Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prospects for ferroptosis therapies in cancer

Abstract

Ferroptosis is a nonapoptotic form of cell death characterized by lethal membrane lipid peroxidation. This mechanism was first characterized in cancer cells well over a decade ago, and there is much enthusiasm for the concept that certain cancers may be treated by inducing ferroptosis. However, therapies that engage ferroptosis have yet to enter clinical testing. In this Review, we highlight the gap between our rapidly expanding knowledge of the ferroptosis mechanism and its translation into cancer therapies. We discuss the known challenges that may be slowing ferroptosis therapies from reaching the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell-autonomous and cell-nonautonomous mechanisms of ferroptosis regulation in cancer cells.
Fig. 2: Antitumorigenic and protumorigenic immune effects of ferroptosis in the TME.
Fig. 3: Hypothetical model of the factors influencing tumor ferroptosis sensitivity over time.

Similar content being viewed by others

References

  1. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang, Y. et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol. 26, 623–633 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berndt, C. et al. Ferroptosis in health and disease. Redox Biol. 75, 103211 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Helberg, J. & Pratt, D. A. Autoxidation vs. antioxidants—the fight for forever. Chem. Soc. Rev. 50, 7343–7358 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Li, Z., Lange, M., Dixon, S. J. & Olzmann, J. A. Lipid quality control and ferroptosis: from concept to mechanism. Annu. Rev. Biochem. 93, 499–528 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sassano, M. L. et al. Endoplasmic reticulum–mitochondria contacts are prime hotspots of phospholipid peroxidation driving ferroptosis. Nat. Cell Biol. 27, 902–917 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cañeque, T. et al. Activation of lysosomal iron triggers ferroptosis in cancer. Nature 642, 492–500 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420–432 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. von Krusenstiern, A. N. et al. Identification of essential sites of lipid peroxidation in ferroptosis. Nat. Chem. Biol. 19, 719–730 (2023).

    Article  Google Scholar 

  11. Magtanong, L. et al. Context-dependent regulation of ferroptosis sensitivity. Cell Chem. Biol. 29, 1409–1418 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Hirata, Y. et al. Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Curr. Biol. 33, 1282–1294 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Dai, E., Meng, L., Kang, R., Wang, X. & Tang, D. ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem. Biophys. Res. Commun. 522, 415–421 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Pedrera, L. et al. Ferroptotic pores induce Ca2+ fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ. 28, 1644–1657 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, Y. et al. Caveolae sense oxidative stress through membrane lipid peroxidation and cytosolic release of CAVIN1 to regulate NRF2. Dev. Cell 58, 376–397 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298–308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liang, D. et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186, 2748–2764 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodencal, J. et al. Sensitization of cancer cells to ferroptosis coincident with cell cycle arrest. Cell Chem. Biol. 31, 234–248 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Tesfay, L. et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res. 79, 5355–5366 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Puente-Cobacho, B. et al. De novo lipogenesis protects dormant breast cancer cells from ferroptosis and promotes metastasis. Redox Biol. 80, 103480 (2025).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eaton, J. K. et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat. Chem. Biol. 16, 497–506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Randolph, J. T. et al. Discovery of a potent chloroacetamide GPX4 inhibitor with bioavailability to enable target engagement in mice, a potential tool compound for inducing ferroptosis in vivo. J. Med. Chem. 66, 3852–3865 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Mishima, E. et al. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature 619, E9–E18 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Mao, C. et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586–590 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, Z. et al. Hydropersulfides inhibit lipid peroxidation and protect cells from ferroptosis. J. Am. Chem. Soc. 144, 15825–15837 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Kraft, V. A. N. et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Calhoon, D. et al. Glycosaminoglycan-driven lipoprotein uptake protects tumours from ferroptosis. Nature https://doi.org/10.1038/s41586-025-09162-0 (2025).

