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Whole-exome tumor-agnostic ctDNA 
analysis enhances minimal residual disease 
detection and reveals relapse mechanisms in 
localized colon cancer
 

In stage 2–3 colon cancer (CC), postsurgery circulating tumor DNA 
(ctDNA) assessment is crucial for guiding adjuvant chemotherapy (ACT) 
decisions. While existing assays detect ctDNA and help identify high-risk 
persons with CC for recurrence, their limited sensitivity after surgery 
poses challenges in deciding on ACT. Additionally, a substantial portion 
of persons with CC fail to clear ctDNA after ACT, leading to recurrence. 
In this study, we performed whole-exome sequencing (WES) of ctDNA at 
different time points in participants with relapsed CC in two independent 
cohorts, alongside transcriptomic and proteomic analyses of metastases, to 
enhance comprehension of progression mechanisms. A plasma WES-based 
tumor-agnostic assay demonstrated higher sensitivity in detecting minimal 
residual disease (MRD) compared to current assays. Immune evasion 
appears to be the primary driver of progression in the localized CC setting, 
indicating the potential efficacy of immunotherapy for microsatellite 
stability in persons with CC. Organoid modeling further supports the 
promising potential of targeted therapy in eradicating MRD, surpassing 
conventional treatments.

Liquid biopsy has emerged as a highly valuable tool in guiding adjuvant 
chemotherapy (ACT) decisions for persons with stage 2–3 colon can-
cer (CC), where treatment decisions still rely on pathological staging 
despite a notable risk of mistreatment1. Retrospective studies have 
unequivocally demonstrated that the detection of circulating tumor 
DNA (ctDNA) after curative-intent surgery not only identifies persons 
at high risk of recurrence but also correlates with poorer disease-free 
survival (DFS)2–9. Moreover, ctDNA detected after ACT completion is 
also associated with high recurrence risk and worse DFS, which may 
indicate that a substantial proportion of these post-ACT ctDNA-positive 
persons did not benefit from standard ACT. Indeed, retrospective stud-
ies showed that up to 77% of ctDNA-positive persons who received 
ACT failed to achieve ctDNA negativity and all were subsequently 
diagnosed with recurrence7. More recently, prospective clinical trials 

such as DYNAMIC and PEGASUS, along with an observational study 
named GALAXY, corroborated and expanded upon these findings10–14. 
However, although first-generation commercial and academic assays 
for detecting ctDNA show remarkable specificity in identifying mini-
mal residual disease (MRD) in persons who subsequently experience 
recurrence, their sensitivity is limited, particularly immediately after 
surgery when decisions for ACT are required, in contrast to the meta-
static scenario15,16. The ideal assay would detect ctDNA in >90% of recur-
rence cases. Currently, the recurrence rates range from 10% to 30% in 
persons with undetectable ctDNA and from 30% to 70% in those with 
ctDNA positivity, which is promising but not strong enough for its 
implementation in clinical practice17.

MRD is defined by the presence of molecular hints of a tumor after 
its apparent surgical removal. Additionally, ctDNA detection not only 
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samples obtained simultaneously (Fig. 3a). In the discovery cohort, we 
observed a concordance of 26.6% for all somatic mutations detected 
in plasma versus tissue samples at baseline (23.2% in the validation 
cohort; Extended Data Fig. 1a), which dropped to 18.1% when comparing 
plasma and tissue samples collected at the point of relapse (Fig. 3b).

The molecular profile (Fig. 3a) revealed tumor-specific mutations 
absent in paired plasma samples, while some point mutations were 
exclusive to plasma. In the discovery cohort, 33.9% of somatic muta-
tions appeared only in plasma at baseline (49% in the validation cohort; 
Extended Data Fig. 1b), a pattern persisting at relapse (22.3% exclusive 
to ctDNA; Extended Data Fig. 2). Concordant mutations exhibited sig-
nificantly higher variant allele frequency (VAF) than plasma-exclusive 
variants (n = 12, P = 2.2 × 10−16 in both cohorts according to a t-test).

CNV analysis showed 95.3% concordance between tumor and 
plasma at baseline (n = 12) and 90% at relapse (n = 17) (Fig. 3c), with no 
significant CNV concordance differences (n = 8, P = 0.1484 accord-
ing to a Wilcoxon test). Baseline discordance involved 311 genes with 
loss and 380 with gain. Plasma copy-number losses were enriched in 
immune signaling pathways, while gains were linked to proliferative 
pathways (Fig. 3d).

These results not only highlight the advantage of plasma over 
tissue in analyzing ITH but also indicate a selective clonal process 
throughout the course of the disease, emphasizing the importance of 
plasma-based monitoring and revealing unique genetic signatures that 
could guide targeted therapeutic interventions for MRD eradication.

Immediate postoperative ctDNA status association with MRD
To assess whether performing WES on cell-free DNA (cfDNA) from 
plasma enhances MRD sensitivity detection compared to personal-
ized assays based on a tumor-informed approach or custom panels, 
we conducted a WES tumor-agnostic (WES-TA) approach on plasma 
samples collected immediately after curative-intent surgery.

Following plasma sequencing at the postoperative time point, 
at least one somatic mutation was detected in 86.7% (13/15) and 100% 
(14/14) of participants in the respective cohorts. Additionally, WES 
data of postoperative plasma from 21 participants with CC who had 
not experienced relapse (from the discovery cohort) revealed only 
one participant classified as ctDNA positive, yielding a specificity of 
95% for this technique.

To assess the clinical applicability of MRD detection using WES 
analysis within a tumor-informed framework, we focused on the 16 
somatic mutations with the highest VAF present in the primary tissue 
exome of each participant similar to a bespoke commercial assay3,7. 
Our analysis to determine whether these mutations were discernible 
in postoperative plasma samples revealed that at least two of the can-
didate mutations were detected in plasma in 67% of participants (10/15) 
in the discovery cohort and 57% of participants (8/14) in the validation 
cohort (Supplementary Table 2). Conversely, when the selection of the 
16 mutations with the highest VAF was based on the analysis of baseline 
plasma rather than primary tumor specimens (TAV16), a sensitivity 
of 67% (6/9) in the discovery cohort and 86% (12/14) in the validation 
cohort was obtained. However, if we considered that a participant with 
positive ctDNA was defined by the detection of only one mutation in 
plasma rather than two, the sensitivity increased to 89% (8/9) in the 
discovery cohort and 100% (14/14) in the validation cohort. These 
data suggest that, taking into account that the existing academic and 
commercial assays require positivity for only a variant in plasma4,10,11, 
our WES-TA approach increases sensitivity compared to other current 
assays while maintaining specificity by detecting a variant.

Additionally, the 16 candidate mutations selected from the WES 
of primary tumors differed from those identified through the plasma 
baseline approach. Comparing both sets, most participants (6/9, 67%) 
in the discovery cohort had no concordance, resulting in a median 0% 
concordance rate, while the validation cohort showed 6% concordance 
(Extended Data Fig. 3).

evidences MRD but also precedes clinical relapse by several months2–9. 
If cure requires the eradication of all tumor cells capable of driving 
relapse, there are likely fewer of these cells at the time of MRD than 
when relapse is clinically evident by imaging. This represents an oppor-
tunity for targeting the molecular alterations found at this moment 
with a more specific approach18. The advent of emerging active drugs 
with diverse mechanisms of action opens up the possibility of disease 
relapse prevention through more precise and rational treatment of 
MRD. Numerous clinical trials are currently underway investigating 
various therapeutic interventions in ctDNA-positive persons with CC 
after surgery19. This advancement underscores the potential for liq-
uid biopsy to transform the landscape of treatment decision-making 
strategies in localized CC.

A comprehensive understanding of the molecular mechanisms 
driving CC progression holds great potential for tailoring treatment 
strategies to more effectively eradicate MRD20. Furthermore, a sub-
stantial percentage of persons without ctDNA detection also experi-
ence recurrence, underscoring the need for advanced perspectives 
on ctDNA detection approaches aimed at increasing their sensitivity. 
In this study, two independent cohorts of participants diagnosed 
with relapsed CC were evaluated by whole-exome sequencing (WES) 
on longitudinal plasma samples and transcriptomics and proteomics 
analyses were also conducted on tissue specimens acquired during 
relapse onset. Ultimately, we sought to reveal mechanisms of tumor 
progression, identify pioneering therapeutic targets21 and guide the 
design of an innovative assay for sensitive detection of MRD through 
ctDNA analysis.

Results
Participant characteristics
We conducted a prospective study, enrolling 320 participants with 
stage 2 and 3 CC between 2015 and 2019 at Hospital Clínico Universi-
tario in Valencia, Spain. Nested within these participants, considered 
as the discovery cohort, all individuals with recurrence (n = 25) who 
had plasma samples at relapse and tissue samples at baseline (primary 
tumor) available were selected for WES ctDNA analysis. Participants 
were predominantly male (15/25, 60%) and had a median age of 74 years 
(Supplementary Table 1). The median recurrence time was 13 months. 
Relapse sites were diverse, including one (21/25, 84%) or multiple 
(4/25, 16%) metastatic sites. Most participants (18/25, 72%) received 
ACT with either capecitabine (12/18, 67%) or capecitabine + oxaliplatin  
(CAPOX; 6/18, 33%).

