the letters A–C. Numbers at the nodes 
indicate bootstrap values. EAC drivers harboring SNVs (without brackets) or 
indels (in squared brackets) and number of neoantigenic SNVs are annotated 
on the clades of the trees. HI, homoplasy index; NeoSNVs, neoantigenic SNV. 

e, Proportion of SNV types in treatment-naive SNVs (left), SNVs occurring 
under chemotherapy (middle) and SNVs occurring under RCTx (right) from 
phylogenetic tree analyses. A, adenine; T, thymine; C, cytosine; G, guanine. 
n = 5,341 CTx-induced SNVs, n = 283 RCTx induced SNVs, n = 9,787 treatment-
naive SNVs. f, Proportion of COSMIC signatures in NRPs and REPs during 
treatment (COSMIC signature calling was limited to those with a weight >5% 
in the respective groups). Samples from NRP: n = 10 at timepoint A, n = 10 at 
timepoint B, n = 2 at timepoint C; samples from REP: n = 19 at timepoint A, 
n = 14 at timepoint B, n = 15 at timepoint C. g, Line graph showing changes in the 
proportion of COSMIC signature 4 in responders during treatment. For multi-
region samples means were plotted for each timepoint.
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Fig. 3 | Dynamics in copy number alterations during neoadjuvant treatment. 
a, Plot showing genome-wide copy number state. Each row represents a sample, 
with samples from the same patient grouped together and patient ID is annotated 
on the left. Treatment response and timepoint of each sample are annotated on 
the right. Dashed vertical lines indicate the centromere of each chromosome 
and continuous vertical lines are separating different chromosomes. CNS, copy 
number state; CNt, copy number. b, Percentage of altered exome in REPs and 
NRPs during neoadjuvant treatment. CNS: copy number state. Samples from 
NRPs n = 10 at timepoint A, n = 10 at timepoint B, n = 2 at timepoint C; Samples 
from REPs: n = 19 at timepoint A, n = 14 at timepoint B, n = 15 at timepoint C.  
c, Fragment size of clonal, subclonal and private CNAs. Box plots show the 
median, two hinges representing the first and third quartiles and two whiskers 
showing the minimum and maximum. In patients with only two samples 
available, no distinction between subclonal and private could be made and 
therefore CNAs were summarized in ‘subclonal/private’ category. Number 

of clonal fragments: n = 281 in REPs, n = 180 in NRPs. Number of subclonal 
fragments: n = 315 in NRPs, n = 1,492 in REPs; number of subclonal/private 
fragments n = 460 in NRPs, n = 307 in REPs; number of private fragments n = 202 
in NRPs, n = 995 in REPs. P values are calculated by the two-sided Wilcoxon test. 
Subcl./priv., subclonal/private. d, Fraction of exome with changing copy number 
state between timepoint A and B in NRPs and REPs. P values are calculated by 
a two-sided Wilcoxon test. TP, timepoint. e, Plot shows genetic alterations, 
including CNAs, SNVs and indels for putative cancer driver genes identified by 
IntOGen. Each vertical column represents a sample. Samples of the same patients 
are grouped together and patient ID is annotated at the top. Information on 
timepoint, cancer cellularity and the patient’s pathological regression grade 
treatment are found in the top three rows. The following rows show information 
on genetic alterations in EAC driver genes. Cellularity was defined as low (10–
30%), medium (31–60%) or high (61–100%). Regression grades were evaluated by 
a pathologist according to Becker regression classification.
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which is consistent with previously described platin-induced muta-
tion signatures10,11,27 (Fig. 2e). To further investigate this, we called 
96-channel COSMIC signatures for all samples (Extended Data Fig. 2e). 
Across subgroups from different treatment response and timepoints, 
we detected eight prevalent COSMIC signatures (Fig. 2f), of which all 
have been previously identified in EAC9,12,28–31. REPs showed a nonsig-
nificant increase in S4 signature during treatment, which is dominated 
by C > A changes and thus most likely oxaliplatin driven27 (Fig. 2f,g).

Copy number evolution through treatment
EAC genomes typically have high CNA burden23,28,32; consistent with 
this our cases had median 69.4% genome altered (PGA, range 1.1–100%) 
(Fig. 3a). Copy number amplifications were seen frequently on chro-
mosomes 1q, 3q, 5p, 7p, 8q, 19 and 20, while losses or loss of heterozy-
gosity (LOH) predominated on chromosomes 3p, 4q, 5q, 9p and 17p, 
consistent with previous work10,28,33 (Fig. 3a).

Treatment-naive tumors from REPs and NRPs displayed similar 
proportions of amplifications, deletions, loss and LOH (Fig. 3b). Chem-
otherapy did not increase PGA, whereas RCTx, known to cause broad 
single- or double-strand breaks, led to higher PGA (t-test P value = 0.03) 
(Fig. 3b). Segments that changed their copy number state during treat-
ment were significantly smaller than fragments that were clonally 
altered (Fig. 3c). Furthermore, private CNAs were smaller in NRPs than 
in REPs (t-test P value < 0.001).

We examined whether CNA dynamics correlated with early treat-
ment response in EAC. REPs showed significant changes in CNA bur-
den with a mean of 63% (range 36–87%) of genome changing its copy 
number status after the first cycle of chemotherapy, whereas copy  
number states in NRPs were slightly more stable with a mean of 33% 
(range 11–61%) of genome altering copy number state (Wilcoxon 
rank-sum test P value 0.009; Fig. 3d). We speculate that NRPs may have 
genomes that confer pre-existing resistance to the effect of neoadjuvant 
chemotherapy, whereas REPs have profiles that confer chemotherapy  
sensitivity, therefore the first dose of chemotherapy prompts further  
alteration.

Genetic and transcriptomic dynamics in EAC drivers
We examined genetic alterations in 108 genes suggested to be drivers of 
EAC evolution (Supplementary Table 6 and Extended Data Fig. 3)33,34 and 
we show 15 common EAC driver genes in Fig. 3e. In 19 out of 27 patients, 
we observed that TP53 LOH or loss co-occurred with TP53 SNVs or indels, 
presumably leading to a loss of TP53 function. CDKN2A showed copy 
number loss or LOH in 21 out of 27 patients, which co-occurred with 
SNVs or indels in 5 patients (consistent with literature22). We observed 
amplifications containing MYC, KRAS, ERBB2, ERBB3, GNAS, TOP2A 
and PI3KCA and deletion of SMAD4. Of note, CNAs in driver genes were 
mostly present before treatment and persisted in their CNA category 
(amplification, LOH and loss) during treatment, although the exact 
copy number state could vary (Fig. 3e). Both REP and NRPs showed no 
significant change in the burden of genomic alterations of driver genes 
during treatment (Extended Data Fig. 4a–f). REPs showed a mean of 
85.3 genetically altered putative driver genes at timepoint A, 92.4 at B 
and 76.7 at timepoint C (Extended Data Fig. 4b). NRPs had a mean of 

77.1 genetically altered putative drivers at timepoint A, 65.4 at B and 
94.0 at timepoint C; however, we did not detect any specific cancer 
gene that was enriched for CNAs, SNVs or indels in REPs versus NRPs 
(Fig. 3e and Extended Data Fig. 3). We note that work in colorectal can-
cer has shown that mutations that are drivers ‘on average’ in a cohort 
may not be a driver in an individual cancer16, and the driver status of 
CNAs is unclear, so we do not claim that all these driver alterations are 
necessarily important for EAC evolution.

We next explored gene expression changes in high-frequency 
drivers using our matched RNA-seq data. Significant expression 
changes were observed for most driver genes: expression tended to 
increase for GNAS, PIK3CA and SMAD4, decrease for ARID1A, CDKN2A, 
ERBB2, ERBB3, TOP2A, SMARCA4, KRAS and KMT2D and was stable 
for TP53, MYC, APC and AXIN1 (Extended Data Fig. 4g). We found  
little evidence that copy numbers drove expression, with correlations 
between copy number state and RNA expression in only a few genes 
(Extended Data Fig. 5a). Correlation analyses between SNVs in driver 
genes and their expression were only possible for TP53 and CDKN2A, 
as analyses for other drivers were underpowered. We observed  
significantly higher CDKN2A expression in CDKN2A mutated samples and 
significantly lower TP53 expression in TP53 mutated samples (Extended  
Data Fig. 5b).

Neoadjuvant treatment alters the EAC transcriptome
We assessed gene and pathway expression changes during neoadjuvant 
treatment using RNA-seq in 26 samples from 10 NRPs and 54 samples 
from 17 REPs.

Principal-component analysis (PCA) using hallmark pathways35 
separated samples from timepoint A and B from timepoint C (Fig. 4a); 
however, samples from REPs and NRPs were intermixed. Most patients 
with multi-region sampling showed pre- and post-treatment samples 
clustering on the opposite sides of PC1, with samples from timepoint B 
found in between (Extended Data Fig. 5c), suggesting a gradual change 
of the transcriptome over time.

Hallmark pathways were grouped into ‘classes’ according to their 
biological function (‘oncogenic’, ‘immune’, ‘stromal’ and ‘cellular 
stress’)36. PCA loading assessment showed that samples from timepoint 
A and B were enriched for oncogenic pathways, whereas samples from 
timepoint C were enriched in immune and stromal pathways as well 
as selected oncogenic pathways (KRAS, Hedgehog and WNT signaling; 
Fig. 4b). We identified hallmark genes that were on average signifi-
cantly differentially expressed between pre/early-treatment samples 
and samples at the end of neoadjuvant treatment, and performed 
hierarchical clustering of all samples using these genes. Expectedly, 
and consistent with PCA analysis, the dendrogram separated into two 
groups (Fig. 4c): group 2, containing most samples from timepoint 
A/B, was enriched for ‘oncogenic’ acting pathways, such as MYC, cell 
cycle associated pathways, DNA repair and MTORC signaling (Fig. 4c); 
and group 1, including mostly samples from timepoint C, showed sig-
nificant enrichment of epithelial–mesenchymal transition (EMT) and 
stemness-associated WNT signaling and promoters of stem cell-like 
state such as TGF-β signaling and hypoxia. Moreover, immune pathways 
such as IL6 and IL2 signaling and inflammatory response and oncogenic 

Fig. 4 | Neoadjuvant treatment leads to profound changes in gene and 
pathway expression in EAC. a, PCA of single sample gene set enrichment 
analysis of cancer hallmark gene sets. Background shading represents a visual 
highlight. PC, principal component. b, Principal-component feature loadings 
(magnitude and direction) from PCA in a. Vectors are colored according to 
their biological classification of cancer hallmark gene sets. c, Hierarchical 
clustering with heatmap showing the significantly differentially expressed 
pathways between the two clusters (right cluster is predominantly samples 
from timepoint A/B and left cluster is predominantly timepoint C). Sample IDs 
and timepoints are annotated at the bottom of the heatmap. d, Enrichment 
analyses in KEGG pathways in REPs between timepoint A and C. Samples from 

REPs: n = 19 at timepoint A and n = 19 at timepoint C. e, Enrichment analyses in 
KEGG pathways in NRPs between timepoint A and C. Samples from NRPs: n = 8 at 
timepoint A and n = 10 at timepoint C. f, Enrichment analyses in KEGG pathways 
during chemotherapy (all samples at timepoint B versus REPs at timepoint C). 
Samples at timepoint B: n = 24 and REPs at timepoint C: n = 19. Dotted lines in 
d–f indicate significance level of Padj < 0.05 (false discovery rate (FDR)-adjusted 
P values). g, Plot shows immune cell composition based on CIBERSORT analysis 
in REPs and NRPs during neoadjuvant treatment. Samples from NRPs: n = 8 at 
timepoint A, n = 8 at timepoint B, n = 10 at timepoint C; Samples from REPs: n = 19 
at timepoint A, n = 16 at timepoint B, n = 19 at timepoint C. sig., significant; diff., 
differentiation.
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KRAS and PI3K-AKT-MTOR signaling were significantly enriched in the 
post-treatment group (Fig. 4c).

Pathway enrichment between pre- and post-treatment samples 
in REPs and NRPs showed significant upregulation of WNT, PI3K, RAS, 
MAPK and JAK-STAT, indicating that both chemotherapy and RCTx lead 
to major and similar transcriptomic changes in tumor cells (Fig. 4d,e). 
Immune-related pathways were also significantly altered during treat-
ment in REPs (Fig. 4d,e). Further, there was significant upregulation 
of immune activation pathways in post-treatment samples after CTx 
(Fig. 4f and Extended Data Fig. 5d), whereas post-treatment samples 
after RCTx showed no significant changes in immune-related pathways.

We used immune deconvolution tools to delineate cellular com-
position changes from RNA-seq data. Using CIBERSORT37, we observed 
a gradual increase in absolute numbers of immune cells during neoad-
juvant treatment in REPs and NRPs (Fig. 4g); however, this may be due 
to lower tumor cellularity in post-treatment samples. Proportions of 
individual immune cell types stayed stable during treatment (Fig. 4g), 
with CD4+ and CD8+ cells comprising 40–50% of all immune cells. 
Other deconvolution tools (ConsensusTME and Syllogist) confirmed 
the gradual increase in immune infiltrates during treatment (Extended 
Data Fig. 6a,b) but there was variability in the estimated proportions 
of immune cell types.

In summary, cancer-relevant gene expression programs signifi-
cantly changed during treatment, with enrichment of developmen-
tal programs such as EMT, stemness-associated WNT signaling and 
promoters of stem cell-like state such as TGF-β signaling and hypoxia, 
despite infrequent clonal replacement. Our data therefore suggest that 
cancer cells alter their phenotype without clonal replacement and that 
phenotypic plasticity might underly these observations.

Immune escape correlates with treatment response
Neoantigens were called from WES data on 22 samples from 10 NRPs and 
48 samples from 17 REPs. We did not observe any significant changes 

in the neoantigenic mutation burden during neoadjuvant treatment 
(Fig. 5a,b and Extended Data Fig. 6c). Next we examined whether neo-
antigens were subject to selection (immune editing). We observed no 
change in proportions between immunogenic and total mutations dur-
ing neoadjuvant treatment (Fig. 5c), indicating no enhanced negative 
selection of neoantigenic mutations during treatment. Subclonal neo-
antigenic mutational burden was not significantly different between 
pre- and post-treatment samples (Fig. 5d and Extended Data Fig. 6d) 
and most patients had comparable proportions of neoantigenic SNVs 
on the clades of their phylogenetic tree (Fig. 2d), indicating that neo-
antigenic subclones are not removed during treatment.

Next, we explored the relationship between CNAs and neoanti-
gens. We hypothesized that gains of alleles carrying antigenic muta-
tions were likely to experience negative selection, and so expected 
that gained alleles would be relatively depleted for neoantigens. To 
test this, we calculated the copy number-normalized proportion of 
neoantigens in each CNA segment. Diploid regions showed a ratio of ~1, 
whereas gains (balanced and unbalanced) were significantly depleted 
for neoantigens and regions of copy number loss were weakly enriched 
for neoantigens (Fig. 5e).

We hypothesized that transcriptional downregulation of neo-
antigens during treatment might also underlie immune evasion and 
potentially mediate treatment response. Counter to our hypothesis, we 
detected a significant increase in neoantigen expression during treat-
ment (Fig. 5f). High neoantigen expression correlated with high CD8+ 
and CD4+ cell infiltration (Fig. 5g,h), suggesting that tumor cells with 
a high neoantigen expression were indeed recognized as ‘nonself’ and 
attracted immune cells. This can be explained if tumors subsequently 
develop stronger immune escape mechanisms during treatment or 
that the immune infiltrate becomes nonfunctional during treatment.

To test this, we first looked for tumor-cell-mediated immune 
escape mechanisms38 (LOH or mutations in HLA, B2M mutations or 
programmed death-ligand 1 (PD-L1) and pathways or immune cells 

Fig. 5 | Increasing immune escape during neoadjuvant treatment correlates 
with poor treatment response. a–d, Violins showing the neoantigenic 
mutational burden during neoadjuvant treatment in all samples (a), stratified by 
treatment response (b), expressed as a proportion of total SNVs (c) and stratified 
by clonality (d). Clonal and subclonal neoantigenic mutational burden during 
neoadjuvant treatment. Mutations of each sample were classified as clonal  
or subclonal based on the copy number (CN) and cellularity-adjusted CCF.  
e, Distribution of neoantigenic SNVs based on their copy number states.  
The CN-normalized proportion of neoantigenic SNVs in each CN segment was 
calculated. f, Expression of neoantigens during treatment. g,h, Neoantigen 
expression in EAC according to immune infiltration score for CD8+ T cells (g) 
and CD4+ T cells (h). i, Presence of HLA-LOH, PD-L1 overexpression and B2M 
mutations in individual samples from NRPs (left) and REPs (right). Samples from 
individual patients are separated by vertical black lines. PD-L1 overexpression 

was defined as PD-L1 expression >2 s.d. from the mean of all treatment-naive 
samples. j, Proportion of early and late occurrence of genetic and nongenetic 
immune escape in cohort of n = 27 patients. Genetic immune escape refers to 
mutations or LOH in HLA or B2M mutations, whereas PD-L1 overexpression 
represents transcriptomic immune escape. P value calculated by the two-sided 
chi-squared test (P = 0.003). k, PD-L1 expression during neoadjuvant treatment. 
l, Proportion of immune escaped samples and their escape mechanism stratified 
by treatment response in NRPs (n = 17 samples) and REPs (n = 47 samples) with 
matching WES and RNA-seq data. m, Proportion of samples with HLA-LOH 
stratified by treatment response in NRPs (n = 22 samples) and REPs (n = 48 
samples). P values in j–m are calculated by the two-sided chi-squared test.  
P values in all other panels are calculated by a two-sided Wilcoxon test, unless 
stated otherwise. Amplif., amplification; I.E., immune escape; overexpr., 
overexpression.

Fig. 6 | Highly multiplexed imaging mass cytometry analysis reveals 
different T cell phenotype dynamics in NRPs and REPs during treatment. 
a, Representative image IMC staining of EAC tissue. Scale bar, 100 μm. p53 
(yellow), CD4 (red), CD8a (green) and DNA (blue) from IMC data channels are 
displayed. Representative IMC images were taken from a minimum of 15 ROIs 
across different samples. b, Representative IMC images of each marker together 
with DNA (blue). Representative IMC images for each marker were taken from a 
minimum of 15 ROIs across different samples. c, t-SNE visualization of the EAC 
tumor, stromal and immune map based on 28 identified cell clusters.  
d, Heatmap visualization of marker expression in the 28 cell clusters. Normalized 
median marker expression is shown. TCs, tumor cells; SMCs, smooth muscle 
cells; ICs, immune cells; act, activated; d.p., in direct proximity to each other; 
GzmB, Granzyme B. e, Cell cluster dynamics during treatment are shown for 
NRPs and REPs. Box plots show the median, two hinges representing the first 
and third quartiles and two whiskers showing the minimum and maximum. 
ROIs from NRPs (n = 8 at timepoint A, n = 10 at timepoint B, n = 6 at timepoint 
C). ROIs from REPs (n = 12 at timepoint A, n = 13 at timepoint B, n = 16 at 

timepoint C). P values were calculated by a two-sided analysis of variance test. 
Exact P values: P(C1,NRP) = 0.0007, P(C2,NRP) < 0.0001; P(C4,NRP) = 0.0008; 
P(C5,NRP) < 0.0001; P(C6, NRP) = 0.0003; P(C23,NRP) < 0.0001; P(C26,NRP) =  
0.02; P(C1,REP) = 0.02; P(C4, REP) < 0.0001; P(C5,REP) = 0.03; P(C6,REP) = 0.002; 
P(C12,REP) = 0.0005; P(C16, REP) = 0.007; P(C17,REP) = 0.04; P(C7,NRP) = 0.035; 
P(C14, NRP) = 0.03; P(C19, NRP) = 0.005; P(C19,REP) = 0.003. Unreported  
P values did not reach the significance level. f, t-SNE visualization of CD45+ cell 
map based on 24 identified cell clusters. g, Heatmap visualization of marker 
expression in the 24 CD45+ cell clusters. Normalized median marker expression  
is shown. h, Absolute CD4+ and CD8+ cell counts per mm2 during treatment. 
 i, T cell phenotypes in patients with EAC during treatment were analyzed for 
markers of T cell activation and exhaustion. Fractions of CD8+ cells (top row) and 
CD4+ cells (bottom row) were compared among patient groups and visualized by 
violin plots. j, Ratio of activated and exhausted CD8+ cells (top row) and CD4+ cells 
(bottom row) is shown during treatment for REPs and NRPs. P values in all other 
panels are calculated by the two-sided Wilcoxon test, unless stated otherwise.
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associated with immune suppression). Genetic immune escape mecha-
nisms such as HLA-LOH or B2M mutations were detected significantly 
more often before treatment (early), whereas transcriptomic PD-L1 
overexpression occurred mostly during and after neoadjuvant treat-
ment (late) (Fig. 5i–k). Increased expression of PD-L1 may represent 
a mechanism of rapid adaptation that is positively selected during 
treatment. Moreover, RNA-seq deconvolution revealed a significant 
increase in immune-suppressive M2-macrophages during treatment 
in NRPs and an increase in signaling pathways associated with immune 
suppression such as TGF-β, Il2-STAT5 and Il6-Jak-STAT3 signaling in 
both REPs and NRPs (Extended Data Fig. 6e–j).

We examined the correlation between immune escape and treat-
ment response. Samples from NRPs were more often immune escaped 
than REPs, suggestive of a role for the immune system in potentiating 
the chemotherapy treatment response (Fig. 5l). The main immune 
escape mechanism in NRPs was HLA-LOH, occurring in 46% of NRPs 
and only in 13% of REPs (Fig. 5m). Our data suggest that immune escape 
has an important role in treatment resistance, highlighting that immu-
notherapy could help to circumvent resistance to standard treatment.

A distinct tumor microenvironment defines  
treatment response
We assessed the cellular organization of the immune microenvironment 
using multiplex IMC on 24 ROIs from 16 NRP samples and 42 ROIs from 
27 REP samples. We quantified expression of 19 markers, representing 
canonical lymphoid and myeloid immune populations, together with 
tumor cell markers (Fig. 6a,b and Extended Data Fig. 6k).

First, we explored cellular phenotypes in EAC during neoadjuvant 
treatment. Taking a mean of 1.5 representative ROIs (range 1–3) from 
each timepoint we extracted single cell phenotype data for 533,734 cells 
and clustered cells using the phenograph algorithm39, which identi-
fied 28 distinct cell populations (Fig. 6c). Based on molecular expres-
sion signatures, we identified phenotypically distinct populations of 
tumor cells (C1-2, C4-6, C12, C15-C18, C20, C23 and C26), immune cells  
(C3, C7, C9, C11, C14, C19, C22, C24 and C27-28) and other cell types 
(C8, C10, C13, C21 and C25; Fig. 6d). CD8+ T cells were common in C14 
and C19, and CD4+ T cells in C7, C9, C11 and C14, and macrophages in 
C3 and C24 (Fig. 6d).