    Article  PubMed  Google Scholar 

  36. Freitas, F. P. et al. 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Nature 626, 401–410 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, Y. et al. 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature 626, 411–418 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rademaker, G. et al. PCSK9 drives sterol-dependent metastatic organ choice in pancreatic cancer. Nature https://doi.org/10.1038/s41586-025-09017-8 (2025).

    Article  PubMed  Google Scholar 

  40. Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leu, J. I., Murphy, M. E. & George, D. L. Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proc. Natl Acad. Sci. USA 116, 8390–8396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barayeu, U. et al. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nat. Chem. Biol. 19, 28–37 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Kang, Y. P. et al. Non-canonical glutamate–cysteine ligase activity protects against ferroptosis. Cell Metab. 33, 174–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, J. & Conrad, M. Ferroptosis: when metabolism meets cell death. Physiol. Rev. 105, 651–706 (2025).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, J.-S. et al. ALDH7A1 protects against ferroptosis by generating membrane NADH and regulating FSP1. Cell 188, 2569–2585 (2025).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, L. et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat. Metab. 1, 404–415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsoi, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 33, 890–904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schwab, A. et al. Zeb1 mediates EMT/plasticity-associated ferroptosis sensitivity in cancer cells by regulating lipogenic enzyme expression and phospholipid composition. Nat. Cell Biol. 26, 1470–1481 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Banu, M. A. et al. A cell state-specific metabolic vulnerability to GPX4-dependent ferroptosis in glioblastoma. EMBO J. 43, 4492–4521 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bebber, C. M. et al. Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes. Nat. Commun. 12, 2048 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Herrera-Abreu, M. T. et al. Inhibition of GPX4 enhances CDK4/6 inhibitor and endocrine therapy activity in breast cancer. Nat. Commun. 15, 9550 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kalkavan, H. et al. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 185, 3356–3374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Riegman, M. et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat. Cell Biol. 22, 1042–1048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Co, H. K. C., Wu, C.-C., Lee, Y.-C. & Chen, S.-H. Emergence of large-scale cell death through ferroptotic trigger waves. Nature 631, 654–662 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, Q. et al. PAFAH2 suppresses synchronized ferroptosis to ameliorate acute kidney injury. Nat. Chem. Biol. 20, 835–846 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Roeck, B. F. et al. Ferroptosis spreads to neighboring cells via plasma membrane contacts. Nat. Commun. 16, 2951 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu, J. et al. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature 572, 402–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ackermann, T. et al. Breast cancer secretes anti-ferroptotic MUFAs and depends on selenoprotein synthesis for metastasis. EMBO Mol. Med. 16, 2749–2774 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bell, H. N., Stockwell, B. R. & Zou, W. Ironing out the role of ferroptosis in immunity. Immunity 57, 941–956 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ramakrishnan, R. et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J. Immunol. 192, 2920–2931 (2014).

    Article  PubMed  Google Scholar 

  63. Wiernicki, B. et al. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat. Commun. 13, 3676 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, W. et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, R. et al. Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612, 338–346 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yee, P. P. et al. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat. Commun. 11, 5424 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhao, Y. et al. Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate decarboxylase 1. Cell Metab. 35, 1688–1703 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin, H. et al. Itaconate transporter SLC13A3 impairs tumor immunity via endowing ferroptosis resistance. Cancer Cell 42, 2032–2044 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Drijvers, J. M. et al. Pharmacologic screening identifies metabolic vulnerabilities of CD8+ T cells. Cancer Immunol. Res. 9, 184–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212, 555–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Muri, J., Thut, H., Bornkamm, G. W. & Kopf, M. B1 and marginal zone B cells but not follicular B2 cells require Gpx4 to prevent lipid peroxidation and ferroptosis. Cell Rep. 29, 2731–2744 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, R., Taylor, D., Vonderheide, R. H. & Gabrilovich, D. I. Ferroptosis of immune cells in the tumor microenvironment. Trends Pharmacol. Sci. 44, 542–552 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Morgan, P. K. et al. A lipid atlas of human and mouse immune cells provides insights into ferroptosis susceptibility. Nat. Cell Biol. 26, 645–659 (2024).