In the validation cohort, participants with relapsed CC were 
recruited between 2015 and 2022 at seven Danish hospitals; compared 
to the discovery cohort, the median age of the participants was 64 years 
and 40% (6/15) were male. The median recurrence time was 12 months. 
Among the participants, 67% (10/15) exhibited a solitary relapse site, 
while 33% (5/15) presented with multiple sites. Most participants (14/15, 
93%) received ACT, with treatment regimens including CAPOX (7/14, 
50%), fluorouracil + oxaliplatin (3/14, 21%), folinic acid + fluoroura-
cil + oxaliplatin (1/14, 7%), capecitabine (2/4, 14%) or intravenous fluo-
rouracil (1/14, 7%). A CONSORT (Consolidated Standards of Reporting 
Trials) diagram is provided in Fig. 1.

Plasma ctDNA analysis reveals intratumor heterogeneity (ITH)
To demonstrate the capability of plasma ctDNA to provide a compre-
hensive representation of key genomic alterations in localized CC, WES 
was performed on paired plasma and tumor samples from individuals 
at baseline and relapse (Fig. 2). The analysis focused on identifying 
somatically acquired single-nucleotide variants (SNVs), small insertions 
and deletions (indels) and copy-number variants (CNVs).

All participants in both cohorts exhibited at least one somatic 
mutation detected through plasma samples, both at baseline and 
during relapse. We conducted intraparticipant assessment, compar-
ing point somatic mutations and CNVs present in tissue and plasma 
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Notably, with the tumor-informed approach, 96% and 98% of 
selected variants were identified as unique to individual participants 
in the discovery and validation cohorts, respectively. Considering the 
plasma baseline, in contrast, 86% of the mutations were unique in the 
discovery cohort and 78% were unique in the validation cohort, sup-
porting a key role for personalized assays in MRD detection.

These findings highlight the potential of using the WES-TA 
approach for monitoring MRD in localized CC, particularly concern-
ing the identification of ctDNA positivity with the detection of only one 
variant in the plasma. Compared to current commercial and academic 
assays, this method offers greater sensitivity and equal specificity, sug-
gesting possible uses for refining monitoring strategies and promoting 
precision medicine in this clinical setting.

Correlation of clonal evolution with tumor progression
To investigate temporal heterogeneity, we conducted WES on cfDNA at 
both baseline and relapse time points (Fig. 1). Mutations and CNV gains 
and losses are shown in Fig. 4a for the discovery cohort and Extended 
Data Fig. 4 for the validation cohort. Concordance of somatic vari-
ants between plasma samples at baseline and relapse was 61.7% in the 
discovery cohort and 50.5% in the validation cohort, higher than the 
concordance observed between primary tumor and ctDNA at relapse  
(Extended Data Fig. 5a,b; 27.7%, n = 12, P = 0.0015 according to a  
Wilcoxon test), reflecting both ITH and plasma’s better ability to capture 

clonal evolution. Furthermore, concordance between primary tumor 
and paired metastatic tissue was higher in participants with a single 
metastatic lesion compared to those with multiple lesions (multiple,  
n = 10, 29.75%; single, n = 7, 80.87%; P = 0.0068 according to a  
Wilcoxon test). A similar observation was made when comparing base-
line plasma to metastatic tissue (multiple, n = 5, 25.55%; single, n = 3, 
80.87%; P = 0.0357 according to a Wilcoxon test) and when comparing 
recurrence plasma to metastatic tissue (multiple, n = 10, 11.96%; single, 
n = 7, 32.66%; P = 0.0054 according to a Wilcoxon test). On the other 
hand, the concordance between baseline and relapse plasma was not 
significantly influenced by the presence of single or multiple metastases 
(multiple, n = 6, 57.56%; single, n = 6, 62.43%; P = 0.6991 according to a 
Wilcoxon test), further highlighting the tumor’s limitation in compre-
hensively capturing ITH.

To gain a comprehensive understanding of tumor evolutionary 
dynamics in participants with CC, considering all detected mutations 
at each time point allowed us to discern alterations that diminished 
during the evolutionary process, those that endured over time and 
those that surfaced at the point of relapse, as illustrated in Fig. 4b. We 
detected acquired variants in ctDNA at the time of relapse, constituting 
23% and 26.5% of somatic mutations in the discovery and validation 
cohorts, respectively.

Notable individual heterogeneity was observed in the tempo of 
tumor evolution (Extended Data Fig. 6a,b). Some participants showed 
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gradual changes, with mutations appearing at relapse absent in base-
line plasma samples, regardless of chemotherapy. Transcriptomic 
deconvolution in primary tissues from the discovery cohort revealed 
that molecular similarity between baseline and relapse plasma cor-
related with activated B cells (Fig. 4c; n = 7, P = 0.0366 according to a 
Spearman correlation), confirmed by immunohistochemistry (IHC) in 
both cohorts (discovery, n = 7, P = 0.0215; validation, n = 14, P = 0.0460). 
Elevated infiltration at diagnosis was linked to reduced baseline–
relapse concordance, indicating more rapid tumor evolution, while 
lower infiltration and higher similarity suggested slower evolution.

Our analysis showed that somatic mutations acquired during 
relapse in both the discovery and the validation cohorts were sig-
nificantly associated with activation of the epithelial–mesenchymal 
transition (EMT) pathway (Fig. 4d). This was confirmed in the genomic 
profiles of relapsing tissue samples, where the EMT pathway was over-
represented in mutations acquired during relapse in metastatic lesions. 
Transcriptomic profiling revealed that participants with wild-type 
EMT genes did not undergo the transition, whereas participants with 
mutated genes shifted from an epithelial to a mesenchymal profile 
because of EMT pathway activation (Extended Data Fig. 6c). These 
participants carried high-impact mutations in FLNA, ITGB3, LAMC1, 
SLIT3 and TGFBR3 (Supplementary Table 3), known to activate the 
EMT pathway22–26.

Interestingly, we observed a significant enrichment in loss of 
heterozygosity in genes related to myogenesis (P = 6.759 × 10−5; MYH1, 
MYH2, MYH3, MYH4, MYH8 and CHRNB1) at baseline but not identified 
at relapse. On the other hand, our analysis of mutational signatures27 
did not reveal any significant distinctions between these time points, 
as illustrated in Extended Data Fig. 7a,b.

Our findings suggest that tumoral evolution is more accurately 
captured through ctDNA analysis and also identify two evolution pat-
terns associated with initial B cell infiltration into the primary tumor, 
which may contribute to immune evasion by tumor cells and subse-
quent cellular migration to other organs.

ctDNA parallel evolution analysis reveals tumor progression
To investigate the mechanisms underlying localized CC progression, 
we conducted an analysis of acquired somatic mutations at the time 
of relapse and their associated functions. Specifically, the number of 
mutations per gene present in plasma samples was examined at both 
baseline and relapse to investigate the parallel evolution of the tumor28.

In both the discovery and the validation cohorts, no significant 
differences in tumor mutational burden (TMB) at relapse compared 
to baseline were observed in either tissue or plasma (Extended Data 
Fig. 8a–c). A recent study suggested that TMB alone may not accurately 
predict responses to checkpoint inhibition29. In this context, the ratio 
of nonsynonymous to synonymous substitutions (dN/dS ratio) is a valu-
able metric for assessing the strength and mode of natural selection 
on protein-coding genes30.

We next examined the potential correlation between dN/dS and 
TMB, both at the time of diagnosis and at relapse. Our analysis revealed 
that, at diagnosis, no significant correlation could be established 
between these parameters in either tissue (Extended Data Fig. 8d) or 
plasma (Fig. 5a). In the discovery cohort, however, a noteworthy corre-
lation between these variables emerged at the point of relapse, in both 
plasma and tissue samples (plasma, n = 12, P = 0.0228; tissue, n = 25, 
P = 0.0199, according to a Spearman correlation; Fig 5a and Extended 
Data Fig. 8d). This significant correlation at the time of recurrence 
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was also observed in the validation cohort when comparing those 
parameters in plasma (n = 15, P = 0.0321, according to a Spearman 
correlation; Fig. 5a).

The correlation between TMB and dN/dS ratio during relapse sug-
gests that tumors accumulate numerous pathogenic alterations, driven 
by positive evolutionary selection, leading to functions crucial for 
tumor progression. Our study focused on genes with significantly 
increased mutations at relapse compared to diagnosis, excluding 
participants with microsatellite instability (MSI) because of high TMB. 
In the discovery cohort, 115 genes met this criterion, with GOLGA6, HLA 
and PABP gene families notable in both cohorts (Fig. 5b). Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) functional enrichment analysis 
highlighted the involvement of hypermutated genes in immune evasion 
pathways, including antigen presentation and processing (Fig. 5c), 
which was consistently observed in the validation cohort.