Dynamics in NRPs during treatment were dominated by a decrease 
in certain tumor cell populations (C1-2 and C4-6), decreases in the 
CD4+ cell population (C7), and the activated CD4 and CD8 cell cluster 
(C14) and an increase in one CD8+ cell population (C19) (Fig. 6e). REPs 
also showed decreasing abundances of tumor cell populations (C1, 
C4-C6, C12, C16 and C17) and increases in the same population of CD8+ 
cells (C19) (Fig. 6e). To further explore qualitative differences of the 
immune cell compartment we selected all leukocytes (CD45+ cells) 
and reclustered using only immune cell markers. This identified 24 
distinct leukocyte subpopulations (Fig. 6f,g). We observed significant 
associations between T cell clusters and treatment timepoints for IC7, 
IC18, IC4, IC15 and IC3 (Extended Data Fig. 6l,m). NRPs showed a sig-
nificant decrease in a mixed CD4/CD8 cluster (IC3) (Dunn-test P = 0.01) 
and in two exhausted CD8 clusters (IC7 and IC18) (Dunn-test P = 0.001 
and P = 0.01, respectively). Both REPs and NRPs showed decreasing 
numbers of myeloid cells during treatment (Extended Data Fig. 6n).

Given their relevance to immunotherapy, we explored the dynam-
ics of the CD8+ and CD4+ cells in more detail. NRPs showed stable CD8+ 
counts during treatment and a significant decrease in gated CD4+ 
cell counts, whereas their abundances stayed stable in REPs (Fig. 6h).  
We observed a strong decrease in CD4+ and CD8+ cell fractions express-
ing CD45RO in NRPs, indicating a loss of non-naive T cells during RCTx 
(Fig. 6i), whereas in REPs these were stable (Fig. 6i). NRPs showed a 
significant drop in CD8+ cells expressing Granzyme B and in CD4+ 
cells expressing Granzyme B or HLA-DR (Fig. 6i), indicating a decrease 
in the effector T cell phenotype in NRPs. In contrast REPs showed a 
decrease in Granzyme B and HLA-DR expression in CD4+ cells, whereas 

CD8+ cells stayed in their activated phenotype state during treatment 
(Fig. 6i). Exhausted CD8+ cells and CD4+ cells (expressing PD-1 or  
TIM-3) significantly decreased during RCTx in NRPs (Fig. 6i and 
Extended Data Fig. 7a,b). We calculated the ratio of CD4 and CD8 
cells expressing Granzyme B+ (activated) vs those expressing PD-1 
(exhausted) and found this was higher in REPs than NRPs at all time-
points (Fig. 6j), indicating a more cytotoxic T cell phenotype in REPs.

To assess the role of tumor heterogeneity, we examined an  
additional 47 multi-region ROIs from larger resection specimens  
(timepoint C). REPs and NRPs showed similar inter-region hetero
geneity in CD4 and CD8 cell counts (Extended Data Fig. 7c); however, 
in REPs the range of CD4+ and CD8+ subsets found across multi-region 
ROIs was heterogeneous and broad, whereas in NRPs there was homog-
enous enrichment for nonactive subsets (Extended Data Fig. 7d–g). 
We observed that the treatment switch from CTx to RCTx led to a more 
exhausted T cell phenotype post-treatment, compared to the continu-
ation of CTx alone (Extended Data Fig. 7h,i). We repeated TME analysis 
excluding post-treatment samples from the small number of patients 
with complete tumor remission (n = 3), and our findings were consist-
ent with the full-cohort analysis, indicating that the detected changes 
are an antitumor response rather than tissue regeneration (Extended 
Data Fig. 8). Moreover, correlation with immune escape data, showed 
that samples with impaired neoantigen presentation due to HLA-LOH 
had a less-cytotoxic CD8+ and CD4+ cell phenotype than nonescaped 
samples (Extended Data Fig. 7j,k).

Dynamics of the T cell repertoire
The TCR repertoire, measurable by TCR sequencing, provides a way 
to assess the adaptive T cell immune response and was examined in 
54 samples from nine patients through their treatment time course, 
including in cases with complete remission.

We observed an average of 296 total α TCR counts and 668 total 
β TCR counts in treatment-naive NRPs and an average of 229 total α 
TCR counts and 380 total β TCR counts in treatment-naive REPs, with 
a slight (nonsignificant) increase in total TCRs at the end of neoadju-
vant treatment (Fig. 7a). The number of detected TCRs moderately 
correlated with the absolute T cell score from CIBERSORT (Rα=0.5, 
Rβ = 0.47) (Fig. 7b).

We did not observe any differences in the overall shape of TCR 
clone size distribution during treatment exposure (Fig. 7c). We then 
focused on TCR clones that had significantly expanded between two 
timepoints, and observed early (starting between timepoint A and B)  
and persisting TCR expansions in REPs with good pathological regres-
sion (REP11 and REP23), while NRP10 and REP5 with poor response to 
CTx showed late (starting between timepoint B and C) and intermittent 
expansions (Fig. 7d and Extended Data Fig. 7l). We considered differ-
ent thresholds of expansions, which were reactive to treatment and 
persisting through treatment (those expanding between timepoint 
A and C) in patients with data from all three timepoints, and the trend 
was consistent (Fig. 7e).

Next, we tracked T cell clone expansions during treatment in 
patients with different treatment response. REPs with poor pathologi-
cal treatment response (Becker grade 3), showed significantly lower 
numbers of TCRs that expanded at least fourfold or at least eightfold 
between two timepoints during treatment than REPs and NRPs with 
excellent regression (Fig. 7f).

Discussion
This work describes our integrative genetic, transcriptomic and 
immune microenvironment analysis of longitudinal EAC samples 
taken before, during and after neoadjuvant treatment. Notably, we 
did not observe clonal replacement during neoadjuvant treatment; 
however, these results are in line with previous findings in a multi-region 
WES study of pre- and post-treatment EAC samples, which similarly 
reported clonal persistence with rarely new occurring putative drivers 
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Fig. 7 | T cells show clonal expansion in patients with neoadjuvant treatment 
response. a, Numbers of total TCRs α-chain (left) and β-chain (right) in REPs 
and NRPs during treatment. P values are calculated by a two-sided Wilcoxon 
test. b, Correlation between TCR counts α-chain (left) and β-chain (right) and 
quantitative deconvolution of T cells from RNA-seq data via CIBERSORT.  
Two-tailed Pearson’s correlation coefficients are reported in the plots.  
c, Abundance distribution profile of TCRs at timepoints A–C. The y axis shows the 
proportion of the TCRs that are found at the abundance indicated by  

the x axis. d, Fishplots show the number of fourfold-expanded TCRs between any 
two timepoints REP11 (top) and REP23 (bottom). The colors correspond to the 
combination of timepoints that the TCR expansion occur in. e, The proportions 
of T cell clones that are expanded ≥fourfold and ≥eightfold between timepoint A 
and C. f, Numbers of TCRs expanded ≥fourfold and ≥eightfold during treatment 
periods (A–B, A–C and B–C), stratified by pathological regression grades.  
P values are calculated by a two-sided Mann–Whitney U-test.
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post-treatment11. We note that another study by Findlay et al. did 
report loss of mutations (and clones) through treatment10, but this  
could be explained by low cellularity in some of Findlay et al.’s post- 
treatment samples.

Recent evidence implicates a key role of nonmutational resist-
ance mechanisms (where cells can plastically switch phenotype with-
out underlying genetic change) in drug resistance14,15,40,41. Here, we 
observed marked changes in transcriptional programs without clonal 
replacement during neoadjuvant treatment, which may be evidence 
of tumor cell plasticity. Although we emphasize that many mutations 
were gained and lost through the time course, our analyses cannot rule 
out that such phenotypic change is a consequence of genetic changes 
with underlying polyclonal evolution. Joint analysis of phenotype and 
genotype data showed major transcriptome and TME changes during 
treatment, whereas clonal changes were more minor, suggesting an 
actual change in the tumor’s phenotype and TME during treatment 
rather than a consequence of sampling a heterogeneous tumor.

The enrichment of EMT gene expression programs in our 
post-treatment samples is consistent with previously reported plas-
ticity of these programmes14,40,42. Further, EMT is known to be con-
trolled by multiple signaling pathways, such as TGF-β, WNT, Notch and 
Ras-MAPK pathways40,43,44, which all showed a significant increase dur-
ing treatment in EAC. The apparent readiness of EAC cells to undergo 
EMT in response to CTx and RTx via interleukin-6 upregulation, has 
also been shown in vitro45 and is associated with poor prognosis9. We 
speculate that inhibition of the pathways that promote EMT, with the 
goal of maintaining cancer cells in a state susceptible to chemotherapy, 
could represent an avenue for future treatment strategies.

A high neoantigen burden is associated with good progno-
sis in patients with a variety of cancers46–48 and with successful 
immune-checkpoint therapy49–52. Indeed, recently approved com-
bined immuno-chemotherapy based on results from CheckMate 649 
(ref. 53), Keynote-180 (ref. 5), Keynote-590 (ref. 6) and the CheckMate 
577 trial7 showed a benefit for EAC in the metastatic and adjuvant 
setting. Keynote-585 investigated combined immunochemotherapy 
in the perioperative setting and showed higher rates of pathological 
complete response, but no improvement in the overall survival after 
treatment with combined immunochemotherapy compared to chemo-
therapy alone8. As the majority of patients with EAC do not respond 
adequately to immunotherapy, a better molecular characterization 
to predict response to CTx, RCTx and immunotherapy is essential.

We observed immune escape via genetic mechanisms and shifts to 
an immunosuppressive TME in NRPs. Further, cellular analysis showed 
remodeling of the T cell compartment during treatment, with expan-
sion of T cell clones and a more activated T cell phenotype in patients 
with good treatment response. A previous study reported an associa-
tion between actively proliferating CD8+ T cells and complete remission 
in EAC treated with neoadjuvant RCTx54, and a further study found 
EACs with high lymphocyte and myeloid gene expression signatures 
before treatment had better OS9. Our data implicate a role for HLA-LOH 
in immune escape in NRPs. While HLA-LOH is associated with poor 
prognosis in a variety of cancer types55,56, patients with disrupted tumor 
HLA-I presentation can still have durable responses to immunotherapy, 
especially when combined with a high tumor mutational burden57,58. 
We note that our analysis of immune escape was not exhaustive; for 
example, alterations to the local metabolic environment and immune 
editing through epigenetic changes were not assessed.

We found that T cells remain in an active state during CTx, whereas 
RCTx causes a loss of cytotoxic T cell activity. Recently published work 
reported the predictive value of baseline CD8+PD-1+ T cell infiltrations 
and the increase of CD8+ cells after exposure to ICB for treatment 
response to neoadjuvant immunochemotherapy in EAC18. Collectively, 
these data offer an explanation for the results of the PERFECT trial, 
which showed that the combination of atezolizumab (PD-L1 inhibition) 
and neoadjuvant RCTx is only beneficial for patients with an already 

inflamed microenvironment and that RCTx is not able to adequately 
reshape the immune landscape59.

We note that PET-negative primary tumors were excluded from our 
study and represented 13% of the original screening MEMORI cohort. 
As primary tumors with different PET signal intensities did not show 
marked differences in their global transcriptomes, we suggest that 
our findings might be independent of the metabolic activity of the 
primary tumor, but future studies including PET-negative tumors will 
be required for validation.

In conclusion, our longitudinal multiomic study shows limited 
evidence of clonal replacement during neoadjuvant treatment in EAC 
but potent modulation of the immune cell compartment. These data 
motivate exploration of combination immunochemotherapy treat-
ments in the neoadjuvant setting for EAC.

Methods
Prospective sample collection within clinical MEMORI trial
EAC specimens were obtained from the prospective clinical MEMORI 
trial (EudraCT 2014-000860-16)19. The performed translational 
research complies with the protocol of the MEMORI study, which was 
approved by the local ethics committee at Technical University Munich. 
All patients gave written informed consent for collection and molecular 
analysis of their sample material and the inclusion of the information 
listed in the manuscript within the MEMORI trial protocol. The study 
protocol is available on request.

Patients with locally advanced EAC and intense FDG tracer uptake 
of the tumor at baseline FDG-PET–CT ([18F]-FDG uptake in the tumor at 
baseline >1.35 × liver standardized uptake value (SUV) + 2 × s.d. of the 
liver SUV) and thus suitable for monitoring and early response predic-
tion by FDG-PET were eligible for MEMORI trial. From 160 screened 
patients, 85 patients (53%) were excluded due to previously undetect-
able metastases (n = 39, 24%), no or too low FDG uptake of the primary 
tumor (n = 21, 13%) or other reasons (n = 25, 16%). All patients in the 
MEMORI trial received one cycle of platinum-based chemotherapy.  
A total of 23 patients received FOLFOX (oxaliplatin-5-FU) and 5 patients 
received EOX (epirubicin, oxaliplatin and capecitabine) for their first 
cycle of neoadjuvant chemotherapy. Metabolic tumor response was 
assessed with a repeated PET–CT at day 14–21. Responders in PET–CT 
scan (REPs) were defined as ≥35% decrease in maximal SUV (SUVmax) 
from baseline and were continued on three more cycles of FOLFOX (d14) 
or four more cycles of EOX if EOX was given at the first cycle. Patients 
with poor response (<35% decrease in SUVmax from baseline) were 
classified as NRPs and were switched to intensified RCTx (41.4 Gy/23 
fractions with weekly carboplatin/paclitaxel) according to the CROSS 
protocol60. Following completion of neoadjuvant treatment, restaging 
was performed. In the absence of progression to metastatic/unresect-
able disease, patients underwent surgical resection. Histopathological 
regression grade was assessed in the resection specimens after comple-
tion of neoadjuvant treatment. In this study sample, major histological 
response (Becker grade I) was achieved in 35% of REPs and 70% of NRPs 
(Extended Data Fig. 1b). Ten NRPs and 17 REPs were enrolled for longitu-
dinal molecular analyses. Most patients provided three cancer samples 
with one pretreatment biopsy (timepoint A), one biopsy collected 
after the first cycle of chemotherapy (timepoint B) and the surgical 
specimen sample after completion of neoadjuvant treatment (either 
CTx or RCTx) (timepoint C) (Fig. 1b,c). No statistical methods were 
used to predetermine sample sizes but our sample sizes are similar to 
those reported in previous publications10,11,18. Two patients (REP10 and 
REP11) had multi-timepoint and multi-region samples (≥6 samples per 
patient). Further clinical and histopathological information is provided 
in Supplementary Table 1.

Tumor tissue was fixed and stabilized with the PAXgene fixa-
tion method (PAXgeneTissue FIX Container (QIAGEN)). For eight 
samples formalin-fixed tissue was used (Supplementary Table 7). 
Post-treatment resection specimens showing Becker remission grade 
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1a (complete response) were excluded from genetic analyses, but 
included for immune analyses (RNA-seq and IMC). For post-treatment 
samples with remission grade 1b, 2 or 3, the remaining tumor cells 
were microdissected before DNA extraction, and included if genetic 
analysis showed EAC-like CNAs or SNVs. Blood for germline control 
was collected in PAXgene Blood DNA Tubes (QIAGEN). Data collec-
tion and analysis were not performed blind to the clinical subgroups 
of the experiments. Our longitudinal molecular analysis is based on 
samples from the MEMORI trial; however, the clinical trial’s predefined 
primary and secondary outcomes are not subject to our molecular 
work. We report information on patients’ sex in Fig. 1 and Supplemen-
tary Table 1. Sex and gender were not considered in the study design. 
Information on gender was not collected and is therefore not reported. 
Consent has been obtained for sharing individual-level data. Post 
hoc sex- and gender-based analysis were not performed as the study 
design is insufficient for sex- and gender-based analysis due to the 
 small sample size.

Section preparation
PAXgene-fixed paraffin-embedded (PFPE) or formalin-fixed paraffin- 
embedded (FFPE) tissue were sectioned as follows; one section at 4 µm 
for hematoxylin and eosin (H&E) stain, eight sections at 10 µm onto PEN 
Membrane Glass Slides (Thermo Fisher) for subsequent isolation of 
DNA and RNA, four sections at 4 µm for IMC analysis and a final 4-µm 
section for a second H&E. Both H&Es were reviewed by a board-certified 
pathologist to assure high tissue quality and tumor cellularity. If tumor 
cellularity was estimated <50%, tumor areas were annotated for tumor 
cell enrichment. Sections for DNA extraction were stored at −20 °C and 
sections for RNA extractions at −80 °C, if not processed immediately.

DNA and RNA isolation. To increase cellularity, samples with <50% 
tumor cells were stained with methyl green and tumor cells enriched 
via laser capture microdissection using a PALM MicroBeam (Carl Zeiss 
Microscopy). DNA was extracted using the PAXgeneTissue DNA kit (QIA-
GEN) for PFPE tissue and the High Pure FFPET DNA Isolation kit (Roche 
Molecular Systems) for FFPE tissue according to the manufacturer’s 
instructions. DNA from blood was extracted with the QIAamp DNA 
Blood Mini kit (QIAGEN). The integrity of DNA molecules was assessed 
via D5000 Tapestation Assay (Life Technologies). Samples with a total 
DNA yield higher than 10 ng and DNA peak detection at >1,000 bp were 
taken forward for WES library preparation.

RNA extractions from PFPE sections were performed using the 
PAXgeneTissue RNA kit from QIAGEN according to the manufacturer’s 
protocol. For FFPE sections, RNA was extracted using the High Pure 
FFPET RNA Isolation kit (Roche Molecular Systems). RNA quantity 
was measured using the Qubit fluorometer RNA High Sensitivity assay  
(Life Technologies). Quality control was performed using the High Sensi-
tivity RNA TapeStation system (Agilent). RNA quality was assessed using 
the DV200 value. RNA samples with a DV200 > 50% were eligible for further 
analysis.

Preparation of whole-exome sequencing libraries. Libraries were 
prepared using the SureSelectXT Low Input Target Enrichment System 
with Dual Indexing (Agilent Technologies) according to manufacturer’s 
instructions. A short mechanical fragmentation step using a Covaris 
S2 Sonicator to generate 150–200-bp long fragments was performed 
and 8–14 PCR cycles were used for library enrichment depending on the 
DNA input. After purification, libraries were quantified by Qubit and 
run on the Agilent Tapestation using the HSD1000 assay. Samples with 
sufficient library DNA yield and characteristic fragment size distribu-
tion (~200–500 bp) were further subjected to deep (~300× depth) WES.

Preparation of RNA-seq libraries. Libraries were prepared using the 
QuantSeq 3′ mRNASeq Library Prep kit FWD (Lexogen), according to 
the manufacturer’s protocol with minor modifications. To increase the 

total RNA library yields, the pre-PCR incubation time was increased 
to 1 h. After purification, libraries were quantified by Qubit and run 
on the Agilent Tapestation using the D1000 assay. Samples with suf-
ficient library cDNA yield and characteristic fragment size distribution 
(~170–700 bp) were further subjected to RNA-seq.

WES and RNA sequencing. Sequencing libraries were multiplexed 
and sequenced on an Illumina Novaseq, typically using S2 flow cells. 
Read length and depth were varied as required by library composition. 
Target depth for WES was 250× and >2 million reads per sample for 
RNA-seq. Sequencing was performed by the Genome Centre at Queen 
Mary University London.

IMC staining. IMC staining was performed on 54 PAXgene-fixed samples 
and 12 FFPE samples (Supplementary Table 7). Incubation, rehydration 
and epitope retrieval was performed on 4-μm-thick tissue sections as 
described in previous work61. The sections were then stained with a mix of 
metal-labeled primary antibodies (Supplementary Table 4) diluted in TBS 
with 0.5% BSA and incubated at 4 °C overnight. Antibody binding condi-
tions were determined in previous work61–64. Sections were then rinsed, 
stained with Iridium Cell-ID and air-dried as previously described61. Slides 
were stored at room temperature until image acquisition.

IMC image acquisition. A 1–2-mm2 image per sample was acquired 
using a Hyperion Imaging System (Fluidigm). Tuning of the instrument 
was performed according to the manufacturer’s instructions. ROIs 
were determined based on a pathologist’s annotations on consecutive 
H&E-stained section of each sample. A total of 66 ROIs were scanned as 
the exploratory set and 47 ROIs were scanned during the revision pro-
cess for validation purposes and tumor heterogeneity analyses (Sup-
plementary Table 7). Tissue sections were laser-ablated spot-by-spot 
at 200 Hz, resulting in a pixel 2 size/resolution of 1 mm. Preprocessing 
of the raw data was conducted using the CyTOF software v.7.0. Image 
acquisition control was performed using MCD Viewer v.1.0.560.6. For 
larger samples multiple ROIs were obtained.

TCR sequencing. Full details for both the experimental TCR-seq 
library preparation and the subsequent computational analysis (V, J  
and CDR3 annotation) using Decombinator are published in our previ-
ous work65,66.

Bioinformatics summary methods
Detailed computational methods are described at https://doi.org/ 
10.17504/protocols.io.j8nlk9xpwv5r/v1 (ref. 67). We note that bioin-
formatics scripts to reproduce our workflow are provided at https://
github.com/meli3349/MEMORI_multiomics_data_analyses/tree/ 
analysis, which includes descriptions of all software parameters used.

WES computational methods. Raw sequence data were quality- 
controlled and aligned following the GATK best practice pipeline68–70. 
CNAs were called with Sequenza71, SNVs with Mutect72 and clonal infer-
ence performed with MOBSTER24. Mutations were annotated by ANNO-
VAR73 and drivers identified from the IntOGen database34. Phylogenetic 
trees were constructed with Phangorm74. Mutational signatures were 
computed with deconstructSigs75. HLA typing was performed with 
Optitype76 and neoantigens identified with NeoPredPipe77.

RNA-seq computational methods. Basic RNA processing was per-
formed with the STAR pipeline78, and differential expression analysis 
with DESeq2 (ref. 79). Immune deconvolution analysis was performed 
with CIBERSORT37.

Image mass cytometry computational methods. Basic processing 
was performed with the pipeline provided by the Bodenmiller group 
at https://github.com/BodenmillerGroup/ImcSegmentationPipeline. 
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Downstream analysis was performed with the OMIQ commercial 
software.

Statistics and reproducibility
No statistical method was used to predetermine sample size. Data dis-
tribution was assumed to be normal but this was not formally tested. 
The experiments were not randomized. The investigators were not 
blinded to allocation during experiments and outcome assessment. 
Of screened MEMORI patients, 13% (n = 21) were excluded due to no/
low FDG uptake in the primary tumor19. RNA-seq data for samples 
that contained <1.5 × 106 reads were excluded for further downstream 
analysis. Samples that did not show EAC-like CNAs or EAC-specific SNVs 
were excluded from genetic analyses.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Gene expression data, somatic mutation calls (MuTect2 and Annovar), 
copy number calls (Sequenza), neoantigen calls (Nepred pipeline) and 
called TCRs are available on Mendeley at https://doi.org/10.17632/
brsxvy4746.1 (ref. 80). MCD files and cell segmentation files (IMC 
analyses) have been deposited at Zenodo at https://doi.org/10.5281/
zenodo.12800339 (ref. 81). Sequencing data have been deposited at 
the European Genome–phenome Archive (EGA), under accession 
numbers (EGAS50000000240 and EGAS50000000242). Access to 
these bam files is controlled and subject to application via the EGA 
platform. The accession of bam files is limited to research purposes 
and regulated with a data use agreement. The timeframe for response 
to requests is expected within 10 working days. Further information 
about the EGA can be found at https://ega-archive.org. Source data are 
provided with this paper.

Code availability
Complete scripts to replicate all bioinformatic analysis are available 
at https://github.com/meli3349/MEMORI_multiomics_data_analyses/
tree/analysis.

References
1.	 Sung, H. et al. Global cancer statistics 2020: GLOBOCAN 

estimates of incidence and mortality worldwide for 36 cancers 
in 185 countries. CA Cancer J. Clin. https://doi.org/10.3322/
caac.21660 (2021).

2.	 Morgan, E. et al. International trends in oesophageal cancer 
survival by histological subtype between 1995 and 2014. Gut 70, 
234–242 (2021).

3.	 Davies, A. R. et al. Tumor stage after neoadjuvant chemotherapy 
determines survival after surgery for adenocarcinoma of the 
esophagus and esophagogastric junction. J. Clin. Oncol. 32, 
2983–2990 (2014).

4.	 Al-Batran, S. E. et al. Perioperative chemotherapy with 
fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus 
fluorouracil or capecitabine plus cisplatin and epirubicin for 
locally advanced, resectable gastric or gastro-oesophageal 
junction adenocarcinoma (FLOT4): a randomised, phase 2/3 
trial. Lancet 393, 1948–1957 (2019).

5.	 Shah, M. A. et al. Efficacy and safety of pembrolizumab for heavily 
pretreated patients with advanced, metastatic adenocarcinoma 
or squamous cell carcinoma of the esophagus: the phase 2 
KEYNOTE-180 study. JAMA Oncol. 5, 546–550 (2019).

6.	 Sun, J. M. et al. Pembrolizumab plus chemotherapy versus 
chemotherapy alone for first-line treatment of advanced 
oesophageal cancer (KEYNOTE-590): a randomised, 
placebo-controlled, phase 3 study. Lancet 398, 759–771 (2021).

7.	 Kelly, R. J. et al. Adjuvant nivolumab in resected esophageal 
or gastroesophageal junction cancer. N. Engl. J. Med. 384, 
1191–1203 (2021).

8.	 Shitara, K. et al. Neoadjuvant and adjuvant pembrolizumab 
plus chemotherapy in locally advanced gastric or 
gastro-oesophageal cancer (KEYNOTE-585): an interim analysis 
of the multicentre, double-blind, randomised phase 3 study. 
Lancet Oncol. 25, 212–224 (2024).

9.	 Naeini, M. M. et al. Multi-omic features of oesophageal 
adenocarcinoma in patients treated with preoperative 
neoadjuvant therapy. Nat. Commun. 14, 3155 (2023).

10.	 Findlay, J. M. et al. Differential clonal evolution in oesophageal 
cancers in response to neo-adjuvant chemotherapy. Nat. 
Commun. 7, 11111 (2016).

11.	 Murugaesu, N. et al. Tracking the genomic evolution 
of esophageal adenocarcinoma through neoadjuvant 
chemotherapy. Cancer Discov. 5, 821–831 (2015).

12.	 Noorani, A. et al. A comparative analysis of whole genome 
sequencing of esophageal adenocarcinoma pre- and 
post-chemotherapy. Genome Res. 27, 902–912 (2017).

13.	 Marine, J. C., Dawson, S. J. & Dawson, M. A. Non-genetic 
mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 
20, 743–756 (2020).

14.	 Boumahdi, S. & de Sauvage, F. J. The great escape: tumour cell 
plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov. 
19, 39–56 (2020).

15.	 Shaffer, S. M. et al. Rare cell variability and drug-induced 
reprogramming as a mode of cancer drug resistance. Nature 
546, 431–435 (2017).

16.	 Househam, J. et al. Phenotypic plasticity and genetic control in 
colorectal cancer evolution. Nature 611, 744–753 (2022).

17.	 Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. 
Immunological effects of conventional chemotherapy  
and targeted anticancer agents. Cancer Cell 28, 690–714  
(2015).

18.	 Verschoor, Y. L. et al. Neoadjuvant atezolizumab plus 
chemotherapy in gastric and gastroesophageal junction 
adenocarcinoma: the phase 2 PANDA trial. Nat. Med.  
https://doi.org/10.1038/s41591-023-02758-x (2024).

19.	 Lorenzen, S. et al. PET-directed combined modality therapy for 
gastroesophageal junction cancer: results of the multicentre 
prospective MEMORI trial of the German Cancer Consortium 
(DKTK). Eur. J. Cancer 175, 99–106 (2022).

20.	 Becker, K. et al. Histomorphology and grading of regression 
in gastric carcinoma treated with neoadjuvant chemotherapy. 
Cancer 98, 1521–1530 (2003).

21.	 Barbour, A. P. et al. Preoperative cisplatin, fluorouracil, and 
docetaxel with or without radiotherapy after poor early response 
to cisplatin and fluorouracil for resectable oesophageal 
adenocarcinoma (AGITG DOCTOR): results from a multicentre, 
randomised controlled phase II trial. Ann. Oncol. 31, 236–245 
(2020).

22.	 Ross-Innes, C. S. et al. Whole-genome sequencing provides  
new insights into the clonal architecture of Barrett’s esophagus 
and esophageal adenocarcinoma. Nat. Genet. 47, 1038–1046 
(2015).

23.	 Dulak, A. M. et al. Exome and whole-genome sequencing of 
esophageal adenocarcinoma identifies recurrent driver  
events and mutational complexity. Nat. Genet. 45, 478–486 (2013).

24.	 Caravagna, G. et al. Subclonal reconstruction of tumors by 
using machine learning and population genetics. Nat. Genet. 52, 
898–907 (2020).

25.	 Weaver, J. M. J. et al. Ordering of mutations in preinvasive disease 
stages of esophageal carcinogenesis. Nat. Genet. 46, 837–843 
(2014).

http://www.nature.com/natcancer
https://doi.org/10.17632/brsxvy4746.1
https://doi.org/10.17632/brsxvy4746.1
https://doi.org/10.5281/zenodo.12800339
https://doi.org/10.5281/zenodo.12800339
https://ega-archive.org/studies/EGAS50000000240
https://ega-archive.org/studies/EGAS50000000242
https://ega-archive.org
https://github.com/meli3349/MEMORI_multiomics_data_analyses/tree/analysis
https://github.com/meli3349/MEMORI_multiomics_data_analyses/tree/analysis
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41591-023-02758-x
https://doi.org/10.1038/s41591-023-02758-x


Nature Cancer | Volume 6 | May 2025 | 820–837 835

Article https://doi.org/10.1038/s43018-025-00955-w

26.	 Nones, K. et al. Genomic catastrophes frequently arise in 
esophageal adenocarcinoma and drive tumorigenesis.  
Nat. Commun. 5, 5224 (2014).

27.	 Pich, O. et al. The mutational footprints of cancer therapies.  
Nat. Genet. 51, 1732–1740 (2019).

28.	 Secrier, M. et al. Mutational signatures in esophageal 
adenocarcinoma define etiologically distinct subgroups with 
therapeutic relevance. Nat. Genet. 48, 1131–1141 (2016).

29.	 Noorani, A. et al. Genomic evidence supports a clonal diaspora 
model for metastases of esophageal adenocarcinoma.  
Nat. Genet. 52, 74–83 (2020).

30.	 Alexandrov, L. B. et al. The repertoire of mutational signatures in 
human cancer. Nature 578, 94–101 (2020).

31.	 Abbas, S. et al. Mutational signature dynamics shaping the 
evolution of oesophageal adenocarcinoma. Nat. Commun. 14, 
4239 (2023).

32.	 Cancer Genome Atlas Research, N. et al. Integrated genomic 
characterization of oesophageal carcinoma. Nature 541,  
169–175 (2017).

33.	 Frankell, A. M. et al. The landscape of selection in 551 esophageal 
adenocarcinomas defines genomic biomarkers for the clinic.  
Nat. Genet. 51, 506–516 (2019).

34.	 Gonzalez-Perez, A. et al. IntOGen-mutations identifies cancer 
drivers across tumor types. Nat. Methods 10, 1081–1082 (2013).

35.	 Liberzon, A. et al. The Molecular Signatures Database (MSigDB) 
hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

36.	 Jimenez-Sanchez, A. et al. Unraveling tumor-immune 
heterogeneity in advanced ovarian cancer uncovers 
immunogenic effect of chemotherapy. Nat. Genet. 52,  
582–593 (2020).

37.	 Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M. &  
Alizadeh, A. A. Profiling tumor infiltrating immune cells with 
CIBERSORT. Methods Mol. Biol. 1711, 243–259 (2018).

38.	 Lakatos, E. et al. Evolutionary dynamics of neoantigens in growing 
tumors. Nat. Genet. 52, 1057–1066 (2020).

39.	 Levine, J. H. et al. Data-driven phenotypic dissection of AML 
reveals progenitor-like cells that correlate with prognosis. Cell 
162, 184–197 (2015).

40.	 Quintanal-Villalonga, A. et al. Lineage plasticity in cancer: a 
shared pathway of therapeutic resistance. Nat. Rev. Clin. Oncol. 
17, 360–371 (2020).

41.	 Horn, L. A., Fousek, K. & Palena, C. Tumor plasticity and resistance 
to immunotherapy. Trends Cancer 6, 432–441 (2020).

42.	 Arozarena, I. & Wellbrock, C. Phenotype plasticity as enabler of 
melanoma progression and therapy resistance. Nat. Rev. Cancer 
19, 377–391 (2019).

43.	 Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. 
Epithelial-mesenchymal transitions in development and disease. 
Cell 139, 871–890 (2009).

44.	 Stemmler, M. P., Eccles, R. L., Brabletz, S. & Brabletz, T. 
Non-redundant functions of EMT transcription factors. Nat. Cell 
Biol. 21, 102–112 (2019).

45.	 Ebbing, E. A. et al. Stromal-derived interleukin 6 drives epithelial- 
to-mesenchymal transition and therapy resistance in esophageal 
adenocarcinoma. Proc. Natl Acad. Sci. USA 116, 2237–2242 (2019).

46.	 Balachandran, V. P. et al. Identification of unique neoantigen 
qualities in long-term survivors of pancreatic cancer. Nature 551, 
512–516 (2017).

47.	 Brown, S. D. et al. Neo-antigens predicted by tumor genome 
meta-analysis correlate with increased patient survival. Genome 
Res. 24, 743–750 (2014).

48.	 Matsushita, H. et al. Neoantigen load, antigen presentation 
machinery, and immune signatures determine prognosis in clear 
cell renal cell carcinoma. Cancer Immunol. Res. 4,  
463–471 (2016).

49.	 Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair 
deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

50.	 Snyder, A. et al. Genetic basis for clinical response to CTLA-4 
blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

51.	 McGranahan, N. et al. Clonal neoantigens elicit T cell 
immunoreactivity and sensitivity to immune checkpoint 
blockade. Science 351, 1463–1469 (2016).

52.	 Rizvi, N. A. et al. Cancer immunology. Mutational landscape 
determines sensitivity to PD-1 blockade in non-small cell lung 
cancer. Science 348, 124–128 (2015).

53.	 Janjigian, Y. Y. et al. First-line nivolumab plus chemotherapy 
versus chemotherapy alone for advanced gastric, 
gastro-oesophageal junction, and oesophageal adenocarcinoma 
(CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 
398, 27–40 (2021).

54.	 Goedegebuure, R. S. A. et al. Pre-treatment tumor-infiltrating 
T cells influence response to neoadjuvant chemoradiotherapy 
in esophageal adenocarcinoma. Oncoimmunology 10, 1954807 
(2021).

55.	 McGranahan, N. et al. Allele-specific HLA loss and immune 
escape in lung cancer evolution. Cell 171, 1259–1271 e1211 (2017).

56.	 Zhou, Y. F. et al. Integrated analysis reveals prognostic value of 
HLA-I LOH in triple-negative breast cancer. J. Immunother. Cancer 
https://doi.org/10.1136/jitc-2021-003371 (2021).

57.	 Anagnostou, V. et al. Multimodal genomic features predict 
outcome of immune checkpoint blockade in non-small-cell lung 
cancer. Nat Cancer 1, 99–111 (2020).

58.	 Rodig, S. J. et al. MHC proteins confer differential sensitivity to 
CTLA-4 and PD-1 blockade in untreated metastatic melanoma. 
Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aar3342 
(2018).

59.	 van den Ende, T. et al. Neoadjuvant chemoradiotherapy combined 
with atezolizumab for resectable esophageal adenocarcinoma: a 
single-arm phase II feasibility trial (PERFECT). Clin. Cancer Res. 27, 
3351–3359 (2021).

60.	 Shapiro, J. et al. Neoadjuvant chemoradiotherapy plus surgery 
versus surgery alone for oesophageal or junctional cancer 
(CROSS): long-term results of a randomised controlled trial. 
Lancet Oncol. 16, 1090–1098 (2015).

61.	 Schwabenland, M. et al. Deep spatial profiling of human  
COVID-19 brains reveals neuroinflammation with distinct 
microanatomical microglia-T-cell interactions. Immunity 54, 
1594–1610 e1511 (2021).

62.	 Ijsselsteijn, M. E., van der Breggen, R., Farina Sarasqueta, 
A., Koning, F. & de Miranda, N. A 40-marker panel for 
high dimensional characterization of cancer immune 
microenvironments by imaging mass cytometry. Front. Immunol. 
10, 2534 (2019).

63.	 Schlecht, A. et al. Imaging mass cytometry for high-dimensional 
tissue profiling in the eye. BMC Ophthalmol. 21, 338 (2021).

64.	 Sade-Feldman, M. et al. Defining T cell states associated with 
response to checkpoint immunotherapy in melanoma. Cell 175, 
998–1013 e1020 (2018).

65.	 Uddin, I. et al. Quantitative analysis of the T cell receptor 
repertoire. Methods Enzymol. 629, 465–492 (2019).

66.	 Oakes, T. et al. The T cell response to the contact sensitizer 
paraphenylenediamine is characterized by a polyclonal diverse 
repertoire of antigen-specific receptors. Front. Immunol. 8,  
162 (2017).

67.	 Barroux, M. et al. MEMORI-Methods for computational analyses. 
protocols.io https://doi.org/10.17504/protocols.io.j8nlk9xpwv5r/
v1 (2025).

68.	 Van der Auwera, G. A. et al. From FastQ data to high confidence 
variant calls: the Genome Analysis Toolkit best practices pipeline. 
Curr. Protoc. Bioinformatics 43, 11 10 11–11 10 33 (2013).

http://www.nature.com/natcancer
https://doi.org/10.1136/jitc-2021-003371
https://doi.org/10.1126/scitranslmed.aar3342
https://doi.org/10.17504/protocols.io.j8nlk9xpwv5r/v1
https://doi.org/10.17504/protocols.io.j8nlk9xpwv5r/v1


Nature Cancer | Volume 6 | May 2025 | 820–837 836

Article https://doi.org/10.1038/s43018-025-00955-w

69.	 McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce 
framework for analyzing next-generation DNA sequencing data. 
Genome Res. 20, 1297–1303 (2010).

70.	 DePristo, M. A. et al. A framework for variation discovery and 
genotyping using next-generation DNA sequencing data. Nat. 
Genet. 43, 491–498 (2011).

71.	 Favero, F. et al. Sequenza: allele-specific copy number and 
mutation profiles from tumor sequencing data. Ann. Oncol. 26, 
64–70 (2015).

72.	 Cibulskis, K. et al. Sensitive detection of somatic point mutations 
in impure and heterogeneous cancer samples. Nat. Biotechnol. 
31, 213–219 (2013).

73.	 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional 
annotation of genetic variants from high-throughput sequencing 
data. Nucleic Acids Res. 38, e164 (2010).

74.	 Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 
27, 592–593 (2011).

75.	 Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. &  
Swanton, C. DeconstructSigs: delineating mutational processes 
in single tumors distinguishes DNA repair deficiencies and 
patterns of carcinoma evolution. Genome Biol. 17, 31 (2016).

76.	 Szolek, A. et al. OptiType: precision HLA typing from 
next-generation sequencing data. Bioinformatics 30, 3310–3316 
(2014).

77.	 Schenck, R. O., Lakatos, E., Gatenbee, C., Graham, T. A. & 
Anderson, A. R. A. NeoPredPipe: high-throughput neoantigen 
prediction and recognition potential pipeline. BMC Bioinform. 20, 
264 (2019).

78.	 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. 
Bioinformatics 29, 15–21 (2013).

79.	 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold 
change and dispersion for RNA-seq data with DESeq2. Genome 
Biol. 15, 550 (2014).

80.	 Barroux, M. MEMORI_multiomic_data’, Mendeley Data, V1  
https://doi.org/10.17632/brsxvy4746.1 (2024).

81.	 Barroux, M. et al. Imaging mass cytometry analysis of 
oesophageal adenocarcinoma during neoadjuvant treatment. 
Zenodo https://doi.org/10.5281/zenodo.12800339 (2025).

Acknowledgements
The authors thank all patients and their families, nurses, study 
coordinators and investigators for their participation in the MEMORI 
study. The MEMORI trial was funded by the German Cancer 
Consortium (DKTK). The authors acknowledge funding from German 
Cancer Aid Society (Mildred-Scheel-Programm from Deutsche 
Krebshilfe) (M. Barroux), Bavarian Cancer Research Center (BZKF) 
(M. Barroux), Cancer Research UK (M. Barroux, A.B. and T.A.G.), the 
US National Institutes of Health via the Cancer Systems Biology 
Consortium U54 scheme (CA217376) (T.A.G.), the Thornton Foundation 
(T.A.G.), German Research Foundation (DFG; 3772/1) (M.Q.), 
Associazione Italiana Ricerca sul Cancro (AIRC) under MFAG 2020 
(ID. 24913 project) (G.C.), DKTK (J.T.S.), DFG (405344257 (SI 1549/3–2)) 
(J.T.S.) and German Federal Ministry of Education and Research 
(01KD2206A/SATURN3) (J.T.S.). The MEMORI trial was supported by 
the DKTK. The authors acknowledge DKTK Partner site Essen, DKTK 
Partner site Freiburg, DKTK Partner site München. The authors thank  
K. Steiger and K.-P. Janssen at MRI for their excellent biobanking 
efforts and M. Angele (from Klinikum Großhadern d. LMU München) 
and S. Kasper-Virchow (from Westdeutsches Magen-und Darmzentrum 
Essen, Universitätsklinikum Essen) for their collaboration. The authors 
acknowledge iBioTUM-Tissue and study coordinator J.-P. Zimmermann 
for management of biosamples The authors thank I. Rauscher and 
W. Weber (Department for Nuclear Medicine at TUM University 
Hospital), Wolfgang Fendler (Department for Nuclear Medicine at 
Klinikum Großhadern d. LMU München) and Ken Herrmann (Clinic for 

Nuclear Medicine at University Hospital Essen) for their assessment of 
treatment response in the MEMORI cohort.

Author contributions
M. Barroux conceived the translational project of the MEMORI study, 
generated data, analyzed and interpreted the data, with focus on WES 
data, RNA-seq and IMC data and wrote the manuscript. J.H. performed 
the raw data processing from fastq to bam files for WES data and 
RNA-seq data and supported M. Barroux with data analyses. E.L. 
analyzed the data with focus on neoantigen and immune escape data. 
T.R. analyzed and interpreted the data, with focus on TCR-seq data. 
S.N. contributed to CNA. A.M.B. contributed to data generation and to 
manuscript writing. M.M., K. Smith, C.K., A.B., V.G. and M. Borgmann 
contributed to data generation, M.J. performed histopathological 
analysis. G.C. performed MOBSTER-analyses L.Z. and E.G. contributed 
to dN/dS analyses K. Steiger, J.S.-H., S. Lorenzen, S. Liffers, M.A., H.F., 
W.W. and R.M.S. contributed to clinical data and sample collection and 
sample coordination. B.C. contributed to TCR-seq data generation. 
H.S. and B.B. contributed to IMC data generation, IMC data analyses 
and interpretation. J.T.S. designed and led the clinical MEMORI trial. 
M.Q. and T.A.G. conceived the study design, supervised the study, 
interpreted results and contributed to manuscript writing. M. Barroux, 
M.Q. and T.A.G. acquired funding for the study.

Competing interests
J.T.S. receives honoraria as a consultant or for continuing medical 
education presentations from AstraZeneca, Bayer, Boehringer 
Ingelheim, Bristol Myers Squibb, Immunocore, iOMEDICO, MSD, 
Novartis, Roche/Genentech and Servier. His institution receives 
research funding from Abalos Therapeutics, Boehringer Ingelheim, 
Bristol Myers Squibb, Celgene, Eisbach Bio and Roche/Genentech; 
he holds ownership in FAPI Holding. K. Steiger is named on a 
patent on a radiopharmaceutical compound and serves as advisory 
board member for TRIMT GmbH; not related to the current work. 
M.Q. receives honoraria as consultant or for continuing medical 
education presentations from AstraZeneca, Bayer, Bristol-Myers 
Squibb, MSD Sharp Dohme, Novartis, Roche and Servier. T.A.G., 
B.C. and A.M.B. are named as co-inventors on patent applications 
that describe a method for TCR sequencing (GB2305655.9) and 
T.A.G. is named on a patent application for a method to measure 
evolutionary dynamics in cancers using DNA methylation 
(GB2317139.0). T.A.G. has received an honorarium from Genentech 
and consultancy fees from DAiNA Therapeutics. The remaining 
authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s43018-025-00955-w.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s43018-025-00955-w.

Correspondence and requests for materials should be addressed to 
Melissa Barroux or Trevor A. Graham.

Peer review information Nature Cancer thanks Sarah Derks and 
Timothy Frankel for their contribution to the peer review of  
this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://www.nature.com/natcancer
https://doi.org/10.17632/brsxvy4746.1
https://doi.org/10.17632/brsxvy4746.1
https://doi.org/10.5281/zenodo.12800339
https://doi.org/10.1038/s43018-025-00955-w
https://doi.org/10.1038/s43018-025-00955-w
https://doi.org/10.1038/s43018-025-00955-w
https://doi.org/10.1038/s43018-025-00955-w
http://www.nature.com/reprints


Nature Cancer | Volume 6 | May 2025 | 820–837 837

Article https://doi.org/10.1038/s43018-025-00955-w

Open Access This article is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License, 
which permits any non-commercial use, sharing, distribution 
and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons licence, and indicate if you modified 
the licensed material. You do not have permission under this licence 
to share adapted material derived from this article or parts of it. The 
images or other third party material in this article are included in the 

article’s Creative Commons licence, unless indicated otherwise in a 
credit line to the material. If material is not included in the article’s 
Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need 
to obtain permission directly from the copyright holder. To view 
a copy of this licence, visit http://creativecommons.org/licenses/
by-nc-nd/4.0/.

© The Author(s) 2025

1Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, 
UK. 2Medical Clinic and Polyclinic II, TUM University Hospital, Klinikum rechts der Isar, Munich, Germany. 3German Cancer Consortium (DKTK) Heidelberg, 
Germany, Partner Site Munich, Munich, Germany. 4Data Science Team, The Institute of Cancer Research, London, UK. 5Centre for Evolution and Cancer, 
The Institute of Cancer Research, London, UK. 6Division of Infection and Immunity, University College London, London, UK. 7Clinic for Internal Medicine 
II, University Medical Center Freiburg, Freiburg, Germany. 8Department of Pathology, UCL Cancer Institute, University College London, London, UK. 
9Bridge Institute of Experimental Tumor Therapy (BIT), Division of Solid Tumor Translational Oncology (DKTK) and Department of Medical Oncology, 
West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany. 10German Cancer Consortium (DKTK), partner 
site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany. 11Department of Mathematics, 
Informatics and Geosciences, University of Triest, Triest, Italy. 12iBioTUM – Tissue, Institute of Pathology, School of Medicine, TUM, Munich, Germany. 
13Institute of Pathology, Technical University of Munich, Munich, Germany. 14Department of Nephrology, School of Medicine, Technical University Munich, 
Munich, Germany. 15Department of Internal Medicine III (Haematology/Medical Oncology), Technical University of Munich Hospital Rechts der Isar, Munich,  
Germany. 16Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich,  
Munich, Germany. 17Department of Surgery, TUM University Hospital, rechts der Isar, School of Medicine and Health, Technical University Munich,  
Munich, Germany. 18Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany. 19German Cancer Consortium (DKTK) 
Heidelberg, Germany, Partner Site Freiburg, Freiburg, Germany. 20These authors jointly supervised this work: Michael Quante, Trevor A. Graham. 

 e-mail: melissa.barroux@mri.tum.de; trevor.graham@icr.ac.uk

http://www.nature.com/natcancer
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:melissa.barroux@mri.tum.de
mailto:trevor.graham@icr.ac.uk


Nature Cancer

Article https://doi.org/10.1038/s43018-025-00955-w

+

+
+

+ ++
++ ++

+ +

+ +

+ + +++ ++
++

+

+

++
+

+ + +

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 6 12 18 24 30
Disease−free survival (month from start CTX)

Pr
op

or
tio

n 
al

ive
 a

nd
 p

ro
gr

es
si

on
−f

re
e

26 25 20 18 14 4 1 1
24 24 23 20 15 4 2 1
17 15 10 7 4 0 0 0Becker grade 3

Becker grade 2
Becker grade 1

0 6 12 18 24 30

+

+
+++

++ +

++ +

+
++

+ + + +++++++ ++ +
+
++

+

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 6 12 18 24 30
Disease−free survival (month from start CTX)

Pr
op

or
tio

n 
al

ive
 a

nd
 p

ro
gr

es
si

on
−f

re
e

22 20 16 13 9 2 1 1

45 44 37 32 24 6 2 1P−R

P−NR

0 6 12 18 24 30

BA

0

25

50

75

100

NRP REP

pe
rc

en
ta

ge
 o

f p
at

ie
nt

s

Remission grades
3
2
1b
1a

−1.0

−0.5

0.0

0.5

1.0

1.5

−1 0 1
PC1 (42.2% explained variance)

PC
2 

(1
8.

7%
 e

xp
la

in
ed

 v
ar

ia
nc

e)

Quantile_SUVmax
Q1
Q2
Q3
Q4
NA

Responsiveness
NRP
REP

C

D

NRP

REP

SUVmax quantile

Extended Data Fig. 1 | Clinical data. (a) Principle component analysis of single 
sample gene set enrichment analysis of cancer hallmark gene sets with color 
coding of FDG uptake at screening PET–CT. Q1-Q4: lowest to highest quantile of 
FDG uptake. (b) Proportion of patients with respective Becker regression grades 
in NRPs (n = 10) and REPs (n = 17) in the cohort for molecular genetic analyses.  

(c) Overall survival of NRPs (n = 22) and REPs (n = 45) in the clinical MEMORI 
cohort. (d) Overall survival of patients with different histopathologic regression 
grades according to Becker in the clinical MEMORI cohort. (Becker°I: n = 26; 
Becker°II: n = 24; Becker°II: n = 17).

http://www.nature.com/natcancer


Nature Cancer

Article https://doi.org/10.1038/s43018-025-00955-w

A 2

B 3

C 1

Root

67

100

HI: 0.15
RE 04

A 1

C 1

Root

C 3

93
100

HI: 0.2
RE 08REP 08

NRG1

TP53

NeoSNVs 
0

NeoSNVs 
15

NeoSNVs 
 1

NeoSNVs
24

NeoSNVs
0 

2x TP53

2x FAT4
ZNF208

NeoSNVs 
61

NeoSNVs 
3

NeoSNVs
9 

NeoSNVs 
14

LRP1B
NeoSNVs
17 

NeoSNVs 
43 

NeoSNVs 
42 

NeoSNVs
31

NeoSNVs
1

NeoSNVs 
33

NeoSNVs 
18

NeoSNVs 
12

NeoSNVs 
0 

NeoSNVs 
20

NeoSNVs
1

HOXD13
RNF213

MYH9

ZNF208

A 1

B 1

C 1

Root

100
50

HI: 0.037
RE 05

NeoSNVs 
8 NeoSNVs 

 83
NeoSNVs 
4

NeoSNVs
2

NeoSNVs
48

EP300

DCSTAMR
FAT3
GNAS

CDKN2A
ZNF208

AXIN1
NTRK3
[TP53]

KMT2D
ZNF521

[TP53]

[APC]

PREX2
RAP1GDS1

EP300
[LRP1B]

[APC]
ARID2

NRP REP

N
R

P0
5A

N
R

P0
5B

N
R

P0
5C

N
R

P0
6A

N
R

P0
6B

N
R

P0
6B

N
R

P0
7A

N
R

P0
7B

N
R

P0
8A

N
R

P0
8B

N
R

P0
9A

N
R

P0
9B

N
R

P0
9C

N
R

P1
0A

N
R

P1
0B

N
R

P1
2A

N
R

P1
2B

N
R

P2
0A

N
R

P2
1A

N
R

P2
1B

N
R

P2
2A

N
R

P2
2B

R
EP

02
A

R
EP

03
A

R
EP

03
B

R
EP

03
C

R
EP

04
A

R
EP

04
B

R
EP

04
C

R
EP

05
A

R
EP

05
B

R
EP

05
C

R
EP

06
B

R
EP

06
C

R
EP

06
C

R
EP

07
A

R
EP

07
C

R
EP

08
A

R
EP

08
C

R
EP

08
C

R
EP

09
A

R
EP

10
A

R
EP

10
A

R
EP

10
A

R
EP

10
B

R
EP

10
B

R
EP

10
B

R
EP

10
C

R
EP

11
A

R
EP

11
A

R
EP

11
B

R
EP

11
B

R
EP

11
B

R
EP

12
A

R
EP

12
B

R
EP

12
C

R
EP

14
A

R
EP

21
A

R
EP

21
B

R
EP

21
C

R
EP

22
A

R
EP

22
B

R
EP

22
C

R
EP

23
A

R
EP

23
B

R
EP

23
C

R
EP

24
A

R
EP

24
C

R
EP

25
A

R
EP

25
C

0.00

0.25

0.50

0.75

1.00

C
O

SM
IC

 s
ig

na
tu

re
 w

ei
gh

t

COSMIC Signature
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S12

S13
S15
S16
S17
S18
S21
S24
S25
S26
S29
unknown

A

D

E

Samples Samples

0.077

0.53
0.35

0.0

0.5

1.0

A B C

C
el

lu
la

rit
y

Cellularity during treatment

0.52

0.5

0.047

10

30

100

300

A B C
 (NRP)

C
 (REP)

Timepoint
M

ut
at

io
n 

bu
rd

en
 [S

N
Vs

/M
b]

Mutation burden by treatment

0.97
0.81

0.44
0.26

0.54
0.1

0.46
0.068

Clonal SNVs Subclonal SNVs

A B C
 (NRP)

C
 (REP)

A B C
 (NRP)

C
 (REP)

1

100

10000

M
ut

at
io

n 
bu

rd
en

 [S
N

Vs
/M

b]

Mutation burden by treatment

Timepoint

B C

REP 04
REP 05

REP 06

REP 21

TimepointTimepoint

Extended Data Fig. 2 | Genetic dynamics in EAC. (a) Tumor cellularity of 
samples from different timepoints. Tumor cellularity was estimated from 
whole-exome sequencing data using Sequenza. (b) Violin plots showing the 
distribution of mutational burden stratified by treatment type (c). Mutations 
of each sample were classified as clonal or subclonal based on the copy number 
and cellularity adjusted cancer cell fraction. P values in panels A-C are calculated 
by the two-sided Wilcoxon test. (d) Selected phylogenetic trees with clade 
length indicating the number of shared mutations between samples from the 

same patient. Timepoint of samples are annotated at the tip of the clades with 
the letters A-C. Numbers at the nodes indicate bootstrap values. EAC drivers 
harboring mutations (without brackets) or indels (in squared brackets) and 
number of neoantigenic SNVs are annotated on the clades of the trees. REP: 
Responder, NRP: NonResponder, HI: homoplasy index, NeoSNVs: Neoantigenic 
single-nuceleotide variant. (e) Plot shows COSMIC signature weights of 
individual samples from NRP (left) and REP (right).

http://www.nature.com/natcancer


Nature Cancer

Article https://doi.org/10.1038/s43018-025-00955-w

ZNF521
ZNF208
ZNF148
ZBTB16

WT1
TRRAP

TRIM49C
TP53

TOP2A
TLL1

TGFBR2
TET1
TBX3

SOHLH2
SMARCA4

SMAD4
SETD1B

SDC4
RNF43

RNF213
RHOA
RELA

RECQL4
RB1

RAP1GDS1
PTPRT
PTPRD

PTEN
PTCH1
PRRX1
PRKCB

PRF1
PREX2

PPP3CA
PIK3R1
PIK3CA
PBRM1
NTRK3

NSD1
NRG1

NOTCH2
NOTCH1

NIPBL
NIN

NFE2L2
NCOR2

NBEA
MYH9

MYC
MSN

MAP2K7
LRP1B
KRAS

KMT2D
KMT2C
KMT2A

KIT
KDM6A
KAT6A

IL7R
HOXD13

HLA−B
HIST1H3B

GRIN2A
GNAS

FHIT
FBXW7

FAT4
FAT3
FAT1

FAM135B
ERBB4
ERBB3
ERBB2
EPHA3
EP300
EML4

DCSTAMP
DCC

CTNNB1
CREBBP

CLIP1
CDX2

CDKN2A
CDK12
CDH11

CDH1
CASP8
CARS

CACNA1D
BMPR2

BMPR1A
BIRC6
BCOR

BCLAF1
BCL9
BAP1

AXIN1
ATM

ASXL1
ARID2

ARID1A
ARHGEF12

ARHGEF10L
APC

ACVR2A
ABI1

ABCB1
Regression

Cellularity
Timepoint

Patient

1
2
3
A
Amplification = 3
Amplification > 3

B
C
diploid
highCell
Indel
LOH >2:0

LOH 2:0
Loss 1:0
lowCell
mediumCell
NE0005
NE0006

NE0007
NE0008
NE0009
NE0010
NE0012
NE0020

NE0021
NE0022
SNV
unknown

A B

NRP6

NRP5

NRP7
NRP8

NRP9

NRP10
NRP12
NRP20
NRP21
NRP22

Timepoint Cellularity Regression grade CNS

B
C

A
medium
high

low
2
3

1 diploid
CNt=3
CNt>3

1:0
2:0
>2:0

SNV
Indel

ZNF521
ZNF208
ZNF148
ZBTB16

WT1
TRRAP

TRIM49C
TP53

TOP2A
TLL1

TGFBR2
TET1
TBX3

SOHLH2
SMARCA4

SMAD4
SETD1B

SDC4
RNF43

RNF213
RHOA
RELA

RECQL4
RB1

RAP1GDS1
PTPRT
PTPRD

PTEN
PTCH1
PRRX1
PRKCB

PRF1
PREX2

PPP3CA
PIK3R1
PIK3CA
PBRM1
NTRK3

NSD1
NRG1

NOTCH2
NOTCH1

NIPBL
NIN

NFE2L2
NCOR2

NBEA
MYH9

MYC
MSN

MAP2K7
LRP1B
KRAS

KMT2D
KMT2C
KMT2A

KIT
KDM6A
KAT6A

IL7R
HOXD13

HLA−B
HIST1H3B

GRIN2A
GNAS

FHIT
FBXW7

FAT4
FAT3
FAT1

FAM135B
ERBB4
ERBB3
ERBB2
EPHA3
EP300
EML4

DCSTAMP
DCC

CTNNB1
CREBBP

CLIP1
CDX2

CDKN2A
CDK12
CDH11

CDH1
CASP8
CARS

CACNA1D
BMPR2

BMPR1A
BIRC6
BCOR

BCLAF1
BCL9
BAP1

AXIN1
ATM

ASXL1
ARID2

ARID1A
ARHGEF12

ARHGEF10L
APC

ACVR2A
ABI1

ABCB1
Regression

Cellularity
Timepoint

Patient

1
2
3
A
Amplification = 3
Amplification > 3
B

C
diploid
highCell
Indel
LOH >2:0
LOH 2:0
Loss 1:0

lowCell
mediumCell
RE0002
RE0003
RE0004
RE0005
RE0006

RE0007
RE0008
RE0009
RE0010
RE0011
RE0012
RE0014

RE0021
RE0022
RE0023
RE0024
RE0025
SNV
unknown

REP3

REP2

REP4

REP5

REP6

REP7

REP8

REP9

REP10

REP11

REP12
REP14

REP21

REP22

REP23

REP24
REP25

MutationsLEGEND:

Extended Data Fig. 3 | See next page for caption.

http://www.nature.com/natcancer


Nature Cancer

Article https://doi.org/10.1038/s43018-025-00955-w

Extended Data Fig. 3 | Genetic alterations in 108 EAC driver genes in 
NonResponder and Responder. Plot shows genetic alterations, including 
copy number alterations, SNVs and indels for 108 putative cancer driver genes 
identified by IntOGen© in NonResponder patients (a) and Responder patients 
(b). Each vertical column represents a sample. Samples from the same patients 
are grouped together and patient ID is annotated at the top. Information on 
timepoint, cancer cellularity and the patient’s pathological regression grade 

treatment are found in the top three rows. The following rows show information 
on genetic alterations in EAC driver genes. Cellularity was defined as low (10–
40%), medium (41–60%), or high (61–100%). Regression grades were evaluated 
by a pathologist according to Becker regression classification. CNS: copy number 
state, CNt: copy numbers, SNV: single-nucleotide variant. REP: Responder, NRP: 
NonResponder.
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Extended Data Fig. 4 | Genetic dynamics and expression of EAC driver genes 
during treatment. Number of altered (CNA, SNV or indel) genes from 108 EAC 
drivers in (a) the overall cohort, (b) NRPs (left) and REPs (right). Number of driver 
genes with CNAs (c) in the overall cohort, (d) in NRPs (left) and REPs (right). 

Number of driver genes with SNVs or indels (e) in the overall cohort, (f) in NRPs 
(left) and REPs (right). (g) Violin plots show expression of 16 high-frequency EAC 
driver genes during neoadjuvant treatment. P values in all panels are calculated 
by the two-sided Wilcoxon test. cpm: counts per million.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Correlations between copy number state/ mutational 
status and gene expression in high-frequency EAC driver genes. (a) Plot shows 
correlations between copy number states and tumor cellularity adjusted  
RNA expression in 15 high-frequency EAC driver genes. RNA expression was 
adjusted for tumor cellularity estimated by GI pathologist. Correlations were 
calculated using two-tailed Pearson correlation. CNS: copy number state.  
(b) Violin plots showing cellularity adjusted RNA expressions of CDKN2A/ TP53 

in CDKN2A/ TP53 mutated and non-mutated samples. P values are calculated by 
the two-sided Wilcoxon test. (c) Principle component analysis of single sample 
gene set enrichment analysis of cancer hallmark gene sets. Patients with multi-
region samples are highlighted with different colors. PC: Principle component 
(d) Enrichment analyses in KEGG pathways during chemotherapy (all samples at 
Timepoint A (n = 27) versus REPs at Timepoint C (n = 19)). Dotted line indicates 
significance level of padj < 0.05 (FDR-adjusted P values).
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Extended Data Fig. 6 | See next page for caption.

http://www.nature.com/natcancer


Nature Cancer

Article https://doi.org/10.1038/s43018-025-00955-w

Extended Data Fig. 6 | Immune cell dynamics in EAC during treatment.  
(a) Plots show normalized odds ratios for different immune cell types 
deconvoluted from RNA expression data using Syllogist. (b) Plot shows immune 
cell scores for different immune cell types deconvoluted from RNA expression 
data using ConsensusTME. Samples from NRP: n = 8 at timepoint A, n = 8 at 
timepoint B, n = 10 at timepoint C; Samples from REP: n = 19 at timepoint A, 
n = 16 at timepoint B, n = 19 at timepoint C. Violins showing the (c) neoantigenic 
mutational burden stratified by treatment regime and (d) the subclonal 
neoantigenic SNVs in NRPs (left) and REPs (right). (e) Plot shows immune cell 
proportion based on CIBERSORT analysis in REP and NRP during neoadjuvant 
treatment. Samples from NRP: n = 8 at timepoint A, n = 8 at timepoint B, n = 10 at 
timepoint C; Samples from REP: n = 19 at timepoint A, n = 16 at timepoint B, n = 19 
at timepoint C. (f) Plots show CIBERSORT scores for M2-macrophages (p-Val at 

Timepoint C = 0.0001) and (g) regulatory T cells during treatment deconvoluted 
from RNA expression. (h–j) Enrichment scores for Hallmark of cancer pathways 
related to immune suppression in NRPs (left) and REPs (right) during treatment. 
(k) Exemplary visualization of indicated marker expression and DNA (blue) from 
IMC data. Scale bar: 5μm (l) Dynamics of immune clusters (ICs) with CD8 cells, 
(m) ICs with other T cells and (n) myeloid cells during treatment are shown by 
box plots. Box plots show the median, two hinges representing the first and third 
quartiles and two whiskers showing the minimum and maximum. P values in 
panels l–n are calculated by the two-sided Kruskal-Wallis test. ROIs from NRPs 
(n = 8 at timepoint A, n = 10 at timepoint B, n = 6 at timepoint C). ROIs from REPs 
(n = 12 at timepoint A, n = 13 at timepoint B, n = 16 at timepoint C). P values in 
all other panels are calculated by the two-sided Wilcoxon test, unless stated 
otherwise.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | CD4 and CD8 cell dynamics. Fractions of TIM-3-
expressing CD4 cells (a) and CD8 cells (b) in NRPs and REPs during treatment. 
P values in panels are calculated by the two-sided Wilcoxon test. (c) Plot shows 
heterogeneity of CD4 and CD8 cell counts from IMC analyses in samples where 
multiple region of interests (ROIs) were analyzed. Dots represent CD4 (blue) or 
CD8 cell count (red) in individual ROIs. (d, e) Heterogeneity of ratio between 
activated and exhausted CD8 cells (d) and CD4 cells (e) in samples with multi-
region ROIs. Ratio of activated and exhausted CD8 cells (f) and CD4 cells (g) 
during treatment including both single and multi-region IMC datasets. Ratio of 

activated and exhausted CD8 cells (h) and CD4 cells (i) stratified by treatment 
type. Proportion of high and low CD8 (j) and CD4 (k) activation status in immune 
escaped via HLA-LOH (n = 10) and non-escaped (n = 23) samples with matching 
IMC data. P value is calculated by the two-sided chi-square test. (l) Fishplots show 
the number of 4-fold expanded TCRs between any two timepoints for NRP10 (left 
panels) and REP05 (right panels). The colors correspond to the combination of 
timepoints the TCR expansion occur in. P values in all panels are calculated by the 
two-sided Wilcoxon test, unless stated otherwise.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Reanalyzes of immune related results excluding post-
treatment samples from patients with complete remission. (a) Hierarchical 
clustering with heatmap showing the significantly differentially expressed 
pathways between the two clusters (right cluster is predominantly samples from 
timepoint A/B and left cluster is predominantly timepoint C). Sample IDs and 
timepoints are annotated at the bottom of the heatmap. (b) Enrichment in KEGG 
pathways in Responders between Timepoint A and C (left) and in NonResponder 
between Timepoint A and C (right). Dotted lines indicate significance level 
of padj < 0.05. FDR-adjusted P values. Samples from NonResponder: n = 8 at 
timepoint A, n = 8 at timepoint B, n = 8 at timepoint C; Samples from Responder: 
n = 19 at timepoint A, n = 16 at timepoint B, n = 18 at timepoint C. (c) Plot shows 
immune cell composition based on CIBERSORT analysis in Responders and 

NonResponders during neoadjuvant treatment. Samples from NonResponder: 
n = 8 at timepoint A, n = 8 at timepoint B, n = 8 at timepoint C; Samples from 
Responder: n = 19 at timepoint A, n = 16 at timepoint B, n = 18 at timepoint C. 
(d) Absolute CD4 and CD8 cell counts per mm2 during treatment. (e) T cell 
phenotypes in EAC patients during treatment were analyzed for markers of T 
cell activation and exhaustion. Fractions of CD8 cells (top row) and CD4 cells 
(bottom row) were compared among patient groups and visualized by violin 
plots. (f) Ratio of activated and exhausted CD8 cells (left) and CD4 cells (right) 
during treatment including both single and multi-region IMC datasets. (g) Ratio 
of activated and exhausted CD8 cells (left) and CD4 cells (right) stratified by 
treatment type. P values in all panels are calculated by the two-sided Wilcoxon 
test, unless other stated.
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Extended Data Fig. 9 | Unsupervised analyses in PAXgene fixed and formalin-
fixed samples. Principle component analysis of RNA-expression data (a) in 
samples of different sequencing batches and (b) samples with different fixation 
methods. F: formalin-fixed samples, P: PAXgene fixed samples. (c) Mean 
expression of included IMC markers in PAXgene fixed samples and formalin-
fixed samples samples from Timepoint C. P values in panels are calculated by the 
two-sided Wilcoxon test. F: formalin-fixed samples, P: PAXgene fixed samples. 

(d) Principle component analysis of expression-based analysis of included IMC 
markers including ROIs from all samples. PC: principal component. (e) Principle 
component analysis of expression-based analysis of included IMC markers 
including ROIs from Timepoint C. PC: principal component. Three samples 
clustering slightly apart (circled in the PCA) were ROIs from the same patient 
(REP23).

http://www.nature.com/natcancer


Nature Cancer

Article https://doi.org/10.1038/s43018-025-00955-w

C1: marginal tumour cells C4: tumour cells, in direct proximity to macrophages 

C6: marginal tumour cells
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C11: CD4 and SMA cells in direct proximity

PanCK CD4 PanCK CD4 PanCK CD204

E-cad CD4 E-cad CD4 SMA CD4 SMA CD4

GzmB CD8a CD4 GzmB CD8a CD4

PanCK CD204

Ecad SMA Ecad SMA

C18: tumour cells and smooth muscle cells 
in direct proximity

C23: Immune escaped tumour cells, located in proximity to CD8 cells 

GzmB CD8a PDL1 GzmB CD8a PDL1

C24: macrophages in direct proximity to CD4 cells

CD204 CD4 CD204 CD4

Extended Data Fig. 10 | Exemplary staining of cells from ambiguous clusters. 
Plot shows exemplary stainings of cells from clusters C1, C4, C6, C11, C14, C18, 
C23 and C24 (white arrow) with respective marker expression. After manual 

revision of those clusters, cell types could be attributed. IMC images for unclear 
clusters were taken from a minimum of 20 cells across different samples.  
Scale bars: 10 μm.
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