    Article  CAS  PubMed  Google Scholar 

  75. Timmerman, L. A. et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24, 450–465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Arensman, M. D. et al. Cystine–glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity. Proc. Natl Acad. Sci. USA 116, 9533–9542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dixon, S. J. et al. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yan, R. et al. The structure of erastin-bound xCT–4F2hc complex reveals molecular mechanisms underlying erastin-induced ferroptosis. Cell Res. 32, 687–690 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen, Z. et al. PRDX6 contributes to selenocysteine metabolism and ferroptosis resistance. Mol. Cell 84, 4645–4659 (2024).

    Article  CAS  PubMed  Google Scholar 

  80. Ito, J. et al. PRDX6 dictates ferroptosis sensitivity by directing cellular selenium utilization. Mol. Cell 84, 4629–4644 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. Cramer, S. L. et al. Systemic depletion of l-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, L. et al. Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proc. Natl Acad. Sci. USA 119, e2122840119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zheng, H. et al. Targeted activation of ferroptosis in colorectal cancer via LGR4 targeting overcomes acquired drug resistance. Nat. Cancer 5, 572–589 (2024).

    Article  CAS  PubMed  Google Scholar 

  84. Armenta, D. A. et al. Ferroptosis inhibition by lysosome-dependent catabolism of extracellular protein. Cell Chem. Biol. 29, 1588–1600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moosmayer, D. et al. Crystal structures of the selenoprotein glutathione peroxidase 4 in its apo form and in complex with the covalently bound inhibitor ML162. Acta Crystallogr. D Struct. Biol. 77, 237–248 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu, H. et al. Small-molecule allosteric inhibitors of GPX4. Cell Chem. Biol. 29, 1680–1693 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cheff, D. M. et al. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 62, 102703 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gao, J. et al. Selenium-encoded isotopic signature targeted profiling. ACS Cent. Sci. 4, 960–970 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, M.-E. et al. RB1-deficient prostate tumor growth and metastasis are vulnerable to ferroptosis induction via the E2F/ACSL4 axis. J. Clin. Invest. 133, e166647 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Luo, T. et al. Intracellular delivery of glutathione peroxidase degrader induces ferroptosis in vivo. Angew. Chem. Int. Ed. Engl. 61, e202206277 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Nguyen, K.-A., Conilh, L., Falson, P., Dumontet, C. & Boumendjel, A. The first ADC bearing the ferroptosis inducer RSL3 as a payload with conservation of the fragile electrophilic warhead. Eur. J. Med. Chem. 244, 114863 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Bailey, H. H. l-S,R-buthionine sulfoximine: historical development and clinical issues. Chem. Biol. Interact. 111112, 239–254 (1998).

    Article  PubMed  Google Scholar 

  93. Xavier da Silva, T. N., Schulte, C., Alves, A. N., Maric, H. M. & Friedmann Angeli, J. P. Molecular characterization of AIFM2/FSP1 inhibition by iFSP1-like molecules. Cell Death Dis. 14, 281 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nakamura, T. et al. Integrated chemical and genetic screens unveil FSP1 mechanisms of ferroptosis regulation. Nat. Struct. Mol. Biol. 30, 1806–1815 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheu, J. W.-S. et al. Ferroptosis suppressor protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer. Cell. Mol. Gastroenterol. Hepatol. 16, 133–159 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nakamura, T. et al. Phase separation of FSP1 promotes ferroptosis. Nature 619, 371–377 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hendricks, J. M. et al. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis. Cell Chem. Biol. 30, 1090–1103 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, S. et al. Cocrystal structure reveals the mechanism of FSP1 inhibition by FSEN1. Proc. Natl Acad. Sci. USA 122, e2505197122 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mei, J., Webb, S., Zhang, B. & Shu, H.-B. The p53-inducible apoptotic protein AMID is not required for normal development and tumor suppression. Oncogene 25, 849–856 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Hassannia, B. et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest. 128, 3341–3355 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bruedigam, C. et al. Imetelstat-mediated alterations in fatty acid metabolism to induce ferroptosis as a therapeutic strategy for acute myeloid leukemia. Nat. Cancer 5, 47–65 (2024).