To gain mechanistic insights, we performed a comparative analysis 
of neoepitope abundance between primary and metastatic tissues by 
integrating genomic and mass spectrometry (MS) data. Metastatic 
tissue samples exhibited significantly lower neoepitope abundance 
compared to their paired primary tissue samples (n = 13, P = 1.966 × 10−5 
according to a Wilcoxon test; Fig. 5d). In addition, proteomic analysis 
in the discovery cohort revealed distinct proteomic levels for genes 
associated with the antigen presentation and processing pathway in 
metastatic tissues compared to their corresponding primary tissues. 
Specifically, PDIA3 was upregulated in metastatic tissues with muta-
tions, while no such increase was observed in mutation-free metastases 
(n = 14, P = 0.0014 according to a t-test). Conversely, HLA-DRB1 showed 
reduced expression in metastases with mutations compared to primary 
tissues, with no reduction in wild-type metastases (n = 14, P = 0.0076, 
according to a t-test) (Fig. 5e).

This further supports our findings that enrichment of functional 
mutations in relapse samples preferentially targets specific genes, 
thereby promoting immune evasion and ultimately enhancing tumor 
fitness during relapse.

ctDNA profiling to guide targeted therapies
To evaluate the utility of ctDNA genotyping in selecting candidates 
for targeted therapy, we proceeded to identify potentially targetable 
mutations in participants from both cohorts.

Detection of inherited germline or acquired somatic variants 
could improve patient care. Plasma sequencing identified potentially 
pathogenic actionable mutations that were matched with OncoKB lev-
els of evidence for targeted therapies (Table 1). In the discovery cohort, 
75% (9/12) and 80% (20/25) of participants had clinically actionable 
mutations at baseline and relapse, respectively, primarily in the RAS, 
PI3K–AKT–mTOR and DNA damage repair pathways. Similar results 

were seen in the validation cohort, where 60% (9/14) and 73% (11/14) of 
participants had these mutations. Of the druggable mutations in the 
validation cohort (Supplementary Table 4), 62.5% were shared with 
the discovery cohort.

WES analysis of white blood cells (WBCs) facilitated the identifica-
tion of pathogenic germline variants in 28% (7/25) of participants within 
the discovery cohort. These variants were found in genes associated 
with DNA damage repair (for example, CHEK2 and RAD54L), control 
of cell growth and division (for example, ATM and ERBB2) and tumor 
suppression and homologous recombination deficiency (for example, 
PALB2, BRCA1 and BRCA2), as detailed in Supplementary Table 5.

According to the MRD molecular alterations, 60% (9/15) of partici-
pants in the discovery cohort and 71% (10/14) in the validation cohort 
exhibited potentially actionable mutations after surgery. We selected 
some targeted drugs to evaluate their potential activity in the discovery 
cohort participants. We characterized 18 patient-derived organoids 
(PDOs) from participants with CC by WES, finally selecting the ones 
most molecularly matched with our participants’ characteristics. Three 
PDOs (CTO65, CTO119 and CTO147) were identified through hierarchi-
cal clustering and subsequently used for drug testing (Extended Data 
Fig. 9a).

In addition, a metastatic PDO corresponding to the 119 model 
(mCTO119) was evaluated, confirming that the selected mutations 
are driver alterations responsible for the metastasis development 
(observed VAF: TP53, 98.88%; FGFR2, 70%; KRASG12C, 55.83%).

CTO65 exhibited mutations in ARID1A, CHEK1/2, KRAS, PIK3CA and 
TP53; CTO119 carried mutations in FGFR2, KRASG12C and TP53; CTO147 
featured mutations in PIK3CA and TP53 (Extended Data Fig. 9b). Vari-
ous therapeutic agents targeting these alterations were tested, along 
with standard ACT agents for CC, fluorouracil and oxaliplatin, both 
individually and in combination. The PDO models showed sensitiv-
ity to molecularly matched therapies. CTO65 and CTO119 were more 
sensitive to the Wee1 inhibitor adavosertib because of TP53 and KRAS 
mutations compared to CTO147. CTO65 and CTO147 were more sensi-
tive to the PI3K inhibitor alpelisib than CTO119. CTO119 exhibited a 
stronger response to the FGFR and KRAS-G12C inhibitors erdafitinib 
and adagrasib, respectively. All three PDOs showed growth inhibi-
tion with the MEK inhibitor trametinib, with CTO147 showing notable 
sensitivity despite lacking mutated KRAS (Extended Data Fig. 9c,d).

These data reinforce the necessity of conducting molecular stud-
ies for MRD to effectively eradicate disease and optimize patient treat-
ment, thereby paving the way for further research in this field.

Discussion
The conventional tumor–node–metastasis staging system used 
for localized CC lacks precision1 and potentially results in patient 

Fig. 4 | Tumor evolution. a, Comparative molecular profiling of pathogenic 
mutations and CNVs in paired plasma baseline and relapse samples from 
12 participants with CC. Each box signifies a mutated gene in an individual 
participant, with division into two parts separated by a line. Left, results 
obtained at baseline. Right, results from plasma at relapse. Similarly, each box 
corresponding to a collection moment is subdivided into two components. Left, 
point mutations. Right, CNVs. The y axis is organized on the basis of the number 
of point mutations for each gene across all participants. b, Evolutionary plot 
in the discovery cohort for seven paired participants (top) and the validation 
cohort for 14 paired participants (bottom), illustrating somatic mutations 
occurring at baseline, after surgery and at relapse. Colors indicate the presence 
of mutations over time, with gray representing mutations appearing at baseline 
but representing unselected subclones lost after surgery. The indications 
of the sampling time points are not drawn to time scale. Moving along the 
chromatic scale from green to purple signifies mutations persisting over time 
and considered clonal. Mutations emerging after surgery until relapse are 
represented in shades of red, indicating clones arising during tumor evolution 
in this period. Right, upset plot indicating the correspondence of colors with 

temporal points where the mutation was found. c, Spearman correlation 
(n = 7 participants; two-sided) between the B cell infiltration and mutational 
concordance between baseline and relapse plasma in the discovery cohort. Left, 
correlation between infiltrated B lymphocytes using RNA-seq deconvolution 
through the CIBERSORT pipeline versus the mutational concordance. Right, 
correlation of the intensity of CD20 positivity by IHC in the primary tissues versus 
mutational concordance. Representative images of some of the participants 
from CD20 IHC on the primary tissues are indicated. Colors are included for 
each of the different participants (points) to allow comparison to the validation 
data using IHC with CD20. The line represents the fitted relationship between 
the variables, while the shaded band corresponds to the 95% confidence interval 
around the regression estimate. d, Functional enrichment analysis by hallmark 
gene sets revealed enriched pathways in mutated genes in the discovery cohort 
(top; n = 7 participants) and the validation cohort (bottom; n = 14 participants).  
A one-sided hypergeometric test was used to assess whether the input gene 
set was significantly overrepresented in hallmark gene sets compared to a 
background set of genes. The P values were adjusted for multiple comparisons 
using the FDR correction, with a significance threshold of 0.05.
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overtreatment or undertreatment. While some persons may achieve 
a cure through surgery alone, other persons face a higher risk of relapse. 
Recent advancements in ctDNA analysis have contributed to identi-
fying high-risk persons prone to relapse, yet many continue to have 

detectable ctDNA after surgery despite receiving standard ACT2–14. 
This highlights the inadequacy of current treatments for eliminating 
MRD and preventing recurrence7–11. To improve patient management, 
there is a need to enhance the sensitivity of ctDNA detection assays 
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and deepen our understanding of colorectal cancer (CRC) progression 
mechanisms. Although ongoing clinical trials are exploring intensified 
cytostatic regimens, targeted therapies may hold promise for persons 
with persistent positive ctDNA following radical surgery19.

In this work, we performed ctDNA analysis of 40 participants with 
localized CC who underwent curative-intent surgery but subsequently 
experienced recurrence. The study, conducted across two institutions 
in Spain and Denmark, applied WES at different time points. Our objec-
tive was to surpass the constraints of custom panels by investigating 
whether a plasma-based WES approach could improve the sensitiv-
ity to detect MRD31. Additionally, we sought to uncover mechanisms 
underlying the progression of localized CC that could reveal potential 
therapeutic approaches for effectively eliminating MRD.

Our comprehensive analysis sheds light on the dynamic nature of 
ctDNA during CC recurrence, not only demonstrating the potential of 
plasma over tissue in analyzing ITH32 (Fig. 3) but also emphasizing the 
importance of plasma-based monitoring and revealing unique genetic 
signatures in the context of MRD.

In this study, we demonstrated that WES of ctDNA immediately 
after surgery (WES-TA approach) notably improves the sensitivity for 
detecting MRD by considering just one variant as indicative of ctDNA 
positivity. Sensitivity reached 86.7% and 100% in the discovery and 
validation cohorts, respectively, with a specificity of 95%, surpassing 
previous studies using personalized assays based on a tumor-informed 
or TA approach with custom panels2–14,33. To improve cost-effectiveness, 
we selected the top 16 variants with the highest VAF in the plasma base-
line (TAV16) for postoperative monitoring. The TAV16 approach yielded 
sensitivity values similar to those obtained from the WES-TA approach 
when considering one mutation for ctDNA positivity (Supplementary 
Table 2). This finding, combined with the observation that the concord-
ance between plasmas at different time points is stronger than that 
observed between primary tissue and plasma (Extended Data Fig. 5b), 
suggests that leveraging a personalized TA assay based on plasma WES 
at diagnosis rather than relying on primary tumor could be pivotal in 
developing a robust approach for monitoring MRD.

Postsurgery ctDNA genotyping detected 60% and 71% of partici-
pants with at least one potentially actionable variant in the discovery 
and validation cohorts, respectively, such as the ERBB2, PI3KCA and 
BRCA genes (Table 1). Crucially, none of them would have been detected 
through personalized assays targeting the 16 highest VAF variants at MRD 
diagnosis. This lack of detection reduces the possibility of effectively  
eliminating MRD and excludes these persons from the opportunity 
to receive experimental treatments within clinical trials. Moreover, 
enrolling persons in clinical trials remains a notable challenge, largely 
because of prolonged screening periods, the need for sequential tissue 

biopsies and time-consuming genotyping processes. ctDNA analysis 
presents a promising avenue to tackle these hurdles, offering superior 
accuracy in detecting genomic alterations compared to conventional 
tumor tissue analysis34–36.

The importance of a molecularly matched approach for MRD was 
also shown with our PDO models, which present molecular alterations 
similar to those found in MRD cases. This demonstrates that targeted 
treatments exhibit higher sensitivity than conventional ACT (Extended 
Data Fig. 9a), emphasizing the necessity of conducting molecular stud-
ies for MRD to inform optimal treatment strategies, thereby prompting 
further research.

Furthermore, WBC sequencing enables the identification of ger-
mline mutations, revealing a prevalence of 28% in the discovery cohort 
within genes associated with DNA damage repair, cell growth and divi-
sion, tumor suppression and homologous recombination deficiency 
(Supplementary Table 5). These findings carry ethical implications for 
participants and their families and the importance of genetic coun-
seling should be underlined37.

Notably, acquired mutations identified during relapse were asso-
ciated with disruptions in the EMT pathway, pinpointing it as one of 
the mechanisms driving localized CC tumor progression and sug-
gesting that alternative therapeutic avenues (Fig. 4d) such as treat-
ment with WNT inhibitors could potentially inhibit tumor growth 
and metastasis38–40. The loss of heterozygosity of genes related to the 
myogenesis at baseline could disrupt cellular architecture, weakening 
cell–cell and cell–matrix interactions and, thus, facilitating cell migra-
tion and invasion, which are key features of EMT. However, the precise 
mechanisms underlying this relationship are not yet fully elucidated 
and further studies focusing on early events in the formation of myo-
genic precursors are needed41.

In persons with microsatellite stable (MSS) CC, those exhibiting 
increased clonal evolution, irrespective of whether they had received 
ACT, were characterized by higher activated B cell infiltration in the 
primary tumor (Fig. 4c). The selective pressure exerted by immune 
cells on primary tissue in MSS participants in our cohort paves the 
way for potential benefits from immunotherapy in eliminating MRD42. 
The concept of cell infiltration could also be contemplated in the neo-
adjuvant setting for MSS participants43. This phenomenon can be 
attributed to tumor evolution and the evolving characteristics of its 
microenvironment over time.

Although tumor progression was not linked to an increase in TMB29, 
changes in the dN/dS ratio (Fig. 5a) suggest that functional mutations 
rather than overall mutations are more important at relapse, highlight-
ing the need for emerging biomarkers to identify persons who could 
benefit from immunotherapy. Positive evolutionary selection drives this 

Fig. 5 | Analysis of parallel evolution. a, Spearman correlation (two-sided) 
between TMB and dN/dS in plasma at both baseline and relapse in the discovery 
cohort (left; n = 12) and the validation cohort (right; n = 15 participants). 
The P and ρ values are provided for each case. The line represents the fitted 
relationship between the variables, while the shaded band corresponds to the 
95% confidence interval around the regression estimate. b, Volcano plot in the 
discovery cohort (left; n = 12 participants) and the validation cohort (right; n = 15 
participants) illustrating genes significantly associated with a higher number 
of somatic mutations at relapse and baseline. The P-value threshold was set 
at 0.05 and the log2(fold change) range was between −0.6 and 0.6 (two-sided 
Wilcoxon test). The P values were adjusted for multiple comparisons using the 
FDR correction, with a significance threshold of 0.05. c, Functional enrichment 
analysis of all significant genes exhibiting a higher number of somatic mutations 
at relapse compared to the baseline stage in the discovery cohort (left; n = 12 
participants) and the validation cohort (right; n = 15 participants). A one-
sided hypergeometric test was used to assess whether the input gene set was 
significantly overrepresented in KEGG pathways compared to a background set 
of genes. The P values were adjusted for multiple comparisons using the FDR 
correction, with a significance threshold of 0.05. d, Comparative quantification 

of neoepitope abundance between paired metastatic and primary tumor samples 
(n = 13 participants). An asterisk denotes a statistically significant difference 
(P < 0.05) in neoepitope abundance between primary and metastatic tissues, 
as determined by a one-sided t-test. The analysis was based on the hypothesis 
that metastatic tissues exhibit a lower neoepitope abundance than primary 
tumors. The P value for the overall comparison between primary and metastatic 
tumors was <0.001. Individual P values for each participant were as follows: 
participant 13, 0.0132; participant 49, 0.0017; participant 63, 0.0068; participant 
104, 0.0029; participant 107, 0.0219; participant 136, 0.9671; participant 185, 
0.0001; participant 189, 0.8378; participant 204, 0.0001; participant 242, 
0.0001; participant 243, 0.9945; participant 259, 0.0211; participant 261, 0.9997. 
e, Median protein quantification ratio of wild-type versus mutated metastasis 
samples identified by MS (n = 14 participants). The asterisk indicates a significant 
difference in protein ratio between primary and metastatic tissues based on 
the presence of the mutation at relapse according to a two-sided t-test analysis. 
Individual P values were as follows: PDIA3, 0.0014; HLA-A, 0.2091; HLA-B, 0.4807; 
HLA-C, 0.9548; HLA-DPB1, 0.6853; HLA-DQB1, 0.7936; HLA-DRB1, 0.0077; HLA-E, 
0.2616; HSP90AA1, 0.7104; TAP1, 0.9010; CALR, 0.1663).
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phenomenon, leading to functions that contribute to tumor progression 
(Fig. 5b). These findings support the hypothesis that alterations in the 
antigen presentation and processing pathway have a key role in driving 
CC progression after surgery, leading to relapse (Fig. 5c). MS data further 
validate this, showing lower neoepitope abundance in metastatic tissues 
compared to primary tumors (Fig. 5d). This mechanism emphasizes the 
role of antigen presentation in tumor progression and identifies it as a 
potential therapeutic target, especially in localized CC42–47.

PDIA3 and HLA-DRB1 proteins were found to be particularly 
involved. The PDIA3 gene displayed a significant rise in activating 

mutations during relapse, resulting in elevated protein expression 
and implicating this gene in the suppression of antitumor immunity48. 
Conversely, increased suppressor mutations in the HLA-DRB1 gene had 
a pronounced effect on promoting a cold tumor environment, thereby 
suppressing immune system activation49. This further substantiates 
that the enrichment of functional mutations in relapse samples selec-
tively favors specific genes, enhancing immune evasion and subse-
quently increasing tumor fitness during relapse (Fig. 5e).

WES provides a broader scope for detecting pathogenic muta-
tions compared to tumor-informed approaches; it faces challenges 
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in coverage and tumor fraction50, impacting false negatives and con-
cordance with tissue samples31. Sensitivity for subclonal mutations 
improved in a validation cohort with higher coverage, highlighting 
the need for economic investment in identifying subclonal mutations 
through WES in localized tumors. Moreover, further validation with 
larger plasma-paired cohorts is essential to confirm our findings. 
Expanding the participant pool could improve tumor evolution char-
acterization and allow for a more comprehensive assessment of the 
impact of ACT on individual participants’ mutational profiles51.

In conclusion, our study demonstrates that a WES-TA approach 
surpasses current commercial assays for detecting MRD. We identify 
immune evasion mechanisms as a primary driver of progression in the 
setting of localized CC, facilitated by a functional mutational burden 
at relapse. This suggests that immunotherapy could extend its efficacy 
to persons with MSS CC, thereby broadening treatment options and 
potentially facilitating the design of clinical trials for these participants. 

Lastly, organoid modeling adds to the excitement by confirming the 
promising potential of targeted therapy to exceed conventional treat-
ments in eradicating MRD.

Methods
Participants and study design
The research ethics committees of the Hospital Clínico Universitario 
and Aarhus University approved the study protocol (institutional 
review board no. 2021/083). All participants provided written informed 
consent and the study was conducted in accordance with the Declara-
tion of Helsinki. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Through a liquid biopsy program within the Digestive Tumors 
Group at the Hospital Clínico Universitario, we prospectively enrolled 
320 participants diagnosed with localized CC who had experienced 
recurrence between July 2015 and May 2021. Use of ACT was at the 

Table 1 | Potential targetable mutations detected in the discovery cohort

Gene Primary 
tumor

Plasma 
baseline

Postoperative 
plasma

Plasma 
relapse

Treatment

ERBB2 1 (4%) 0 (0%) 3 (20%) 5 (20%) Ado-trastuzumab + emtansine + neratinib + trastuzumab + deruxtecan

PIK3CA 8 (32%) 1 (8%) 2 (13%) 4 (16%) Alpelisib

TSC2 0 (0%) 2 (16%) 1 (6%) 4 (16%) Everolimus + ABI-009

ARID1A 5 (20%) 2 (16%) 1 (6%) 3 (12%) PLX2853 + tazemetostat

ATM 4 (16%) 1 (8%) 0 (0%) 3 (12%) Olaparib

RET 0 (0%) 0 (0%) 0 (0%) 3 (12%) Selpercatinib + pralsetinib

KRAS-G12D 7 (28%) 2 (16%) 0 (0%) 2 (8%) MRTX1133

CHEK1 2 (8%) 2 (16%) 1 (6%) 2 (8%) Olaparib

MET 1 (4%) 1 (8%) 1 (6%) 2 (8%) Capmatinib + tepotinib + crizotinib

MTOR 1 (4%) 0 (0%) 0 (0%) 2 (8%) Everolimus + temsirolimus

NF1 1 (4%) 0 (0%) 0 (0%) 2 (8%) Trametinib + cobimetinib

PTCH1 2 (8%) 2 (16%) 0 (0%) 2 (8%) Sonidegib

PTEN 4 (16%) 4 (33%) 1 (6%) 2 (8%) AZD8186 + GSK2636771

RAD51B 2 (8%) 0 (0%) 1 (6%) 2 (8%) Olaparib

KRAS-G12C 2 (8%) 1 (8%) 0 (0%) 1 (4%) Sotorasib + adagrasib

ALK 0 (0%) 0 (0%) 0 (0%) 1 (4%) Lorlatinib + brigatinib

ARAF 0 (0%) 0 (0%) 0 (0%) 1 (4%) Sorafenib

BRCA1 5 (20%) 0 (0%) 1 (6%) 1 (4%) Niraparib + talazoparib + rucaparib + olaparib

CDK12 1 (4%) 0 (0%) 0 (0%) 1 (4%) Cemiplimab + nivolumab + pembrolizumab + olaparib

EGFR 0 (0%) 0 (0%) 0 (0%) 1 (4%) Afatinib

ERCC2 0 (0%) 0 (0%) 0 (0%) 1 (4%) Cisplatin

ESR1 0 (0%) 0 (0%) 0 (0%) 1 (4%) AZD9496 + fulvestrant

FGFR3 0 (0%) 0 (0%) 0 (0%) 1 (4%) Debio1347 + BGJ398 + erdafitinib + AZD4547

NRAS 1 (4%) 0 (0%) 0 (0%) 1 (4%) Binimetinib + panitumumab + cetuximab

PALB2 3 (12%) 0 (0%) 0 (0%) 1 (4%) Olaparib

TEP1 0 (0%) 0 (0%) 0 (0%) 1 (4%) GSK2636771 + AZD8186

AKT1 1 (4%) 0 (0%) 0 (0%) 0 (0%) AZD5363

BRAF 1 (4%) 1 (8%) 0 (0%) 0 (0%) Vemurafenib + selumetinib + dabrafenib + trametinib + encorafenib

BRCA2 2 (8%) 1 (8%) 2 (13%) 0 (0%) Rucaparib + talazoparib + olaparib + niraparib

BRIP1 3 (12%) 0 (0%) 0 (0%) 0 (0%) Olaparib

CHEK2 5 (20%) 2 (16%) 0 (0%) 0 (0%) Olaparib

MAP2K1 0 (0%) 1 (8%) 0 (0%) 0 (0%) Cobimetinib + trametinib

TSC1 1 (4%) 1 (8%) 0 (0%) 0 (0%) Everolimus

Actionable mutations detected by gene at different time points in the discovery cohort. The table includes the count and percentage of participants harboring these mutations. The 
corresponding treatment recommendations from the OncoKB database are presented in the right column.
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discretion of the treating clinician. As an inclusion criterion for the 
study, participants who had experienced relapse and had plasma at 
relapse and tissue at baseline available were selected. Additionally, 
21 participants who had not experienced relapse and had sufficient 
quantities of plasma after surgery were also included in the analysis. 
In total, 25 participants in the discovery cohort were studied (Fig. 1). 
Primary tumor tissue, collected at diagnosis before any treatment, 
and plasma at relapse, collected from the participant a few days after 
the detection of disease progression on the computed tomography 
scan before starting treatment for advanced disease, were collected 
from all participants. Of the 25 participants with recurrence, 48% 
(n = 12) had plasma available preoperatively (considered as baseline 
time point) and 60% (n = 15) had plasma available postoperatively; 
matching tissue from the recurrence lesion was also available in 68% 
(n = 17) participants (Fig. 2). All peripheral blood from participants 
was collected in EDTA tubes at diagnosis, 6–8 weeks after surgery, 
before ACT and upon disease progression for ctDNA and WBC analy-
sis. cfDNA was extracted from 4 ml of plasma for each participant. 
Tumor tissue DNA was extracted at diagnosis and relapse follow-
ing macrodissection of samples to ensure >70% cellular content 
for subsequent DNA and RNA extraction. WES was performed on 
the collected samples. RNA deconvolution from primary tissue and 
proteomics from both primary (n = 25) and relapse (n = 17) tumor tis-
sue of the discovery cohort were used to validate the findings from 
WES. To validate these results, we used an external cohort consisting 
of 15 participants with CC from seven hospitals in Denmark, in whom 
primary tissue, plasma at diagnosis and plasma at relapse were col-
lected. Plasma was isolated within 2 h of blood collection by double 
centrifugation at 3,005g for 10 min and stored at −80 °C until DNA 
extraction. Postoperative plasma for analysis was available for 14 of 
the 15 participants (93%).

DNA extraction
In the discovery cohort, macrodissection of the formalin-fixed 
paraffin-embedded (FFPE) block with primary tissue was performed 
in each participant. Samples from relapses were also used if available. 
DNA was extracted using the AllPrep DNA/RNA FFPE kit (Qiagen) for 
tumoral DNA from FFPE cuts, Chemagic DNA blood kit (Chemagen) for 
germline DNA from matched WBCs and QIAamp circulating nucleic 
acid kit (Qiagen) for cfDNA from 4-ml plasma samples. All extraction 
protocols were performed according to the corresponding manu-
facturer’s instructions. Tumor DNA and WBCs were quantified using 
the QuantiFluor double-stranded DNA (dsDNA) system (Promega), 
whereas cfDNA quality and quantity were assessed with a cfDNA Screen-
Tape assay (Agilent). cfDNA samples were not accepted if cfDNA con-
tent was below 70%.

In the validation cohort, DNA was extracted from freshly frozen 
tumor tissue using the Puregene DNA purification kit (Gentra Systems) 
and from FFPE samples with the QiAamp DNA FFPE tissue kit (Qiagen). 
WBC DNA was extracted from the buffy coat using the Qiasymphony 
DNA mini kit (Qiagen). DNA from tumors and WBCs was quantified 
using the Qubit dsDNA BR assay kit (Thermo Fisher Scientific). cfDNA 
was purified from 4–8 ml of plasma using the QIAamp circulating 
nucleic acids kit (Qiagen) and quantified by droplet digital PCR (Bio-
Rad Laboratories) using assays targeting regions on Chr3 and Chr7, as 
described previously52.

WES
Discovery cohort. Libraries were prepared using 100-ng inputs of 
tumor DNA, 100 ng of WBC DNA and 10–40 ng of cfDNA. KAPA Hyper-
Plus (Roche) with unique dual and molecular indices (UDI–UMI; 
Integrated DNA Technologies) was used for library preparation of 
tissue and WBC DNA, according to the instructions of KAPA HyperCap 
Workflow v3. The only modification applied was the use of 5 ml of 
15 mM UDI–UMI at the ligation step instead of a universal adaptor and 

posterior precapture PCR with Illumina primer mix. KAPA HyperPrep 
(Roche) with the same adaptors was selected for cfDNA, with the fol-
lowing changes to the mentioned protocol: (1) the adaptor was diluted 
proportionally with the input DNA, with a maximum of 12 mM for 
40 ng; (2) precapture PCR was performed with a total of 11 cycles; (3) 
post-PCR purifications were performed with 50 ml of KAPA HyperPure 
beads (Roche) and 10-min incubation with mixed beads; and (4) after 
precapture PCR and before ethanol cleanup, beads were eluted in 
50 ml of Tris-HCl 10 mM pH8.0 for a second incubation with another 
50 ml of beads. For the next step, precapture libraries were pooled 
as follows: 1,500 ng of four tumor DNA libraries, 1,500 ng of eight 
WBC DNA libraries and 1,000 ng of one cfDNA library. Capture of the 
exome was performed with KAPA HyperExome (Roche) following the 
manufacturer’s instructions and the same type of post-PCR purifica-
tion for cfDNA exome samples. The quality of both precapture and 
postcapture libraries was determined with an HS D1000 ScreenTape 
assay (Agilent) from a 20-fold dilution of the library. Sequencing was 
performed on HiSeq 3000 (Illumina) or NovaSeq 6000 (Illumina) with 
150-bp paired-end reads and an extended i7 read of 17 cycles for UMI 
reading. The median coverage obtained in the discovery cohort was 
132× for WBCs, 194× for the primary tissue and 478×, 504× and 389× for 
the plasma at baseline, postoperative and relapse stages, respectively 
(Supplementary Tables 6–11 and Extended Data Fig. 10a).

Validation cohort. Tumor and normal DNA sequencing libraries were 
generated using xGen UDI–UMI adaptors (Integrated DNA Technolo-
gies) and the Twist library preparation enzymatic fragmentation kit 
1.0 (Twist Bioscience). Libraries were prepared as described by the 
manufacturer. For normal and FrFr DNA, we used 50 ng of input and 
10 min of fragmentation. For FFPE DNA, 200 ng of input and 6 min 
of fragmentation were used. All libraries were amplified with seven 
cycles of PCR. Libraries were quantified using a Qubit dsDNA BR assay 
kit (Thermo Fisher Scientific) and library size was estimated using a 
TapeStation D1000 (Agilent). Blood samples were collected in K2–EDTA 
10-ml tubes (Becton Dickinson) from healthy controls and participants 
with CRC. Plasma sequencing libraries were prepared using cfDNA from 
2 ml of plasma. cfDNA libraries were generated using xGen UDI–UMI 
adaptors (Integrated DNA Technologies) and a KAPA HyperPrep kit 
(Roche). Postligation cleanup was performed with AMPURE beads in 
a 1.4:1 ratio of beads to DNA to retain short fragments, while post-PCR 
cleanup was performed using a 1:1 ratio. The libraries were amplified 
with seven cycles of PCR. Libraries were quantified using a Qubit dsDNA 
BR assay kit (Thermo Fisher Scientific) and library fragment size was 
estimated using a TapeStation D1000 (Agilent). Libraries that did not 
show the usual bimodal fragment size distribution13 of cfDNA were 
excluded before sequencing. Tumor and WBC DNA libraries were 
captured using the next-generation sequencing human core exome 
(TWIST Bioscience, ~33 Mb) according to the manufacturer’s pro-
tocol. Target-enriched libraries were sequenced using the NovaSeq 
platform with 2× 150-bp paired-end sequencing. The median cover-
age obtained in the validation cohort for WBCs, primary tissue and 
plasma at baseline, postoperative and relapse stages was 58×, 95×, 
844×, 1,022× and 1,003×, respectively (Supplementary Table 12 and 
Extended Data Fig. 10a).

FASTQ preprocessing, quality control and read mapping
Raw sample quality control was carried out by FastQC53 (version 0.11.8), 
whereas Cutadapt54 (version 2.10) was used for the adaptor removal and 
PrinSeq55 (version 0.20.4) was used to discards reads with a mean qual-
ity under Q30 in the FASTQ preprocessing step. Sequencing reads were 
mapped to the hg38 human reference genome using BWA56 (version 
0.7.17) and BAM postprocessing was performed using Picard (version 
2.18.6) and the Genome Analysis Toolkit (GATK)57 (version 4.2.0.0) best 
practices. Umi-tools58 (version 1.0.1) was used for UMI extraction and 
deduplication of reads from the same UMI family.
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Variant calling and somatic variant prioritization
Variant calling of primary tumor, plasma and normal samples was per-
formed using combined outputs from Mutect2 (GATK version 4.2.0.0) 
and Lofreq59 (version 2.1.5). For greater confidence, germline variants 
were also called by HaplotypeCaller (GATK) implemented in the Sarek 
pipeline (version 2.7.1). The minimum VAF in primary tumor variants 
was set to 5% and 0.01% in plasma samples. The final set of variants was 
yielded by intersecting outputs from the two callers, extracting vari-
ants detected in normal samples and annotation using Variant Effect 
Predictor60 (VEP, Ensembl version 102). The variants found within a 
blacklist of redundant mutations were considered sequencing artifacts 
and removed. This blacklist was created on the basis of the sequenc-
ing of 135 different plasmas. Clonal hematopoiesis of indeterminate 
potential variants were also removed in plasmas samples to avoid false 
positives. Somatic pathogenic variants were identified by annotation 
with COSMIC (version 94), OncoKB (version 1) and an in-house patho-
genic mutations database. Only high-impact and moderate-impact 
somatic mutations were considered for the mechanistic analysis in 
this study. A manual review and curation process of the pathogenic 
mutations detected in each sample was carried out. Variant prioriti-
zation analysis, characterized mainly by the match of the pathogenic 
mutations with OncoKB levels of evidence, was performed to select 
specific targeted therapies.

Sequencing quality control
A sequencing quality control criterion was set, requiring sufficient 
sequencing coverage to ensure that all clonal alterations detected 
in plasma samples were supported by a minimum of three mutated 
reads. Tumor purity and cancer cell fraction (CCF) were estimated by 
the PureCN61 (version 2.0.2) software on the basis of copy number and 
mutational data. Clonal mutations were defined as those with CCF ≥ 0.9, 
with the remaining mutations classified as subclonal. Subsequently, 
the tumor fraction of clonal mutations in all available plasma samples 
in both cohorts was estimated. The sequencing coverage proved suf-
ficient to meet the quality criterion, ensuring that all clonal mutations 
in the study’s plasma samples with a minimum of three mutated reads 
were identified.

The fraction of clonal and subclonal mutations from the primary 
tumor detected in the plasma was estimated, obtaining higher sensi-
tivity values when detecting clonal than subclonal mutations in both 
cohorts. In the discovery cohort, a sensitivity of 29% was observed for 
clonal mutation identification, which decreased to 11% for subclonal 
mutations (P = 0.0005, according to Wilcoxon paired test). In the vali-
dation cohort, the sensitivity values were 32% and 29% for detection 
of clonal and subclonal mutations, respectively (P = 0.0413, according 
to Wilcoxon paired test). The sensitivity to detect subclonal mutations 
was higher in the validation than the discovery cohort (P = 0.0063, 
according to Wilcoxon test), given the significantly greater sequencing 
coverage in these samples.

TMB and tumor fraction estimation
TMB was estimated using nonsynonymous mutations with an impact 
on the protein (missense, frame-shift and small indel mutations). 
Participants with a TMB over 10 mutations per Mb were classified as 
having high TMB (Extended Data Fig. 10b). The tumor fraction was 
estimated as the number of mutated reads (overlapping the mutational 
compendium of the primary tumor) relative to the total number of 
reads overlapping the loci of the mutational in the plasma samples. 
(Extended Data Fig. 10c).

MRD detection
For increased confidence in variant calling in postsurgery plasma 
samples, a joint normal sample with a median depth of 3,474× was cre-
ated, consisting of all available WBC samples. Paired variant calling was 
performed from this using a heuristic method and a statistical test using 

the number of aligned reads supporting each allele, based on VarScan2 
(ref. 62) (version 2.4.4) software. A participant was considered positive 
if at least one somatic mutation was detected through this WES analysis.

To evaluate the clinical feasibility of MRD detection using WES 
analysis while optimizing cost-effectiveness, we focused on identifying 
somatic mutations with the highest VAF in the plasma baseline exome 
of each participant. The objective was to determine whether these 
mutations remained detectable in postoperative plasma samples. In 
evaluating sensitivity for MRD detection, we examined various num-
bers of candidate mutations (ranging from 15 to 20), adhering to the 
criterion of one or two detectable mutations necessary to classify a 
participant as ctDNA positive, consistent with the criteria of existing 
assays. Results from both the discovery cohort (88% sensitivity with 
one mutation, 67% with two mutations) and the validation cohort (100% 
with one mutation, 86% with two mutations) indicated that sensitivity 
did not improve with the selection of more than 16 candidate altera-
tions. Therefore, we established the criterion of selecting 16 mutations 
(TAV16), aligning with the same number of mutations validated in 
commercial assays using a tumor-informed approach for the same 
purpose3,7. The TAV16 assay is protected by patent rights (EP25382212).

MS
A spectral peptide library was obtained using liquid chromatography 
(LC)–MS/MS by the Proteomics Service of the University of Valencia. 
LC–MS/MS was performed in a timsTOF fleX MS instrument (Bruker). 
The sample loaded in the Evotip pure was eluted to an analytical column 
(Endurance 8 cm × 100 µm, 3 µm; Evosep) by the Evosep One system 
and resolved with the 60 SPD chromatographic method defined by the 
manufacturer. The eluted peptides were ionized in a captive Spray with 
1,600 V at 180 °C and quantitative analysis of individual samples was 
performed by parallel accumulation–serial fragmentation combined 
with data-independent acquisition. For every protein in the spectral 
library, a maximum of 20 peptides were quantified among those with 
a 95% confidence threshold and a false discovery rate (FDR) lower 
than 1%.

Transcriptomic and CIBERSORT analysis
Total RNA was isolated from primary tumor samples embedded in 
FFPE using an RNeasy FFPE Kit (Qiagen, 73504). The integrity of the 
extracted RNA was subsequently validated using Agilent Technologies 
TapeStation RNA analysis ScreenTape. Following the manufacturer’s 
guidelines, sequencing libraries were prepared using the NEBNext 
Ultra (TM) II Directional RNA library prep kit for Illumina module 
from New England Biolabs, in conjunction with the NEBNext poly(A) 
mRNA magnetic isolation module for mRNA enrichment. For quality 
control of sequences, a methodology akin to gene panels was applied. 
The filtered reads were then mapped to the human reference GRCh38 
genome using STAR (version 2.7.3a)63. Isoform quantification was 
performed through RSEM (version 1.3.3)64 and subsequent processing 
involved Tximport (version 1.16.1)65 to summarize counts per gene. 
To derive the expression signal of immune cells infiltrated in our bulk 
RNA sequencing (RNA-seq) samples from the discovery cohort, the 
CIBERSORT package (version 1.0.4) was used. To characterize the 
transcriptomic profile of the primary and metastatic tissues as an 
epithelial or mesenchymal phenotype, R package imogimap66 was 
used. The provided EMT score is defined as the mean value of modi-
fied expressions. The EMT scores were calculated on the basis of a 
76-gene expression signature reported by ref. 67 (Supplementary 
Table 1) and the metric mentioned on the basis of that gene signa-
ture68. For each sample, the score was calculated as a weighted sum 
of the 76 gene expression levels and the resulting scores were then 
mean-centered and normalized by s.d. as a function of the distribution 
of scores in all samples. Negative scores can be interpreted as indicat-
ing a mesenchymal phenotype, whereas positive scores indicate an 
epithelial phenotype.
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IHC staining
All stainings were carried out on 3-μm paraffin-embedded slides using 
the DAKO autostainer, according to the manufacturer’s recommenda-
tions, with DAKO kit solutions (K8002, Dako). The CD20+ IHC staining 
was performed with the primary anti-CD20 antibody (clone L26; Dako). 
The slides were scanned using a slide scanner (3DHistech, P250).

The percentage and density of CD20+ B cells per sample were 
semiautomatically assessed using open-source digital analysis soft-
ware QuPath (version 4.0.0)69 after tissue segmentation. The areas 
of interest selected included the entire invasive front of the tumor 
and all tertiary lymphoid structures related to the tumor, located at a 
maximum distance of 7 mm from the tumor.

Mutational signatures
Known mutation signatures from COSMIC (version 3.2 release) were 
matched with the somatic trinucleotide profile of each plasma and 
primary tumor sample using SigProfiler70 (version 1.1.3).

CNV detection
CNVs in primary tumor samples were called by a combination of 
CNVkit71 (version 0.9.7), VarScan (version 2.4.4) and FACETS72 (version 
0.15) tools output in a paired tumor–normal mode with a 2,000-bp 
window size. A score-based CNV classification was performed to 
reduce false positives, considering size and requiring detection by 
at least two of the tools. CNVs in plasma samples were also called in a 
paired tumor–normal mode but using a combination of WisecondorX73 
(within-sample copy-number aberration DetectOR, version 1.2.4) 
and CONTRA74 (version 2.0.8) software with a 100-kb window size. In 
plasma samples, a scored-based CNV classification was also used to 
determine real events.

Neoepitope abundance quantification
Protein sequences associated with somatic mutations identified from 
WES data of both primary and metastatic tumors were generated using 
pVACseq (version 4.4.1)75, a cancer immunotherapy pipeline designed to 
identify personalized variant antigens through cancer sequencing. The 
VCF files obtained from WES were annotated with the VEP tool to prepare 
the input for pVACseq. Mutated and corresponding wild-type protein 
sequences were subsequently generated using the ‘generate_protein_
fasta’ command. HLA typing for each participant was performed using 
the nf-core/hlatyping (version 2.0.0)76 Nextflow pipeline, which provides 
a best-practice analysis for precision HLA typing from next-generation 
sequencing data using OptiType. The binding affinity of each identified 
neoepitope to major histocompatibility complex (MHC) molecules was 
predicted using NetMHCpan (version 4.1)77, which uses artificial neural 
networks to predict peptide binding for any MHC molecule with a known 
sequence, allowing for the selection of neoepitopes with the highest 
likelihood of presentation based on binding affinity. Neoepitope quan-
tification from primary and metastatic tissue samples was conducted 
using MS data processed with MaxQuant (version 2.6.5)78, a quantita-
tive proteomics tool for large-scale MS data analysis. One participant 
was excluded because of the absence of detected neoepitopes in the 
proteomic data and MSI participants were also not considered for the 
analysis. Lastly, the comparative abundance of neoepitopes in primary  
and metastatic tissues was analyzed using MSstats (version 4.8.7)79,80,  
a statistical toolkit for relative protein abundance analysis.

Drug sensitivity assay
The PDO model was trypsinized until a single-cell suspension was 
achieved and 3,000 cells per well were plated into 96-well plates. 
After 48 h, when organoids were formed, increasing doses of both 
standard chemotherapy and targeted therapies were added. Oxali-
platin and fluorouracil were provided by the HCUV Pharmacy Ser-
vice. The targeted drugs tested were olaparib (AZD228; Selleckchem, 
S1060), trametinib (GSK1120212; Selleckchem, S2673), tazemetostat 

(EPZ-6438; Selleckchem, S7128), adavosertib (MK-1775; Selleckchem, 
S1525), RMC-4550 (Selleckchem, S8718) and alpelisib (BYL719; Selleck-
chem, S2814). Inhibitor drugs were diluted in DMSO such that assays 
contained vehicle control wells with a maximum concentration of 0.1% 
of DMSO. After 120 h of treatment, cell viability was measured using 
the CellTiterGlo3D assay following the manufacturer’s instructions. 
Luminescence was analyzed in a Fluoroskan Ascent FL (Thermo Fisher 
Scientific). Every assay was performed at least twice, with a technical 
triplicate for each condition.

Statistics and reproducibility
No statistical method was used to predetermine sample size. All indi-
viduals from both cohorts who had plasma samples at relapse and tissue 
samples at baseline (primary tumor) available were selected for the study 
and analyzed. MSI participants were excluded from the parallel evolution 
study because of their expected high TMB (Results). The experiments 
were not randomized. The investigators were not blinded to allocation 
during experiments and outcome assessment. Data distribution was 
assumed to have equal variance but this was not formally tested. Normal-
ity was checked with the Shapiro–Wilk test. Qualitative variables are pre-
sented using frequencies and percentages while quantitative variables 
are expressed as the mean and s.d. if the normality assumption held true 
and the median and interquartile range otherwise. Comparison between 
continuous variables was carried out using a Student t-test if normality 
criteria were reached; otherwise, the Wilcoxon signed-rank test was 
used. The correlation between quantitative variables was assessed using 
Spearman’s ρ statistic. Software used for all analysis was R (version 4.0.1; 
R Core Team, 2021) and the cutoff for statistical significance was set at 
α = 0.05 in all tests. All tests were two-sided.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data of the tissue and plasma samples from the 
discovery cohort that support the findings of this study were deposited 
to the European Genome–Phenome Archive (EGA) under controlled 
access with accession code EGAD50000000293. Data will be shared 
on reasonable request for academic or commercial use and within the 
limitations of the provided informed consent and under General Data 
Protection Regulation law. Data access requests must be submitted 
through the EGA platform’s request system. Requests will be reviewed 
by the Data Access Committee of INCLIVA Biomedical Research Insti-
tute and responses will be provided within approximately 2 weeks. 
Approved users must comply with data use agreements specifying 
permitted use and restrictions. External researchers (academic or com-
mercial) interested in analyzing the Aarhus colorectal cancer dataset 
will need to contact the Data Access Committee by email to cla@clin.
au.dk. Access to clinical data and processed sequencing data output 
files used in the article requires that the data requestor (legal entity) 
enter into Collaboration and Data Processing Agreements with the 
Central Denmark Region (the legal entity controlling and responsible 
for the data). Request for access to raw sequencing data requires that 
the purpose of the data reanalysis is approved by the Danish National 
Committee on Health Research Ethics. Upon reasonable request, the 
authors, on behalf of the Central Denmark Region, will enter into a 
collaboration with the data requestor to apply for approval. MS data 
were deposited to ProteomeXchange with primary accession code 
PXD061711. Source data are provided with this paper.

Code availability
Code and datasets used for the analysis and figures generation are 
available from GitHub (https://github.com/INCLIVA-bioinformatics/
INCLIVA-CC-WES).
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Extended Data Fig. 1 | Molecular profiling of paired tissue and plasma 
comparison at baseline in the validation cohort. a, Concordance analysis 
of primary tumor and plasma baseline somatic SNVs. The cohort’s median 
concordance is represented by a dot. b, Comparative molecular landscape of 
pathogenic mutations and CNV in paired tissue and plasma samples at baseline 
from 15 colorectal cancer CC patients. Each box illustrates a mutated gene in a 

specific patient, divided into two sections: the left section displays results from 
the primary tissue, and the right section depicts plasma at baseline. Similarly, 
each box at a given collection moment is subdivided into two parts, with the 
left indicating point mutations, and the right representing CNVs. The Y-axis is 
arranged by the number of point mutations for each gene across all patients.
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Extended Data Fig. 2 | Molecular landscape of the paired tissue-plasma 
comparison at relapse. Comparative analysis of the molecular landscape, 
focusing on pathogenic mutations and CNVs, in paired tissue and plasma 
samples collected at the point of relapse from 17 CC patients. Each box within the 
representation signifies a mutated gene in an individual patient, and it is divided 
into two sections by a line. The left part corresponds to outcomes derived from 

the metastatic tissue, while the right part corresponds to plasma at the time of 
relapse. Similarly, each box corresponding to a collection moment is further 
divided into two components, with the left indicating point mutations, and the 
right representing CNVs. The Y-axis is arranged based on the number of point 
mutations for each gene across all patients.
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Extended Data Fig. 3 | Minimal residual disease concordance of candidate 
variants. Median concordance of candidate variants when selecting the 16 
somatic mutations with the highest VAF for MRD monitoring in primary tumor 

and plasma baseline samples within the discovery cohort (left, n = 12 patients) 
and the validation cohort (right, n = 14 patients). Two-sided Wilcoxon test; 
p-value = 0.047.
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Extended Data Fig. 4 | Molecular profiling of tumor evolution comparing 
plasma at both baseline and relapse in the validation cohort. Comparative 
molecular landscape of somatic pathogenic mutations and CNVs in paired 
plasma samples at baseline and relapse from 15 CC patients. Each box within 
the representation signifies a mutated gene in an individual patient, divided 
into two sections by a line. The left segment corresponds to outcomes obtained 

in the plasma baseline, while the right segment corresponds to plasma at 
relapse. Similarly, each box corresponding to a collection moment is further 
divided into two components, with the left indicating point mutations and the 
right representing CNVs. The Y-axis is organized based on the number of point 
mutations for each gene across all patients.
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Extended Data Fig. 5 | Molecular landscape of the tumor evolution comparing 
tissue at baseline and plasma at relapse. a, Comparative molecular profiling 
of pathogenic mutations and CNVs in paired tissue at baseline and plasma at 
relapse samples from 25 CC patients. Each box in the illustration denotes a 
mutated gene in an individual patient, bifurcated into two sections by a line. The 
left segment corresponds to findings derived from the primary tumor, while the 
right segment corresponds to plasma at relapse. Similarly, each box associated 
with a specific collection moment is further divided into two components: the 

left portion denotes point mutations, and the right portion represents CNVs. The 
Y-axis is organized based on the number of point mutations for each gene across 
all patients. b, Concordance comparison between the primary tumor and plasma 
at relapse (n = 25 patients) versus the concordance of plasma at both baseline 
and relapse (n = 12 patients) of somatic mutations across the discovery cohort 
(two-sided Wilcoxon test; p-value = 0.0015). Data are presented as median values 
+/- standard deviation. Concordance is calculated by comparing each patient 
with themselves at different stages.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Analysis of tumor evolution. Evolutionary plot per 
patient in the a, discovery cohort (n = 7) and b, validation cohort (n = 14) 
illustrating somatic mutations occurring at baseline, post-surgery, and at 
relapse. The y-axis represents the accumulated number of mutations across 
the cohort. The presence of mutations over time is depicted by colors, where 
gray indicates mutations appearing at baseline but representing unselected 
subclones lost after surgery. Progressing up the chromatic scale from green to 

purple signifies mutations persisting over time, considered clonal. Conversely, 
mutations emerging after surgery until the patient’s relapse are depicted in 
shades of red, indicating clones arising due to tumor evolution during this 
period. c, EMT scores for metastatic and primary tissues. Distribution of EMT 
scores for primary tissues and metastatic tissues for each patient. Negative 
scores can be interpreted as indicating a mesenchymal phenotype, whereas 
positive scores indicate an epithelial phenotype.
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Extended Data Fig. 7 | Mutational signatures in the discovery cohort. a, 
Identification of mutational signatures at relapse (n = 25 patients). Each bar 
represents an individual patient, with colors corresponding to different 
mutational signatures, as indicated in the legend. The upper panel provides 
patient metadata, including age, batch, tumor location, gender, MSI status, and 
stage. b, Comparative distribution of mutational signatures between plasma 

at both baseline and relapse (n = 12 patients). The distribution of mutational 
signatures at both time points is displayed, allowing visualization of changes 
in signature composition over time. Each bar represents an individual patient, 
with colors corresponding to different mutational signatures, as indicated in the 
legend. The upper panel provides patient metadata, including age, batch, tumor 
location, gender, MSI status, and stage.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Evaluation of TMB. a, TMB comparison between tissue 
samples at baseline and relapse in the discovery cohort (n = 17; two-sided 
Wilcoxon test; p-value = 0.7910). The minimum values are the smallest number 
of TMB of the cohort. The first quartile above the whiskers represents the data 
point that separates the lowest 25% of the data from the rest. The center line per 
box plot represents the median value among the data points. The third quartile 
just on top of the box plot separates the lowest 75% of the data points from the 
highest 25%. The maximum value represents the highest TMB of the cohort. 
b, TMB comparison between plasma samples at both baseline and relapse in 
the discovery cohort (n = 12; two-sided Wilcoxon test; p-value = 0.9632). The 
minimum values are the smallest number of TMB of the cohort. The first quartile 
above the whiskers represents the data point that separates the lowest 25% of 
the data from the rest. The center line per box plot represents the median value 
among the data points. The third quartile just on top of the box plot separates 
the lowest 75% of the data points from the highest 25%. The maximum value 

represents the highest TMB of the cohort. c, TMB comparison between plasma 
samples at both baseline and relapse in the validation cohort (n = 15; two-sided 
Wilcoxon test; p-value = 0.1070). Each patient is individually compared across 
different stages. The minimum values are the smallest number of TMB of the 
cohort. The first quartile above the whiskers represents the data point that 
separates the lowest 25% of the data from the rest. The center line per box plot 
represents the median value among the data points. The third quartile just on 
top of the box plot separates the lowest 75% of the data points from the highest 
25%. The maximum value represents the highest TMB of the cohort. d, Spearman 
correlation (two-sided) analysis between TMB and dN/dS in primary tissue  
(blue; n = 25; p-value = 0.0785) and relapse (red; n = 17; p-value = 0.0199) within 
the discovery cohort. P-values and rho scores are reported for each case. The line 
represents the fitted relationship between the variables, while the shaded band 
corresponds to the 95% confidence interval around the regression estimate.
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Extended Data Fig. 9 | See next page for caption.

http://www.nature.com/natcancer


Nature Cancer

Article https://doi.org/10.1038/s43018-025-00960-z

Extended Data Fig. 9 | Drug screening in PDOs models. a. Dendrogram derived 
from hierarchical clustering to identify PDOs exhibiting molecular similarity to 
patients within our cohort. b, Landscape of actionable genes identified in each 
selected PDO model and their corresponding CC patient from the discovery 
cohort. c, Heatmap of Log-AUCs illustrating the responsiveness of three PDO 
models to various targeted therapies and conventional chemotherapy agents 
(dark shading indicating a favorable response, clear shading indicating no 
response). The left panel presents the actionable mutations identified in each 

PDO. For every PDO drug sensitivity assay, three biological replicates with 
three technical replicates each, were performed for each condition analyzed. 
d, Logarithmically transformed dose-response curves depicting the viability 
of PDO models (CTO65, CTO119, and CTO147) in response to escalating doses 
of standard chemotherapy agents and targeted therapy drugs. For every PDO 
drug sensitivity assay, three biological replicates with three technical replicates 
each, were performed for each condition analyzed. Data are presented as median 
values +/- standard deviation.
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Extended Data Fig. 10 | Comparison of sequencing statistics between the 
discovery and validation cohorts. a, Sequencing coverage. The minimum values 
are the smallest number of coverage of the cohort. The first quartile above the 
whiskers represents the data point that separates the lowest 25% of the data from 
the rest. The center line per box plot represents the median value among the 
data points. The third quartile just on top of the box plot separates the lowest 
75% of the data points from the highest 25%. The maximum value represents the 
highest coverage of the cohort. Two-sided Wilcoxon test; p-value: WBCs=7.8e-06; 
tissue=0.016; baseline plasma (PLASMA-BL) = 2.0e-05; post-operative plasma 
(PLASMA-PO) = 2.6e-08; relapse plasma (PLASMA) = 2.7e-07. b, Tumor fraction. 
The minimum values are the smallest number of tumor fraction of the cohort. 
The first quartile above the whiskers represents the data point that separates the 
lowest 25% of the data from the rest. The center line per box plot represents the 

median value among the data points. The third quartile just on top of the box plot 
separates the lowest 75% of the data points from the highest 25%. The maximum 
value represents the highest tumor fraction of the cohort. Two-sided Wilcoxon 
test; p-value: baseline plasma (PLASMA-BL) = 0.139; post-operative plasma 
(PLASMA-PO) = 0.014; relapse plasma (PLASMA) = 0.026. c, Tumor mutational 
burden. The minimum values are the smallest number of TMB of the cohort. The 
first quartile above the whiskers represents the data point that separates the 
lowest 25% of the data from the rest. The center line per box plot represents the 
median value among the data points. The third quartile just on top of the box plot 
separates the lowest 75% of the data points from the highest 25%. The maximum 
value represents the highest TMB of the cohort. Two-sided Wilcoxon test; 
p-value: baseline tissue=0.111; baseline plasma=0.318; post-operative plasma 
(PLASMA-PO) = 0.018; relapse plasma=0.074.
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