    Article  CAS  PubMed  Google Scholar 

  102. Robe, P. A. et al. Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of sulfasalazine for the treatment of progressing malignant gliomas in adults. BMC Cancer 9, 372 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bartolacci, C. et al. Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer. Nat. Commun. 13, 4327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Llabani, E. et al. Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis. Nat. Chem. 11, 521–532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977–985 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jiang, X. et al. Exogenous dihomo-γ-linolenic acid triggers ferroptosis via ACSL4-mediated lipid metabolic reprogramming in acute myeloid leukemia cells. Transl. Oncol. 52, 102227 (2025).

    Article  CAS  PubMed  Google Scholar 

  107. Perez, M. A., Magtanong, L., Dixon, S. J. & Watts, J. L. Dietary lipids induce ferroptosis in Caenorhabditiselegans and human cancer cells. Dev. Cell 54, 447–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Beatty, A. et al. Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nat. Commun. 12, 2244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Upadhyayula, P. S. et al. Dietary restriction of cysteine and methionine sensitizes gliomas to ferroptosis and induces alterations in energetic metabolism. Nat. Commun. 14, 1187 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xue, Y. et al. Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade. Nat. Commun. 14, 4758 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gao, Y. et al. CAR T cells engineered to secrete IFNκ induce tumor ferroptosis via an IFNAR/STAT1/ACSL4 axis. Cancer Immunol. Res. 12, 1691–1702 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pinnix, Z. K. et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl. Med. 2, 43ra56 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wang, Y. et al. ACSL4 and polyunsaturated lipids support metastatic extravasation and colonization. Cell 188, 412–429 (2025).

    Article  CAS  PubMed  Google Scholar 

  114. Harris, I. S. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27, 211–222 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, K. et al. Reactivation of MAPK–SOX2 pathway confers ferroptosis sensitivity in KRASG12C inhibitor resistant tumors. Redox Biol. 78, 103419 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zhang, S. et al. TCP1 expression alters the ferroptosis sensitivity of diffuse large B-cell lymphoma subtypes by stabilising ACSL4 and influences patient prognosis. Cell Death Dis. 15, 611 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Song, X., Zhang, W., Yu, N. & Zhong, X. PAQR3 facilitates the ferroptosis of diffuse large B-cell lymphoma via the regulation of LDLR-mediated PI3K/AKT pathway. Hematol. Oncol. 42, e3219 (2024).

    Article  CAS  PubMed  Google Scholar 

  119. Floros, K. V. et al. MYCN-amplified neuroblastoma is addicted to iron and vulnerable to inhibition of the system Xc/glutathione axis. Cancer Res. 81, 1896–1908 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lu, Y. et al. MYCN mediates TFRC-dependent ferroptosis and reveals vulnerabilities in neuroblastoma. Cell Death Dis. 12, 511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Alborzinia, H. et al. MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. Nat. Cancer 3, 471–485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Alborzinia, H. et al. LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol. Med. 15, e18014 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, Z. et al. Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. Nat. Chem. Biol. 18, 751–761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Koppula, P. et al. A targetable CoQ–FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat. Commun. 13, 2206 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Padanad, M. S. et al. Fatty acid oxidation mediated by acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep. 16, 1614–1628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Luo, Z. et al. HMGA2 alleviates ferroptosis by promoting GPX4 expression in pancreatic cancer cells. Cell Death Dis. 15, 220 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schonberg, D. L. et al. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell 28, 441–455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Calzolari, A. et al. Transferrin receptor 2 is frequently and highly expressed in glioblastomas. Transl. Oncol. 3, 123–134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Jiang, Y., Yu, Y., Pan, Z., Glandorff, C. & Sun, M. Ferroptosis: a new hunter of hepatocellular carcinoma. Cell Death Discov. 10, 136 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Greene, C. J. et al. Suppressive effects of iron chelation in clear cell renal cell carcinoma and their dependency on VHL inactivation. Free Radic. Biol. Med. 133, 295–309 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Priolo, C. et al. Impairment of gamma-glutamyl transferase 1 activity in the metabolic pathogenesis of chromophobe renal cell carcinoma. Proc. Natl Acad. Sci. USA 115, E6274–E6282 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science 368, eaaw5473 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article  PubMed  Google Scholar 

  134. Sokol, K. H. et al. Lipid availability influences ferroptosis sensitivity in cancer cells by regulating polyunsaturated fatty acid trafficking. Cell Chem. Biol. 32, 408–422 (2025).

    Article  CAS  PubMed  Google Scholar 

  135. Zhuang, X. et al. Ageing limits stemness and tumorigenesis by reprogramming iron homeostasis. Nature 637, 184–194 (2025).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, F. et al. PALP: a rapid imaging technique for stratifying ferroptosis sensitivity in normal and tumor tissues in situ. Cell Chem. Biol. 29, 157–170 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Cui, S. et al. Identification of hyperoxidized PRDX3 as a ferroptosis marker reveals ferroptotic damage in chronic liver diseases. Mol. Cell 83, 3931–3939 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Feng, H. et al. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 30, 3411–3423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Morotti, M. et al. PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function. Nature 629, 426–434 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lang, X. et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9, 1673–1685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ye, L. F. et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol. 15, 469–484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Adjemian, S. et al. Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. Cell Death Dis. 11, 1003 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lei, G. et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30, 146–162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, W. et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165, 1092–1105 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mullen, N. J. et al. DHODH inhibition enhances the efficacy of immune checkpoint blockade by increasing cancer cell antigen presentation. eLife 12, RP87292 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chen, T. et al. Discovery of novel potent covalent glutathione peroxidase 4 inhibitors as highly selective ferroptosis inducers for the treatment of triple-negative breast cancer. J. Med. Chem. 66, 10036–10059 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Li, J. et al. Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer. Sci. Transl. Med. 15, eadg3049 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Xu, S. et al. Discovery of an orally active small-molecule irreversible inhibitor of protein disulfide isomerase for ovarian cancer treatment. Proc. Natl Acad. Sci. USA 109, 16348–16353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Eaton, J. K., Ruberto, R. A., Kramm, A., Viswanathan, V. S. & Schreiber, S. L. Diacylfuroxans are masked nitrile oxides that inhibit GPX4 covalently. J. Am. Chem. Soc. 141, 20407–20415 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Griffith, O. W. & Meister, A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem. 254, 7558–7560 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Chaufan, M. Cheah, C. Fraser, A. Gautam, A. Joseph, M. Kaur, S. Manukian, M. Murray and M. Sabatier for their comments on this work. This work was supported by the National Institutes of Health (CA282202 to J.M.U., GM122923 to S.J.D.), the Department of Defense (HT94252310765 to J.M.U.), Find the Cause Breast Cancer Foundation (J.M.U.) and the Ludwig Cancer Center at Harvard (J.M.U.).

Author information

Authors and Affiliations

Authors

Contributions

J.M.U. and S.J.D. wrote the manuscript.

Corresponding authors

Correspondence to Jessalyn M. Ubellacker or Scott J. Dixon.

Ethics declarations

Competing interests

J.M.U. declares no competing interests. S.J.D. holds patents related to ferroptosis.

Peer review

Peer review information

Nature Cancer thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ubellacker, J.M., Dixon, S.J. Prospects for ferroptosis therapies in cancer. Nat Cancer 6, 1326–1336 (2025). https://doi.org/10.1038/s43018-025-01037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43018-025-01037-7

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer