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The tumor microenvironment evolves during tumor development and

influences the cells in the microenvironment to orchestrate a supportive
environment for tumor growth. Here we collected 4,483,367 cells across 36
cancer types and constructed a pan-cancer resource named TabulaTIME.
Ourintegrated analyses reveal that CTHRCI is a hallmark of extracellular
matrix-related cancer-associated fibroblasts (CAFs) that are enriched in
different cancer types. Spatiotemporal analyses further indicated that
CTHRCI' CAFs arelocated at the leading edge between the malignant and
normal regions, potentially preventing immune infiltration. Moreover,

we identified that SLPI" macrophages exhibit profibrotic-associated
phenotypes and colocalize with CTHRCI® CAFs to form unique spatial
ecotypes. Finally, we demonstrated that TabulaTIME can be used to analyze
tumor ecotype composition and can serve as areference for cell-type
annotation. This work establishes acomprehensive single-cell landscape
of the heterogenous TME and offers a potential therapeutic strategy for
targeting the profibrotic ecotypein cancer treatment.

Cancer development is a multistep process during which cancerous
cellsacquire the ability to overcome limitations in replicative potential
and evade immune destruction'?. Meanwhile, noncancerous cells, such
asstromal cells, are gradually reprogrammed to support tumor growth.
The organ in which the tumor arises, with its unique tissue-resident
cell types, creates substantial diversities in the tumor microenviron-
ment (TME)® and shapes distinct clinical properties of tumors, such
as molecular subtypes, invasion abilities and response to targeted or
immunotherapy* °. Recent advances in single-cell RNA sequencing
(scRNA-seq) and spatial transcriptomics (ST) have served as powerful
tools for exploring the diversity of the TME. However, it remains unclear
whether phenotypic-related cell types are universally present in dif-
ferent cancer types and stages. Moreover, the interactions between
different cell types that form specific ecotypes within the TME are not

well understood. Therefore, investigating the dynamics of TME com-
positions and intercellular interactions fromapan-cancer perspective
is critical for elucidating the pathogenesis of cancer and represents a
promising therapeutic target.

The increasing accumulation of scRNA-seq datasets in the pub-
lic domain allows for the integration of datasets from a pan-cancer
perspective, which helps to identify common or cancer-type-specific
mechanisms of the TME. Previous studies have constructed separate
landscapes for myeloid cells and T cells, portraying a systematic view
of tumor-infiltrating immune cells and revealing distinct patterns of
cell-type composition between cancer types’ . Inaddition toimmune
cells, stromal cells play important roles in the TME of solid tumors.
Increasing evidence suggests that stromal cells actively regulate
tumor progression and metastasis by remodeling the extracellular
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Fig. 1| Characterization of scRNA-seq data in the pan-cancer TME. a, Schematic
depicting the TabulaTIME framework and its application. TabulaTIME was
applied withinamultiphase workflow, encompassing tumor-related scRNA-seq
datacollection, data preprocessing and MetaCell identification, integration of all
lineages, lineage-specific integration and characterization of cell subtypes; Imm-
reg, immune-regulatory; AP, antigen-presenting; TCA, tricarboxylic acid; NSCLC,
non-small cell lung cancer; HNSC, head and neck squamous cell carcinoma;
KIPAN, pan-kidney cohort; OV, ovarian serous cystadenocarcinoma; ESCA,
esophageal cancer; CRC, colorectal cancer; SKCM, skin cutaneous melanoma;
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PRAD, prostate adenocarcinoma; LIHC, liver hepatocellular carcinoma; UVM,
uveal melanoma. b, Data collection statistics. The numbers of cells (top) and
donors (bottom) collected for each tissue are presented; k indicates x1,000.

¢, Uniform manifold approximation and projection (UMAP) visualization of
allMetacCells, colored by the cell type (top) and source (bottom), respectively.

d, Expression of cell-type-specific markers. Dot size and color represent the
percentage of cells with the gene expressed and the average expression value,
respectively; Mono, monocytes; Macro, macrophages; DC, dendritic cells; T,,,
regulatory T cells; CD4" T, conventional CD4" T cells; T, proliferating T cells.
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matrix (ECM), promoting epithelial-mesenchymal transition (EMT)
and angiogenesis'> . At present, a few studies have delineated the
diversity of fibroblasts in a single or a handful of cancer types. These
studies were constrained by limited cellnumbers, hindering a complete
characterization of the complexity of stromal cell types. Furthermore,
they could not fully analyze the interactions between cell types that
contributed to the heterogeneity of stromal subtypes’®”.

Inthis study, we have collected the largest scale of published solid
tumor-associated scRNA-seq datato date, comprising approximately
4 million cells. Using this extensive dataset, we have constructed a
comprehensive Tabula of TME cells across 36 different cancer types.
We have defined 6 major cell lineages and 56 cell subtypes within the
TME using anintegrated approach. The resulting comprehensive blue-
print of the TME serves as a valuable roadmap for understanding the
complexity of the TME, identifying phenotypic-related cell types and
developing innovative therapeutic strategies that may have broad
applicability across multiple cancer types.

Results
Use of the TabulaTIME framework for integrating large-scale
tumor scRNA-seq data
To characterize the heterogeneous composition and evolution of
the TME during tumor initiation, progression and metastasis across
different cancer types, we present the Tabula of the tumor immune
microenvironment (TabulaTIME) framework. The framework consists
of five major modules: tumor-related scRNA-seq data collection,
data preprocessing and MetaCell identification, integration of all
lineages, lineage-specific integration and characterization of cell
subtypes (Fig. 1a).

First, we collected tumor-related scRNA-seq datasets®* >, consist-
ing of 103 studies covering 36 cancer types, 746 donors and 4,483,367
cells (Fig.1band Supplementary Table1). Second, all collected datasets
were preprocessed using the MAESTRO workflow?, which included
quality control, doublet and batch effect removal®, cell clustering and
cell-type annotation®*” (Extended Data Fig. 1a-h and Supplementary

Tables2-4). Toreduce technical noise and computing resource costs,
TabulaTIME grouped cells with similar expression into MetaCells within
each dataset, with each MetaCell containing approximately 30 cells
(Extended Data Fig.2a-d and Methods)®?. The average log transcripts
per million (TPM)-transformed gene expression of all cells within
each MetaCell was used in downstream analyses. In the following two
modules, TabulaTIME first integrated all MetaCells using canonical cor-
relation analysis (CCA) to evaluate the effectiveness of batch removal
between different cancer types (Fig. 1a, all lineages integration)®. Com-
pared to the batch effect-corrected integration of single-cell profiles,
theintegration using MetaCells demonstrates superior performance,
significantly reducing batch effects while preserving cell-type-specific
biological variation (Extended Data Fig. 2e,f). To improve resolution
for cell-type-specific analyses, TabulaTIME also integrated MetaCells
fromeachlineage (Fig.1a, lineage-specific integration). To mitigate the
risks of overclustering and underclustering, we determined the optimal
clustering resolution based on average silhouette width (ASW) scores
and Clustree and assessed the purity of each annotated subtype using
ROGUE scores® . Finally, TabulaTIME integrated the lineage-specific
pan-cancer maps with other types of cancer data, such as ST and bulk
tumor profiles from The Cancer Genome Atlas (TCGA). This enabled
the analyses of tumor-enriched cell types by quantifying their relative
abundance across different sources, cancer types and spatial localiza-
tion. Furthermore, it facilitated the investigation of cell-type-specific
functions and the estimation of their effects onimmune cell infiltration
and prognosis (Fig. 1a, characterization of cell subtypes). Together,
TabulaTIME is a powerful framework for investigating the cellular
compositions and functional states of the TME with temporary and
spatial resolution.

A pan-cancer single-cell transcriptome blueprint generated by
TabulaTIME

Wethentested the ability of TabulaTIME to integrate tumor scRNA-seq
datasets with millions of cells at scale and diverse sources of batch
effects. Theintegrated pan-cancer landscape includes datasets derived

Fig. 2| Pan-cancer immune cell heterogeneity. a, UMAP visualization of the
distribution of cytotoxic lymphocytes, colored by cell type; MAIT, mucosal-
associated invariant T cell; ISG, interferon-stimulated gene-expressing T cells.

b, Scatter plotillustrating the expression patterns of cytotoxic- and exhaustion-
associated signature genes in cytotoxic lymphocyte subsets across different
sources. ¢, Box plot showing the proportion of distinct cytotoxic lymphocyte
subgroups in each sample type (blood (red), normal tissue (green), precancerous
tissue (orange), tumor tissue (purple) and metastatic tissue (blue)), based on

650 treatment-naive samples. Significance labels in the figure were determined
using Kruskal-Wallis tests to compare distributions of cytotoxic lymphocyte
subgroups across five tissue types. Significance for pairwise source proportions
within each cell type, assessed via two-tailed unpaired Wilcoxon tests, is reported
inSupplementary Table 6. The open rectangle annotates the comparative scope,
with Benjamini-Hochberg (BH) correction for multiple testing. The bottom of
the box represents the first quartile (Q1), and the top of the box represents the
third quartile (Q3). The height of the box represents the interquartile range (IQR),
whereas the horizontal line inside the box indicates the median. The whiskers
extend to the positions of Q1 - 1.5 x IQR and Q3 + 1.5 x IQR. d, A similar UMAP plot
asinawasapplied to myeloid cells; pDC, plasmacytoid dendritic cells; cDC1, type
1conventional dendritic cells; cDC2, type 2 conventional dendritic cells. e, Heat
map showing different expression patterns of function-associated signature
genes among monocyte and macrophage subsets. f, Box plot showing the
proportions of distinct monocyte and macrophage subgroups across different
sources, including blood (red), normal tissue (green), precancerous tissue
(orange), tumor tissue (purple) and metastatic tissue (blue), derived from 687
treatment-naive individuals. Significance labels in the figure were determined

by Kruskal-Wallis tests to compare each subgroup distribution among five

tissue types. Significance for pairwise source proportions within each cell type,
assessed via two-tailed unpaired Wilcoxon tests, is reported in Supplementary
Table 6. The open rectangle annotates the comparative scope, with BH correction

for multiple testing. The bottom of the box represents Q1, and the top of the box
represents Q3. The height of the box represents the IQR, whereas the horizontal
lineinside the box indicates the median. The whiskers extend to the positions of
Q1-1.5xIQRand Q3 +1.5 xIQR. g, Heat map showing the proportion of different
myeloid cell types in various cancer types or healthy tissues. For rows, a bar plot
illustrates the number of MetaCells (in log,, scale) and the origin of cancer cells
labeled by the different colors; PBMC, peripheral blood mononuclear cells; SCC,
squamous cell carcinoma; UCEC, uterine corpus endometrial carcinoma; STAD,
stomach adenocarcinoma; CHOL, cholangiocarcinoma; THCA, thyroid cancer;
CESC, cervical squamous cell carcinomaand endocervical adenocarcinoma;
BRCA, breast invasive carcinoma; PAAD, pancreatic adenocarcinoma; GIST,
gastrointestinal stromal tumors; OS, osteosarcoma; BCC, basal cell carcinoma;
SCLC, small celllung cancer. h, Left, heat map showing Jaccard similarity indices
for comparisons among 3,751 robust NMF programs based on the top 50 genes
within the monocyte and macrophage cell populations. Programs are ordered
by clustering and grouped into families of MPs with related functions (marked
by black dashed lines); MP families are numbered and labeled. Right, list of all MP
names separated into MP families; IFNy, interferon-y. i, Box plotillustrating the
signature scores of MPs calculated across distinct monocyte and macrophage
subtypes, derived from 797 samples, with MPs color coded according to their
functional annotations. The bottom of the box represents Q1, and the top of

the box represents Q3. The height of the box represents the IQR, whereas the
horizontalline inside the box indicates the median. The whiskers extend to the
positions of Q1 - 1.5 x IQRand Q3 + 1.5 x IQR. j, Pseudotime-ordered analysis of
monocyte and macrophage MetaCells, colored by cell type. k, Kaplan-Meier
plots show worse clinical outcomes in 184 individuals with ESCA and 459
individuals with SKCM with higher expression of SLPI" macrophage signature
genes; +, censored observations. Statistical significance was evaluated using a
log-rank test, yielding P values of 0.014 for ESCA and 0.0001 for SKCM.
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from adjacent normal tissue, precancerous tissue, primary tumor,
metastatic tumor and peripheral blood mononuclear cell samples of
22 different tissues (Fig. 1b). Additionally, 16 tumor scRNA-seq datasets
were obtained fromindividuals treated with various strategies, includ-
ing PD-1/PD-L1-based immunotherapy, chemotherapy, targeted therapy
and combined therapies (Extended Data Fig. 2g and Supplementary

Table1). For the pan-cancer datasets, atotal of 140,072 MetaCells were
generated, and batch effects were further corrected using CCA (Fig. 1c
and Extended Data Fig. 2h). Interestingly, immune and stromal cells
were separated into distinct clusters, which were annotated as seven
major cell lineages, including cytotoxic lymphocytes (CD8" T, natu-
ral killer (NK) and proliferating T cells), conventional and regulatory
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Fig. 3| CTHRCI' fibroblasts are broadly present in tumor datasets and highly
express ECM-remodeling-associated genes. a, UMAP visualization of fibroblast
MetaCell distribution, colored by cell type. b, Dot plot depicting the expression of
representative signature genes of each fibroblast cell type. ¢, Scatter plot showing
ECM remodeling, immunoregulatory and antigen-presenting signature scores

for each fibroblast subset; Imm-Reg, immune-regulatory. d, Box plot showing

the proportion of each fibroblast cell type in different source-derived samples
(normal, precancerous, tumor and metastatic tissue) from 338 treatment-naive
samples. Significance labels in the figure were assessed via Kruskal-Wallis tests

to compare each cell type distribution among four tissue types. Significance

for pairwise source proportions within each cell type, assessed via two-tailed
unpaired Wilcoxon tests, is reported in Supplementary Table 6. The open
rectangle annotates the comparative scope, with BH correction for multiple
testing. The bottom of the box represents Q1, and the top of the box represents

Q3. The height of the box represents the IQR, whereas the horizontal line inside
the box indicates the median. The whiskers extend to positions of Q1 - 1.5 x IQR
and Q3 + 1.5 xIQR. e, Heat map showing the proportion of different fibroblast cell
types in various cancer types or healthy tissues. For rows, a bar plot illustrates

the number of miniclusters (in log,, scale) and the origin of cancer cells [abeled
by the different colors. f, Heat map displaying the enriched pathways for each
fibroblast subset. Enrichment was calculated using hypergeometric distribution
statistics, with Pvalues adjusted by the BH method; FDR, false discovery rate.

g, Violin plot showing the glycosaminoglycan biosynthesis pathway and the average
metabolic pathway GSVA score for each fibroblast subset across 379 samples.

h, Kaplan-Meier plots demonstrate the clinicalimpact of eFibro_CTHRCl cells in
533 individuals with KIRC and 405 individuals with BLCA, comparing low and high
signature scores; +, censored observations. Statistical significance was assessed
viathelog-rank test, with Pvalues of 0.00523 for KIRC and 0.00568 for BLCA.
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Fig. 4| CTHRCI' fibroblasts are located at the leading edge from nontumor
to tumor regions. a, Left, hematoxylin and eosin staining of a tissue section
from participant HCC-IL. Middle, distribution of normal, tumor and transition
regions in participant HCC-1L (images reproduced with permission fromref. 39,
AAAS). Right, spatial feature plot of the eFibro_CTHRC1 signature score; scale
bars, 100 um. b, Correlation between the eFibro_CTHRCl1 signature score and
the distance between spots and malignant cells in all ST samples. Correlations
were calculated using Pearson correlation coefficients. Resulting Pvalues were
adjusted for multiple comparisons via the BH method. The significant negative
correlation represents the CTHRCI" fibroblasts surrounding malignant cells in
the ST samples; PLC, pulmonary lymphangitic carcinomatosis. ¢, Scatter plots
showing the correlation between the distance to malignant cells (x axis) and
the signature score of eFibro_CTHRC1 (y axis) in tissue sections. The correlation
was calculated using Pearson correlation coefficients. The color represents

the proportion of fibroblastsin each spot. The error band indicates the 95%
confidence interval, whichis calculated based on the standard error using the
normal distribution. The center measure of the smooth line corresponds to the
predicted values from the linear regression model. d, IHC staining to validate the

distribution of eFibro_CTHRC1 cells; scale bars, 100 um; PanCK, pan-cytokeratin.
e, Box plot showing the correlation between inferred inducers of CTHRCI*
fibroblasts and the CTHRCI' fibroblast signature score. The red box represents
data calculated from 62 ST samples, whereas the green box is derived from

9,460 samples across 23 cancer types in the TCGA project. The bottom of each
boxindicates Q1, and the top represents Q3. The height of the box reflects the
IQR, and the horizontal line inside the box indicates the median. The whiskers
extend to the positions of Q1 - 1.5 x IQR and Q3 + 1.5 x IQR. f, Comparison of the
relative intensity (each row shared a color scale, whereas different rows did not)
ofimmune cell-type scores between the normal and tumor regions of ST slides,
focusing on the ST samples with eFibro_CTHRC1 cells surrounding tumor cells.
g, Bubble heat map showing the interaction strength of gene pairs between
fibroblasts and immune cells. Colors in the bubble plot are proportional to the
communication probability. Significant interactions are identified on the basis
of astatistical test that randomly permutes the group labels of cells and then
recalculates the interaction probability. h, Inferred LGALS9 and CD44 interaction
between CD4" T cells and fibroblasts; Tfh, follicular helper T cell.

lymphocytes (CD4" T, and T, cells, respectively), Blymphocytes (B
cells and plasma cells), myeloid cells (monocytes/macrophages, den-
dritic cellsand mast cells), fibroblasts (fibroblasts and myofibroblasts),
endothelial cells and epithelial-like cells (epithelial, malignant and
tissue-specific; Fig. 1c,d). Considering the diverse molecular features
of epithelial, malignant and tissue-specific cells, TabulaTIME mainly
analyzed theimmune and stromal compartments of the TME in the fol-
lowing analyses. The batches from different sample sources and cancer
types were well mixed, and the annotated labels were highly consistent
with the originallabels, even at the minor cell lineage scale, indicating
the efficient integration of millions of cells using our strategy.

TabulaTIME reveals common characteristics of pan-cancer
lymphocytes

To understand the heterogeneity of pan-cancer immune cells at a
higher resolution, we separately integrated and reanalyzed each line-
age. A total of ten cytotoxic lymphocyte subtypes were identified,
eachlabeled by its functional characteristics and marker gene (Fig. 2a).
Signature enrichment analyses suggested that three NK subtypes and
GZMB' effector memory CD8" T cells (CD8Temra_GZMB) had higher
cytotoxic scores, whereas exhausted CD8* T cells (CD8Tex_ HAVCR2)
showed the highest exhaustion scores and naive CD8' T cells (CD8Tn_
CCR?7) displayed the lowest cytotoxic and exhaustion scores, consistent
with their phenotypes, respectively (Fig. 2b, Extended Data Fig.3a and
Supplementary Table 5). Interestingly, GZMK" effector memory CD8"
T cells (CD8Tem_GZMK) were significantly enriched in precancerous
tumor samples and were more prevalent than cytotoxic NK cells across
different cancer types, indicating stronger T cell-mediated antitumor
immunity (Fig. 2c, Extended DataFig.3b and Supplementary Table 6).
By contrast, blood and normal samples were enriched with naive CD8*
T cells (CD8Tn_CCR7; Fig. 2c). Additionally, TabulaTIME resolved
ten subtypes of conventional and regulatory lymphocytes and six B
lymphocyte subtypes (Extended Data Fig. 3c-h and Supplementary

Table 6). Overall, TabulaTIME revealed shared characteristics of
pan-cancer lymphocytes that were highly consistent with their cor-
responding sources and functional phenotypes®.

Divergent trajectories of myeloid cells with inflammatory and
fibrotic functions

We proceeded to investigate the characteristics of myeloid cells and
identified 12 subtypes (Fig. 2d and Extended Data Fig. 4a-d). Monocytes
and macrophages were categorized into two groups of monocytes
(classical Mono_FCNI and nonclassical Mono_CD16) and six groups
of macrophages. Interestingly, traditional M1/M2 signatures cannot
clearly distinguish the macrophage subtypes within the TME, indicating
ahighlevel of plasticity and heterogeneity among macrophages (Fig. 2e
and Supplementary Table 5). Consistent with previous studies, phago-
cytic Macro_C1QC and anti-inflammatory/angiogenic Macro_THBS1
signatures were highly enriched in precancerous and tumor samples,
suggesting that they are potential tumor-associated macrophages
(TAMs) regulating tumor immunity’ (Fig. 2e—g and Supplementary
Table 6). Intriguingly, TablulaTIME identified a profibrotic TAM subtype
(Macro_SLPI) thatwas enriched inasubset of tumors, such as basal cell
carcinoma and cholangiocarcinoma (Fig. 2f,g). We postulate that the
Macro_SLPI signature evinces a diminished phagocytic and inflam-
matory capacity, yet exhibits a markedly elevated ECM remodeling
capability based on the enrichment of known macrophage-associated
signatures (Fig. 2e).

To investigate the potential mechanisms of TAM plasticity, we
applied non-negative matrix factorization (NMF) to monocytes and
macrophages and identified 3,751 robust expression programs (Fig. 2h
and Methods). By comparing the NMF programs, we defined the con-
sensus programs as meta-programs (MPs) based on their shared genes.
As expected, the profibrotic subtype Macro_SLPI exhibited the highest
program scores for EMT and focal adhesion, similar to wound healing
and profibrotic macrophages in lung fibrosis and coronavirus disease

Fig. 5| Colocalization of CTHRCI' fibroblasts and SLPI' macrophages across
cancer types. a, Spatial feature plots showing the spatial localization of eFibro_
CTHRC1 and Macro_SLPI cells in two pancreatic adenocarcinoma ST datasets.

b, Dot plot showing the correlation between the signature scores of eFibro_
CTHRCI (xaxis) and Macro_SLPI (y axis) cells in ST data, with color indicating
the proportion of fibroblasts in each spot. The correlation was calculated using
the Pearson correlation coefficient. The error band denotes the 95% confidence
interval, which was calculated based on the standard error using the normal
distribution. The center measure of the smooth line corresponds to the predicted
values from the linear regression model. ¢, Scatter plots showing the correlation
between the signature score of eFibro_CTHRC1 cells and all monocytes and
macrophages in tissue sections, with color representing the proportion of

fibroblasts in each spot and error bands indicating the 95% confidence interval.
d, Immunofluorescence images showing the localization of Macro_SLPland
Macro_SPP1cell types (DAPI, CD68, SLPI and SPP1) and eFibro_CTHRCl1 cell types
(DAPIand CTHRC1) in HNSC and NSCLC samples; scale bars, 50 pm. e, Genes
inferred to encode the top 20 ligands separately regulate eFibro_CTHRCl cells
and SLPI' macrophages according to NicheNet. Ligands are ranked by Pearson
correlation (left). The heat maps show the expression of ligands mentioned
onthe left across major cell types (middle) and the top 20 ligands inferred to
regulate SLPI' macrophages (right). f, Cartoon depicting the general distribution
of eFibro_CTHRC1 and Macro_SLPI populations in tumors, as well as the function.
Image created with BioRender.com, with permission.
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Fig. 6 | Heterogeneity of endothelial cells. a, UMAP visualization displaying
the distribution of endothelial MetaCells, colored by cell type; venEndo, venous
endothelial; lymEndo, lymphatic endothelial. b, Box plot depicting the ECM
signature score for each endothelial cell type, calculated from 367 samples.
The bottom of the box represents Q1, and the top of the box represents Q3. The
height of the box represents the IQR, whereas the horizontal line inside the box
indicates the median. The whiskers extend to the positions of Q1 - 1.5 x IQR and
Q3 +1.5xIQR.c, Violin plot showing the expression of representative marker
genes for each endothelial cell type. d, Scatter plotillustrating the antigen-
presenting and tip signature scores of endothelial subsets. e, Box plot showing
the proportions of distinct endothelial cell typesin various sample categories,
including normal tissue (green), precancerous tissue (orange), tumor tissue
(purple) and metastatic tissue (blue), derived from 344 treatment-naive
samples. Significance labels in the figure were assessed via Kruskal-Wallis tests

B/plasma
Fibroblasts -
Endothelial -

Epithelial §

Malignant -

Myeloid cells -

to compare each subset distribution among four tissue types. Significance

for pairwise source proportions within each cell type, assessed via two-tailed
unpaired Wilcoxon tests, is reported in Supplementary Table 6. The open
rectangle annotates the comparative scope, with BH correction for multiple
testing. The bottom of the box represents Q1, and the top of the box represents
Q3. The height of the box represents the IQR, whereas the horizontal line

inside the box indicates the median. The whiskers extend to the positions of
Q1-1.5xIQRand Q3 +1.5 xIQR. f, Heat map showing the proportion of different
endothelial cell typesin cancer types and healthy tissues. For rows, a bar plot to
the left of each row illustrates the number of MetaCells (in log,, scale) and origin
of cancer cells, color-coded for clarity. g, Genes encoding the top 20 ligands
inferred to regulate RGCC" endothelial cells according to NicheNet. Ligands are
ranked by Pearson correlation (left), and a dot plot represents the expression
percentage (dot size) and value (dot intensity) of the top 20 ligands.

2019 (Fig. 2i)***. Lineage tracing analyses suggested that although they
both originate from monocytes, the profibrotic Macro_SLPI signature
follows a distinct developmental branch compared to the phagocytic
Macro_C1QC or the anti-inflammatory Macro_THBSI1 signature (Fig. 2j).

Finally, using the TCGA dataset, we examined the correlation between
Macro_SLPI signature scores and overall survival. Higher Macro_SLPI
signature scores were strongly associated withanincreased risk of death
in various cancer types, such as esophageal carcinoma (log-rank test,
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P=0.014) and skin cutaneous melanoma (SKCM; log-rank test, P= 0.0001;
Fig.2k and Extended DataFig. 4h,i). Together, our analyses revealed dis-
tinct molecular diversities and trajectories of TAMs in the TME.

ECM-associated CTHRCI fibroblasts are prevalent in tumor
samples across cancer types

Stromal cells could establish a tumor-supportive environment by modi-
fying the ECM and vasculature. Fibroblasts are the most prominent
stromal cells, and their phenotypes and origins vary widely. TabluaTIME
recognized seven subtypes of fibroblasts based on the expression of
specific marker genes (Fig. 3a,b). These fibroblast subtypes were cat-
egorized into five major groups, including myofibroblast (myFibro),
ECM-remodeling fibroblasts (eFibro),immunoregulatory fibroblasts
(iFibro), antigen-presenting associated fibroblasts (apFibro) and qui-
escent fibroblasts (qFibro) based on characteristic gene expression
patterns (Fig. 3c)">*. Interestingly, we observed that eFibro_CTHRC1
cells were predominantly derived from tumor samples and eFibro_
SFPR1cells were highly enriched in normal samples, whereasiFibro_IL6
cells were predominantly present in precancerous samples (Fig. 3d,
Extended Data Fig. 5a and Supplementary Table 6). Furthermore, eFi-
bro_CTHRCl cells also expressed canonical CAF markers, including
FAP*®, LRRCIS (ref. 12) and POSTN", which are prevalent in nearly all
cancer types but notin healthy samples, suggestingitsimportant role
inthe TME (Fig. 3b,e). Functional signatures and MP analyses revealed
that eFibro_CTHRCI cells were enriched for EMT and ECM receptor
interaction pathways (Fig. 3f and Extended Data Fig. 5b,c). Meanwhile,
the metabolic pathway analysis showed that the glycosaminoglycan
biosynthesis-chondroitin sulfate/dermatan sulfate pathway, whichis
involved in generating ECM components, was notably upregulated in
eFibro_CTHRCl cells (Fig. 3g and Extended Data Fig. 5d). Furthermore,
we investigated the association between eFibro_CTHRCI cells and prog-
nosis. Higher expression of eFibro CTHRC1 signature genes was corre-
lated with worse clinical outcomes in multiple cancer types, including
kidney renal clear cell carcinoma (KIRC; log-rank test, P= 0.00523)
and bladder urothelial carcinoma (BLCA; log-rank test, P= 0.00568;
Fig.3h), whichis consistent with the previously reported clinicalimpact
of FAP" and LRRC15" fibroblasts. These findings collectively suggest
that fibroblasts in the TME undergo pronounced reprogramming to
adopt myofibroblastic phenotypes, which in turn remodel the ECM
and potentially contribute to tumor growth.

CTHRCI fibroblasts are located at the leading edge of the
tumor region

Fibroblast migration and pathological matrix redeposition are fre-
quently observed in fibrotic disease®”*. To understand the potential

sourceand spatiallocalization of eFibros that are dramatically increased
inthe TME, we collected 62 published ST slides of tumor tissue sections
from six cancer types. After filtering out low-quality spots and genes
fromeachslide, we annotated malignant spots by combining markers
fromoriginal studies and inferred copy number variations (Extended
Data Fig. 6a—d)*. For tumor slides with clear tumor boundaries, such
asHCC-1L from primary liver cancer®’, we observed that both the frac-
tion of eFibro_ CTHRCI cells and the expression of eFibro CTHRC1 cell
signatures were highly enriched at the leading edge from nontumor to
tumor regions (Fig. 4aand Extended DataFig. 6e,f). Toinvestigate the
general enrichment of eFibro_CTHRCI cells at tumor boundaries, we
calculated the correlations between the eFibro CTHRC1 signature score
andthedistances tothe tumor core regions among all ST slides contain-
ingboth fibroblasts and malignant cells. Excitingly, the eFibro_CTHRC1
fractions showed a negative correlation with the distance to tumorsin
the majority of ST slides (total ST slides, 32/41,78%), indicating a high
enrichment of eFibro_CTHRCI cells at tumor boundaries (Fig. 4b,c).
We further verified the spatial localization of eFibro CTHRC1 cells in
in-house oral cancer samples using multiplexed immunohistochem-
istry (mIHC), specifically at the tumor boundaries (Fig. 4d).

To explore the impact of malignant cells on eFibro_ CTHRC1, we
screened for genes upregulated in malignant cells that correlated with
the expression of the eFibro CTHRC1 signature score. Our analysis
identified several integrins, such as ITGA6, which encodes a matrix
stiffness-regulated mechanosensitive molecule that caninduceinvasive
fibroblast phenotypes and mediate activation of transforming growth
factor-B (TGFp) in lung fibrosis (Fig. 4e and Extended Data Fig. 6g)***..

We then investigated whether the boundary formed by eFibro_
CTHRCl could serve as a physical barrier that may affect the infiltration
ofimmune cellsinto the tumor core. We selected the ST slides with high
enrichment of eFibro CTHRC1inthe boundaryregionsanddivided the
slides into normal and tumor regions. As anticipated, immune cells
were markedly more abundant on the normal side than on the tumor
side (Fig. 4f). Consistently, the estimated infiltration of CD8" T cells was
notably higher in tumor samples with alower eFibro_ CTHRCl1signature
score in the TCGA cohort in almost all cancer types (Extended Data
Fig. 6h,i). Furthermore, compared to other fibroblasts, eFibro CTHRC1
fibroblasts were more likely to interact with CD8" T cells via LGALS9-
CD44 and LGALS9-CD4S5 interactions (Fig. 4g,h). LGALS9 has been
reported to induce apoptosis in T cells by binding to HAVCR2 and
bolster the stability and functionality ofimmunosuppressive T, cells
via interaction with CD44. Anti-Gal-9 therapy has potential in selec-
tively augmenting intratumoral HAVCR2' cytotoxic CD8" T cells***,
Together, our analyses indicate that the presence of eFibro_ CTHRC1
may reduce the infiltration ofimmune cells, potentially both physical

Fig. 7 |Identification of coarse stromal subtypesin solid tumors. a, Survival
associations of per-cell-type signature genes of cytotoxic lymphocyte subsets.
Top, bar plotillustrating the pan-cancer survival association across 23 cancer
types, aggregated across malignancies using Stouffer’smethod. Columns are
ordered by combined zscore. Bottom, cancer-specific survival association
determined by the Cox proportional hazards model; LUSC, lung squamous cell
carcinoma; COAD, colon adenocarcinoma; READ, rectum adenocarcinoma;
LUAD, lung adenocarcinoma. b, Survival associations of per-cell-type signature
genes in myeloid subsets; SARC, sarcoma. ¢, Survival associations of per-cell-type
signature genes in fibroblast subsets. d, Heat map of 8,743 individuals from TCGA
classified into four distinct TME subtypes based on clustering of the signature of
all cell types; Bn, naive B cells; Bm, memory B cells; Bgc, germinal center B cells.

e, Box plotillustrating the cytotoxic signature scores of ecotypes, including
lymphocytes, calculated from 8,734 samples from the TCGA project. Statistical
significance was evaluated using two-tailed unpaired Wilcoxon tests combined
witha permutation test (10,000 resamplings) to compare the signature score
distribution across pairwise ecotypes; horizontal connectors denote compared
groups, with the corresponding Pvalue indicated above the horizontal line. The
bottom of the box represents Q1, whereas the top represents Q3. The height of

the box indicates the IQR, and the horizontal line inside the box represents the
median. The whiskers extend to the positions of Q1 - 1.5 x IQRand Q3 + 1.5 x IQR.
f, Box plot comparing tumor purity across different tumor ecosystem groups,
calculated from 8,734 samples from the TCGA project. The bottom of the box
represents Q1, whereas the top represents Q3. The height of the box indicates the
IQR, and the horizontal line inside the box represents the median. The whiskers
extend to the positions of Q1 - 1.5 x IQR and Q3 + 1.5 x IQR. g, Box plot comparing
CD8’ T cellinfiltration of individuals stratified by tumor ecosystem groups. CD8"
T cellinfiltration was estimated using QUANTISEQ from 8,734 samples from the
TCGA project. The bottom of the box represents Q1, whereas the top represents
Q3. The height of the box indicates the IQR, and the horizontal line inside the box
represents the median. The whiskers extend to the positions of Q1 - 1.5 x IQR and
Q3 +1.5xIQR. h, Bar graphs depicting the segregation of each carcinomainto
the five tumor ecosystem groups. i, Kaplan-Meier curves illustrate the overall
survival analysis of five tumor ecosystem groups across 459 individuals with
SKCMand 1,091 individuals with BRCA; +, censored observations. Statistical
significance was assessed via the log-rank test, with Pvalues of 2.54 x 10~ for
SKCMand 0.0229 for BRCA.
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Fig. 8| Application of pan-cancer single-cell landscape. a, Schematic overview
of the workflow using pan-cancer single-cell landscapes to analyze the ecotypes
of bulk RNA-seq datasets and automatic annotation for scRNA-seq datasets.

b, UMAPs showing cell-type annotation by original paper (left) and SELINA

prediction (right). ¢, Bar plots comparing the accuracy of reference-pretrained
SELINA-predicted cell types against original annotations in the BRCA_GSE176078
and NSCLC_GSE146100 datasets. SELINA was trained on reference datasets from
TabulaTIME, BRCA_EMTAB8107 and NSCLC_GSE131907.

barriers formed by the ECM andimmunosuppressive functions through
cell-cellinteractions.

Colocalization of CTHRCI fibroblasts and SLPI' macrophages
forms profibrotic ecotypes

Our analyses suggest that eFibro CTHRCI cells are prevalentin tumor
samples, and profibrotic Macro_SLPI cells are also significantly
enriched inseveral cancer types (Figs. 2f,g and 3d,e). We then investi-
gated whether there are potential connections or cooperation between
thesetwo celltypes, as they are bothenriched in similar ECM functions
(Figs. 2e and 3c). Because the ST data we used were not at single-cell
resolution but rather a mixture of six to ten cells, we quantified the
coexistence of eFibro CTHRC1 and Macro_SLPI cells by correlating
their signature scores. As expected, eFibro CTHRC1 and Macro_SLPI
cells showed a high correlation at the spot level (R > 0.5), and this cor-
relation increased with higher fibroblast fractions (Fig. 5a,b). This
observation held true for almost all the evaluated slides (Fig. 5c). For
other macrophages, Macro_SPP1cells showed arelatively weaker cor-
relation with eFibro_CTHRCI cells, which have also been reported to
be associated with fibrosis**. The two cell types were also observed

using individual single-cell datasets, ruling out the possibility of cell
doublets (Extended DataFig. 7a,b). Using TCGA-UVM and TCGA-KICH
samples, we confirmed the high concordance between eFibro_CTHRC1
and Macro_SLPI cells (Extended Data Fig. 7c). Importantly, mIHC stain-
ing of CTHRC1, SLPI, CD68 and SPP1in oral cancer and NSCLC samples
further verified the colocalization of eFibro CTHRC1 and Macro SLPI
cells (Fig. 5d and Extended Data Fig. 7d). In summary, the colocaliza-
tion of eFibro_CTHRC1and Macro_SLPI cells creates unique profibrotic
ecotypes withinthe tumor region and suggests functional connections
between these cell types.

We speculate that there may beacommon regulatory mechanism
or cytokine signaling pathway that activates the profibrotic ecotypes.
To explore potential upstream signaling, we conducted NicheNet
analyses, which indicated a tight connection between the activity
of TGFP1 and interleukin-1f3 (IL-1B) ligands and the eFibro_CTHRC1
phenotype (Fig. 5e)*. The existing literature suggests that TGF[3 fam-
ily ligands and inflammatory modulators such as IL-1p can activate
CAFsby enhancing the activity of transcription factors such as SMAD,
NF-kB and STAT**¢, Reassuringly, TGFB1and IL-1B could also stimulate
the Macro_SLPIphenotype, indicating that these signaling molecules
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may directly activate CAFs and also promote fibrotic programs in
Macro_SLPI cells, which could potentially work in conjunction with
eFibro_CTHRCI cells to remodel the ECM (Fig. 5e). In summary, these
analyses suggest that the profibrotic ecotypes were possibly induced
by TGFp or IL-1f signaling (Fig. 5f).

RGCC' capillary endothelial cells are associated with vessel tip
generation in tumors

Endothelial cells are not only involved in angiogenesis but also
related to immune cell recruitment and semiprofessional antigen
presentation**%, We identified seven endothelial subtypes and anno-
tated them as venous, capillary, lymphatic and vascular smooth mus-
cle cells (VSMCs; Fig. 6a and Extended Data Fig. 8a,b). Consistently,
VSMC_ACTA2 cells, with a high ECM signature score, simultaneously
expressed endothelial marker genes and ACTA2 (Fig. 6b,c). RGCC' capil-
lary endothelial cells (capEndo_RGCC) exhibited the highest tip scores,
whereas CXCR4" capillary endothelial cells (capEndo_CXCR4) showed
the highest antigen-presenting scores (Fig. 6d). Notably, capEndo_
RGCC cells expressed markers associated with vessel tip generation,
including APLN and ESM1, and the majority of these cells were found
intumor samples across various cancer types (Fig. 6e,f, Extended Data
Fig.8aand Supplementary Table 6)*. These findings collectively sug-
gest that endothelial cells undergo dynamic reprogramming during
cancer initiation and progression.

Angiogenesis, which typically initiates in the capillaries, is essen-
tial for tumor growth. Identifying the potential ligands that drive the
phenotypes of tip-like capEndo_RGCC cells is critical for preventing
angiogenesis through therapeutic targeting of endothelial cells®.
VEGFA and AGT were predicted to be the most potent inducers of
capEndo_RGCC cells, consistent with previous studies showing that
VEGFA is a crucial regulator of angiogenesis, and AGT is required for
hypoxia-induced vasculogenesis (Fig. 62)**"". Interestingly, both AGT
and VEGFA are produced by fibroblasts, suggesting that stromal cells
may influence one another in regulating angiogenesis within the TME.

Profibrotic ecotypes are associated with higher mortality risk
from pan-cancer analyses

Ouranalysesindicate that celltypes that constitute profibrotic ecotypes,
including Macro_SLPIand eFibro_CTHRCI cells, are associated with
worse clinical outcomes in various cancer types (Figs. 2k and 3h). To
systematically compare the effects of profibrotic ecotypes to other
potential risk factors, such as T cell exhaustion, we conducted a com-
prehensive prognosis analysis of all 56 cell types across 23 cancer types
from TCGA. The pan-cancer survival association dichotomized all cell
types into favorable and adverse states, highlighting their functional
andclinical heterogeneities. T cell/NK cell subsets with higher cytotoxic
scores (two NK cell subsets and CD8Temra_GZMB cells) were associated
with a decreased risk of death, whereas memory T cells (CDS8Tm_TNF)
were associated with shorter survival times (Fig. 7a). Interestingly, cell
typesthat could constitute profibrotic-associated ecotypes, including
Macro _SLPI,Macro SPP1, eFibro CTHRC1and VSMC_ACTA2 cells, were
all significantly associated with an increased risk of mortality at the
pan-cancer level (Fig. 7b,c and Extended Data Fig. 9a). These results
collectively suggest that profibrotic ecotypes have conserved protu-
mor functions that reduce the survival time of individuals with cancer.

TabulaTIME enables pan-cancer patient stratification using
conserved tumor ecotypes

Tumor ecosystems are highly heterogeneous and are composed of
diverse cell types. Although risk association analyses can screen indi-
vidual pro- or antitumor cell types, they cannot reflect the cooperation
of different cell types in forming patient-specific tumor ecosystems.
TabulaTIME defined 56 cell subtypes across different cancer types using
scRNA-seq. With this high-resolution reference, we then investigated
whether we could stratify individuals into different tumor ecosystems

based ondeconvoluted cell subtypes within the TCGA cohort. The cell
subtypes were evaluated using gene set variation analysis (GSVA) and
clustered into five ecotypes®’, including active stromal ecotype (E1),
naive immune ecotype (E2), active immune ecotype (E3), profibrotic
ecotype (E4) and proliferating ecotype (ES; Fig. 7d,e). Based on the
deconvoluted ecotypes, individuals could be classified into five major
TME ecosystems, including immune desert with high proliferation
(DHP), immune desert with low proliferation (DLP), active immune
with high stromal presence (AIHS), active immune with low stromal
presence (AILS) and naiveimmune with high stromal presence (NIHS;
Fig. 7d,e and Extended Data Fig. 9b,c). Consistently, participants in
theimmune desertgroup (DHP and DLP) showed high levels of tumor
purity (Fig. 7f), whereas participants in the activeimmune group (AIHS
and AILS) displayed higher estimated infiltration of CD8" T cells****
(Fig. 7g and Extended Data Fig. 9d).

Interestingly, although the ecosystem features were in general
conserved among different cancer types, the distribution of ecosystem
groups showed remarkable differences (Fig. 7h). The kidney cancers
kidney renal papillary cell carcinoma (KIRP) and kidney chromophobe
(KICH) were highly enriched for DLP and DHP, whereas KIRC was pri-
marily composed of AIHS and NIHS (Fig. 7h). We then investigated
whether this stratification was conserved between different cohorts.
For breast cancer, participant groups were generally comparable
between the TCGA-BRCA classification and the METABRIC classifica-
tion, even at the subtype level (Extended Data Fig. 9e). Additionally,
we benchmarked TabulaTIME against previous similar studies®>. The
TabulaTIME cell-type signatures demonstrated stronger agreement
withscRNA-seq dataat the cluster level, and participant stratification
by TabulaTIME was more consistent with the deconvolution results
(Extended Data Fig. 9f-h). Finally, we evaluated the clinical effects of
different tumor ecosystem groups. Interestingly, participants in the
DHP and NIHS groups showed anincreased risk of mortality in various
cancer types, respectively corresponding to cold and unresponsive
TMEs (Fig.7i).In summary, the cell-type signatures derived from Tabu-
1aTIME could facilitate the robust stratification of individuals based on
their tumor ecosystem status.

TabulaTIME serves as a reference map for pan-cancer
single-cell annotation

Cell-type annotationis vital for interpreting functional phenotypes of
cells when analyzing scRNA-seq datasets. A comprehensive and fully
annotated dataset is essential for reference-based cell-type annotation
methods. We next tested whether TabulaTIME could serve asareference
map for pan-cancer single-cell annotation (Fig. 8a). Using a published
deep-learning method SELINA®®, we benchmarked cell-type annotation
performance with TabulaTIME as the reference compared toindividual
tumor scRNA-seq datasets. Excitingly, we observed high consistency
between the manually curated annotations from the original papers
and the cell types predicted using SELINA and TabulaTIME (Fig. 8b and
Extended DataFig.10). Furthermore, the TabulaTIME reference showed
meaningfulimprovement over using a single tumor scRNA-seq dataset
from the same cancer type as the reference (Fig. 8c). This indicates
thatanintegrative tumor reference thatincludes diverseimmune and
stromal cell types could pronouncedly increase cell-type annotation
performance compared to asingle dataset that may lack rare cell types.

Discussion

In this study, we collected a large amount of tumor scRNA-seq data
from 735 donors, including nearly 4 million cells spanning 36 cancer
types. Additionally, we combined ST data from 62 individuals across
six cancer typesto provide spatialinformation and characterize tissue
structures. Overall, we constructed a comprehensive single-cell TME
landscape that can be used to characterize the spatial and temporal
dynamics of tumor heterogeneity and assess the impact of different
cell types and tumor ecotypes on clinical outcomes.
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Our analyses revealed that SLPI" macrophages exhibited a profi-
brotic phenotype and colocalized with CTHRCI" fibroblasts across
cancer types. Considering that SLPI' macrophages exhibit strong profi-
brotic features and that CAFs can originate from both macrophages and
mesenchymal stem cells'®***"*%, we speculate that CTHRCI" fibroblasts
may also derive from SLPI' macrophages. Further studies are needed
toreveal the conditions that stimulate profibrotic macrophage forma-
tion or whether they represent an existing macrophage phenotypein
healthy individuals.

An important merit of our study is the publicly available tumor
landscape at MetaCell resolution, which includes detailed cell-type
annotations, distribution across various sources and cancer types
and their functions and effects on survival. This resource can facili-
tate scientists ininferring the most likely phenotypes for query cells.
Similarly, the TabulaTIME landscape can promote the reconstruction of
tumor ecotypes for bulk tissue transcriptomes using signature genes.
Overall, we believe that our data can serve as arich resource that has
the potential to contribute to future cancer subtypeidentification and
the optimization of individual cancer therapy.

Methods

Ethics statement

This study adhered to all relevant ethical regulations. Primary tissue
sections used in immunofluorescence studies were obtained with
writteninformed consent from participants and were approved by the
local medical ethics committees of the hospitals where the samples
were collected.

scRNA-seq data collection

We collected published cancer-associated scRNA-seq datasets from
746 donors across 36 cancer types. These datasets were sourced from
the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/) and our previous work the TISCH database (http://tisch.
comp-genomics.org/home/). Additionally, weincorporated scRNA-seq
datasets derived from healthy donors, including three peripheral blood
mononuclear cell datasets and six datasets from normal tissues. This
inclusion served as a baseline for the exploration of tumor-specific
cellular features. To minimize platform-specific biases, we restricted
our analysis to 10x Genomics scRNA-seq datasets. For each dataset,
we downloaded the expression matrix of the raw count or TPM, along
with relevant sample information. Neither sex nor gender was con-
sidered in the study design because the primary focus of this study
was unrelated to sex or gender. For samples collected in this study,
sex was self-reported. Given that the studies focus on the TME, we
excluded samples with over 90% malignant cells from each publicly
available solid tumor-associated scRNA-seq dataset. For the remain-
ing dataset, no statistical methods were used to predetermine sample
sizes; however, our sample sizes align with those reportedin previous
publications after accounting for the exclusion of samples with over
90% malignant cells. To ensure consistent gene symbol mapping across
different genome assemblies, we converted the genesinto GRCh38.p13.

Data quality control and preprocessing
We applied astandardized analysis workflow based on MAESTRO v1.1.0
for processing all collected datasets, including quality control, batch
effect removal and cell clustering (Extended Data Fig.1a,b). Asaresult,
26,975 cells were excluded, leaving 4,456,392 cells for subsequent
analysis (Extended Data Fig. 1c). Then, for each dataset, MAESTRO
selected thetop 2,000 highly variable genes for downstream analyses
using TPM matrices. We further used principal component analysis for
dimensionreduction, the Louvain algorithm for cluster identification
and UMAP for visualization, with parameters optimized by cell count
(Supplementary Table 2).

To systematically evaluate the batch effects for each dataset, we
used an entropy-based metric to quantify datamixing across batches.

Low entropy values indicate that the most similar cells are from the
same individual, indicating the existence of a potential batch effect.
However, it should be noted that for the datasets, which mainly con-
tain malignant cells, low entropy could arise from the heterogene-
ity of malignant cell expression between different tumors, and the
batch effect will not need to be removed. Malignant cells were iden-
tified by integrating three approaches: original study annotations,
marker expression profiles and copy number variation (Extended
DataFig.1a,d). Apart from the dataset with malignant cells and other
datasets witha median entropy of more than 0.7, the remaining dataset
corrected the batch effect by CCA (Extended Data Fig. 1e,f). All cells
were then annotated into 17 common cell types, based on the expres-
sion of marker genes (Extended Data Fig. 1g,h). The marker genes of
each cell type were collected from the published resources and were
curated manually.

MetaCell identification and batch correction

Toaddress challenges posed by the large cell count, we executed arigor-
ousthree-step dataintegration process (Extended Data Fig. 2a). First,
withineach dataset, gene expression £;;, gene iin cellj, was quantified
aslog, (TPM;;/10 +1), mitigating the effect of gene-specific dropout
rate variability. Second, to mitigate technical noise and reduce compu-
tational resource requirements, we partitioned single cells into small
groups (called MetaCells hereafter) based on transcriptional similarity,
as determined by their proximity within the UMAP representation.
Our strategy resembles Tanay et al.s MetaCells*® and Zheng et al.’s
metaclusters® but uniquely assesses similarity within each sample’s
celltype and incorporates cell origin.

To determine the optimal number of cells (k) for each MetaCell,
we evaluated MetaCell performance in terms of gene coverage and
within-MetaCell variation (Extended Data Fig. 2a). To retain a greater
number of cells, we allowed for a slight fluctuation in the cell count
within MetaCells, rather than strictly adhering to fixed numbers like
10 or 30. Within-MetaCell variation, quantified via the Gini Index,
showed increasing average variation and decreasing total variation with
cell count. The EIbow method identified 30-cell MetaCells as optimal
across datasets (Extended Data Fig. 2b,c). Next, using LISI*’, measur-
ing dataset diversity in neighborhoods, we found that these 30-cell
MetaCellsachieved higher LISIand >50% gene coverage (Extended Data
Fig.2d).Foreach scRNA-seq dataset, we then systematically partitioned
the cells of each cell type within individual samples into MetaCells,
with each MetaCell comprising approximately 30 cells. The average
log TPM-transformed gene expression of all cells within each Meta-
Cellwas used to represent the MetaCell’s expression, and the original
gene-by-cell expression matrix was converted to the gene-by-MetaCell
expression matrix.

Third, we evaluated the integration performance and biological
signal preservation of MetaCell + CCA using ten additional randomly
selected datasets. We compared LISI and Entropy scores across four
strategies and found that CCA-integrated MetaCells outperformed
other methods, demonstrating enhanced integration performance
and reduced batch effects (Extended Data Fig. 2e). Additionally, we
assessed biological signal preservation by calculating the adjusted
Rand index against original cell-type labels and using ASW to evalu-
ate within-cluster homogeneity. MetaCell + CCA achieved the high-
est adjusted Rand index and ASW scores, confirming that cell-type
structures were preserved after integration and batch correction.
Theseresultsindicate that MetaCell + CCA effectively removed batch
effects while retaining cell-type distinctions compared to original data
(Extended DataFig. 2f).

Lineage separate integrated analysis

To gain more detailed insights into the MetaCell heterogeneity of
specific cell types, we divided all cells into six lineages for down-
stream analysis, including cytotoxic lymphocytes, conventional and
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regulatory lymphocytes, B lymphocytes, myeloid cells, fibroblasts,
endothelial cells and epithelial cells (Fig. 1a). For each lineage MetacCell,
we extracted the expression profiles and subjected themto reprocess-
ing usingthe MAESTRO pipeline, which includes quality control, batch
effect correction, cell clustering and annotation (Fig. 1c and Extended
DataFig. 2h).

Determining the optimal number of cell types

To determine the most effective clustering resolution for each cell
lineage, we used both ASW and Clustree metrics to identify clusters
that accurately represent biological diversity without excessive clus-
tering. First, to address the curse of dimensionality, we calculated the
ASW based on Euclidean distances inthe top 30 principal components
of the principal component analysis space. A higher ASW indicates a
more pronounced separation among distinct clusters. For each line-
age, we calculated ASW values ranging from 0.1to 1.5 and designated
theresolutionwith the highest ASW as the optimal one. Subsequently,
we performed clustering at various resolutions for each lineage to
determine the optimal resolution (Extended Data Fig. 4a).

Clustree was used to visually inspect marker gene expression. If
marker gene expression was intertwined with markers of other cell
types, this suggested that relying solely on ASW might not be sufficient
to effectively distinguish subcellular populations. For example, in
myeloid cells, the ASW suggested aresolution of 0.1. However, CLEC9A*
dendritic cellsand C1QC" macrophages were separated at aresolution
of 0.5, leading us to identify 0.5 as the optimal resolution (Extended
Data Fig. 4b). Thus, we combined ASW with prominent marker gene
expression observed at varied resolutions using Clustree to determine
the optimal resolution.

Based on the clustering results, we annotated cell clusters using
marker gene expression. We then used ROGUE to evaluate cellular
heterogeneity (Extended Data Fig. 4c). ROGUE scores range from O to
1, with1representing acompletely pure subtype. Therefore, cell types
with median ROGUE scores below 0.9 were considered to exhibit sig-
nificant heterogeneity, prompting further investigation to reannotate
them into more homogeneous subtypes exhibiting higher median
ROGUE values.

Source preference analysis

To assess dynamic changes in the TME during tumor progression, we
analyzed the proportions of sub-cell types across distinct sources
within each lineage individually. Considering that various treatments
may lead to dynamic changes in the TME, our analysis was limited to
treatment-naive datasets. The proportion of each subtypeinasample
was determined by dividing the number of MetaCells of that subtype
by the total number of MetaCells in the lineage. Consequently, in any
givenlineage within asingle sample, the sum of all subtype proportions
equals1. Toinvestigate the cell-type distribution of source preference,
we used the Kruskal-Wallis test to assess each cell type across all tis-
sue types. Additionally, each pairwise source proportion comparison
within each cell type was assessed via two-tailed unpaired Wilcoxon
tests (Figs. 2¢, 3d and 6e, Extended Data Fig. 4e and Supplementary
Table 6).

Furthermore, to validate subtype source preferences, we calcu-
lated odds ratios by constructing 2 x 2 contingency tables for each sub-
typeiandsourcejwithinlineages. Tablesincluded (1) cells of subtype
iinsourcej, (2) subtype i cells in other sources, (3) non-i subtypesinj
and (4) non-isubtypesin other classifications. A Fisher’s exact test was
applied, with BH-adjusted Pvalues for multiple testing.

Distribution of cell types across cancer types

We investigated the distribution of specific cell types across diverse
cancer types in treatment-naive datasets. For each cancer type or tis-
sue, we calculated the subtype proportion by dividing the total number
of MetaCells within the correspondinglineage. Itisimportant to note

that the sum of all subtype proportions within a specific lineage for a
particular cancer type equals 1.

Scoring cell types using function-associated signature genes
Here, we used the signature gene lists obtained from previously pub-
lished studies to describe the functional diversity of cell types (Supple-
mentary Table 5). The AddModuleScore functionin Seurat was applied
to calculate the score for individual MetaCells. For T cells/NK cells,
cytotoxic, exhausted and regulatory MetaCell scores were computed
toassess functional states and validate subtypes (Fig. 2b and Extended
Data Fig. 3a). Monocyte/macrophage MetaCell functions were evalu-
ated via M1/M2 polarization, angiogenesis, phagocytosis and pro-/
anti-inflammatory activity (Fig. 2e). Additionally, fibroblast subsets
were analyzed for their tumorigenic roles through ECM remodeling
and immune regulation (Fig. 3c).

Metabolic and cancer hallmark pathways and gene set
enrichment analysis

Metabolic pathway activities were estimated using GSVA. The meta-
bolic pathways were collected from KEGG®°, including 85 pathways.
Differentially activated pathways of each subtype were identified by
running the Wilcoxon rank sum test against other cell types within
the onelineage.

Toelucidate the functional characteristics of the subtypes, we used
gene sets associated with cancer hallmarks and KEGG pathways from
MSigDBv6.1(ref. 61). Enrichment analysis was implemented using the
clusterProfiler package®. Pathways with alog (fold change) of greater
than 0.05 and an adjusted P value of less than 0.01 were deemed sig-
nificantly upregulated.

Characterization of intratumoral transcriptional
heterogeneity
To capture transcriptional heterogeneity, we performed NMF within
eachsample. Negative valuesin each centered expression matrix were
set to zero. To minimize the influence of cell lineage-specific expression
patterns and to enhance sensitivity and specificity, we conducted NMF
analysis separately for each cell lineage. For each sample, we performed
NMF (k =10) for each cell lineage across datasets separately and sum-
marized each NMF program using the top 50 genes based on NMF
coefficients. To avoid redundancies, we removed NMF programs that
overlapped more than 20% with others within the tumor.
Subsequently, we clustered the NMF programs within cell line-
age based onJaccard similarity. Given the substantial number of NMF
programs, we restricted the clustering to NMF programs with at least
aminimum overlap of 20% with any modules observed within a cell
lineage. Clustering was performed using hierarchical clustering, and
MPs were defined through manual inspection. Each MP included at
least five NMF programs. For each MP, we selected the top 50 genes
based on their frequency of occurrence. Furthermore, we removed
MPs that originated from asingle study or exhibited strong enrichment
of ribosomal protein genes or mitochondria-encoded genes. Finally,
we analyzed each MP’s function using a hypergeometric test to assess
enrichment of its signature genesin MSigDB cancer hallmark and KEGG
pathways. The MPs were then further grouped based on functional
similarity (Fig. 2h, Extended Data Fig. 5b and Supplementary Table 7).

Survival analyses

Toassess the prognostic significance of cell types, we obtained clinical
and expressiondatafrom TCGA (Supplementary Table 8). Per cell type,
thetop 50 highly expressed genes were selected to calculate cell-type
signature scores using GSVA for each individual. These scores were
adjusted tosumto1perlineage to mitigate multicollinearity (Extended
Data Fig. 4h,i). Survival differences between high- and low-scoring
groups, stratified by median signature scores, were assessed via
Kaplan-Meier analysis (Figs. 2k and 3h).
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Additionally, to depict the clinical relevance of cell types within
and across cancers, we conducted the following analyses. For each
cell type, univariable Cox regression linked the adjusted GSVA score
to overall survival per tumor type. A z score higher than O indicated
increased mortality risk. To account for multiple tests, we adjusted
the Pvalues using the BH method. Furthermore, to assess the clinical
relevance at the pan-cancer level, we used a meta-z-score, derived from
the combined z scores across tumor types using Stouffer’s method®
(Fig. 7a and Extended Data Fig. 9a).

mIHC

Human tissue specimens were provided by Shanghai Pulmonary Hos-
pital (for NSCLC sections), West China Hospital of Stomatology at
Sichuan University (for HNSC sections) and Shanghai East Hospital (for
CESCsections) under the approval of local medical ethics committees
(Supplementary Table 9). For mIHC analysis, there were seven individu-
als (three males (NSCLC-1, NSCLC-2 and HNSCC-2) and four females
(HNSCC-1, HNSCC-3, CESC-1 and CESC-3)). For samples collected in
this study, sex was self-reported. Sex was not considered in the study
design, and sex-based analyses were not conducted. Tissues were fixed
informalin, embedded in paraffin, sectioned to 4 um and positioned
onto adhesion microscope slides following routine methods. Auto-
mated staining was performed with a Leica BOND-MAX autostainer
(LeicaMicrosystems). Slices were deparaffinized and pretreated with
Epitope Retrieval Solution2 (AR9640-CN, LeicaBiosystems) at 100 °C
for 20 min. Peroxidase blocking was performed for 10 min using Bond
Polymer (DS9800-CN, Leica) subsequent to rinsing in tris-buffered
saline withtween-20 (TBST) buffer. Slides were incubated with primary
antibody atroomtemperature (RT) for1 h. Primary antibodiesincluded
rabbit anti-CTHRC1 (1:400; Abcam, ab85739), rabbit anti-SLPI (1:500;
Thermo Fisher, PA5-82990), rabbit anti-osteopontin (SPP1; 1:1,500;
Abcam, ab214050), rabbit anti-CD68 (1:400; Biolynx, BX50031) and
rabbit anti-pan-cytokeratin (1:300; Biolynx, BX50143). All slides were
stained with secondary reagents at RT for 10 min and tyramide signal
amplification reagents at RT for 10 min. Nuclei were stained with DAPI
(Sigma-Aldrich) after all human antigens had been labeled. Stained
slides were scanned at x20 magnification using a Pannoramic MIDI
scanner (3DHISTECH), and images were analyzed using Halo software
(Indica Labs).

NicheNet analysis

To infer potential ligands that influence transcriptomic changes or
phenotypic shiftsin target cell types, we used NicheNet for upstream
regulatory factoridentification. Our analysis used the top 100 upregu-
lated genesinthe cell types of interest as input, with all genes expressed
in relevant cell lineages serving as the background gene set. Subse-
quently, we used the predict_ligand_activities function from the R
package NicheNet to predict and rank these potential ligands (Fig. 5e).

Cell-cellinteraction analysis

To quantify the probability of cell-cell communication, we used Cell-
Chat®* to predict potential interactions based on the expression of
ligand-receptor pairs across cell types. Receptor-ligand interactions
between cell types were identified by the specific expression of arecep-
tor by one cell type and a ligand by another cell type. Significance of
specific ligand-receptor interactions between two cell subsets was
calculated by a permutation test.

ST analysis

From the GEO database, we collected ST data from 62 individuals of 6
cancer types (Supplementary Table10). Due to the lack of gender infor-
mation in many data entries and the fact that sex was not considered
inthe study design, sex-based analyses were not conducted. To ensure
data quality, we conducted several standard statistical analyses using
the Seurat package (Extended Data Fig. 6a).

In 10x Visium ST data, spots may contain multiple cells, compli-
cating cell-type assignment. We applied STRIDE, a topic-model-based
tool trained on single-cell data, to deconvolute cell-type proportions
per spot. For ST data with matched scRNA-seq datasets, we used its
annotated transcriptome for spot decomposition. Forunmatched ST
samples, we selected a compatible scRNA-seq dataset from TISCH,
prioritizing shared cancer/cell types with the ST dataas reported inthe
original study. Especially for malignant cell identification, we adopted
a comprehensive approach, combining information provided by the
original studies, STRIDE decomposition results and CopyKat predic-
tions based on copy number variation (Extended DataFig. 6¢). Finally,
the ST data were annotated into the major lineage level (Extended
DataFig. 6d).

Spatial localization analysis

To map subcellular composition within the ST dataset, we leveraged
the top 50 marker genes from scRNA-seq datasets and applied the
AddModuleScore function in Seurat to calculate subtype-specific
enrichment scores.

Colocalization analysis. Because fibroblasts and macrophages
were unevenly distributed, we assessed the correlation between
CTHRCI" fibroblasts and SPPI" macrophage signature scores only in
fibroblast-containing spots. A strong correlationacross all cohorts sug-
gests that these two cell types are closely associated within the tissue.

Distance measurement between fibroblasts and malignant cells.
To characterize the spatial relationship between CTHRCI' fibroblasts
and malignant cells, we calculated the correlation between the CTHRCI*
fibroblast signature score and the distance to the tumor center. A posi-
tive correlationindicates that CTHRCI fibroblasts are located farther
away from malignant cells, whereas a negative correlation suggests
their proximity to the tumor center.

Bulk tumor subtyping
Following the analysis of the TME in pan-cancer scRNA-seq data, we
used the signature genes of all 56 cell types to deconvolute the com-
positionand density of the tumors. Our dataset comprised 8,743 indi-
vidualsacross 23 cancer types from the TCGA project (Supplementary
Table 8). To make the expression profiles comparable across cancer
types, for each cancer type, we normalized the expression profile
for each gene by subtracting the average expression value. We used
GSVAtoscoreindividuals based onthe top 50 highly expressed genes
of each cell type. Subsequently, hierarchical clustering was used to
categorizeindividualsinto five subtypes based on the signature score
matrix. These subtypes were labeled according to clustering results,
tumor purity, signature scores of major lineage and cell-type functional
scores (Fig. 7e,fand Extended DataFig. 9b,c). Additionally, we collected
immune cellinfiltration dataestimated for eachindividual in TCGA by
different methods from TIMER® (Fig. 7g and Extended Data Fig. 9d).
For the validation dataset, we obtained RNA-seq profiles from
METABRIC, comprising 1,992 individuals. To mitigate noiseintroduced
during data processing and sequencing, we normalized expression
profiles by subtracting the average expression value within each can-
certype.

Benchmarking of different bulk tumor subtyping studies

To comprehensively evaluate the performance of TabulaTIME along-
side previous similar studies, we compared the identified cell states,
coassociation of cell types and the capacity to categorize bulk RNA-seq
samples. First, regarding the identified cell states, we hypothesized
that comprehensive signatures would show preferential upregulation
indistinct clusters, whereas nonspecific or redundant cell states would
co-upregulate within the same clusters. Foramore equitable and quan-
titative comparison, we used the two gene sets from TabulaTIME and
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Luca as inputs for SCINA®®, amarker gene-based cell-type annotation
method, we predicted cell typesin five additional scRNA-seq datasets.
The accuracy of predicted cell-type annotations versus the original
cell-type annotations and normalized mutual information (NMI) across
cluster labels in the additional scRNA-seq dataset were determined
(Extended Data Fig. 9g). A higher NMI reflected more precise and
dependable annotations.

Additionally, we compared the TCGA stratification between Tabu-
laTIME and the other three studies. Participant TME subtypes derived
from TabulaTIME were more consistent with the Bagaev et al.®-defined
participant TME subtypes, as they both considered immune and stromal
celltypes (Extended Data Fig. 9i). To quantitatively evaluate accuracy,
we classified TCGA participants into immune-hot and immune-cold
tumors based on deconvolution results (CIBERSORT, MCP counter?,
TIMER and xCell*®; Extended Data Fig. 9h). We then compared partici-
pantstratification from the different studies to theseimmune-hot and
immune-cold classifications. For studies that explicitly mentioned
the TME subtypes characterized by either high or low immune cell
infiltration, we classified participants according to the designated TME
subtypes. Specifically, in the TabulaTIME and Bagaev et al. studies, we
defined desert subtypes, including DHP, DLP and D, as immune-cold
tumors. Similarly, in Thorsson et al.>, we classified participants within
the C3, C4 and C5 subtypes as immune-cold tumors. For studies that
did notdescribe theimmune cellinfiltration for each TME subtype, we
divided the original TME subtypes based on the reported immune cell
infiltration levels. For example, in the Ecotyper study, we categorized
CE2-, CE4-, CES5-, CE6-, CE7- and CE8-high tumors as immune-cold,
whereas the remaining subtypes were defined asimmune-hot.

Reference data for scRNA-seq data annotation methods
Tobenchmark our integrated transcription profiles, TabulaTIME, as a
reference, we used the SELINA framework. We pretrained the SELINA
model using TabulaTIME and the additional NSCLC and BRCA datasets.
Performance was validated on external datasets by calculating accuracy
asthe fraction of cells with predicted versus annotated labels.

Statistics and reproducibility

This study focuses on individuals with solid tumors, necessitating
targeted data selection and making random sampling inappropriate.
Samples were defined by the original studies. No statistical method was
used to predetermine sample size. Consequently, the experiments were
not randomized, and data collection and analysis were not conducted
blind to the experimental conditions. All statistical methods, selected
as suitable for the data distribution, were reported in the Methods
andfigure legends. Cell-type distribution across multiple sources was
evaluated using Kruskal-Wallis tests. Pairwise source distribution for
each celltype, along with LISI, entropy, ASW score, cytotoxic signature
score, exhausted signature score, NMl and Cibersort-estimated CD8"
T cell infiltration, were assessed using two-tailed unpaired Wilcoxon
tests. AFisher’sexact test validated subtype source preferences, and a
log-rank test evaluated differencesin survival. Multiple testing correc-
tionwas applied where appropriate, Pvalues arelabeled in the figures,
and significance was defined as P < 0.05. The corresponding figures
illustrate the distribution of the individual data points.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Previously published datasets are available under their respec-
tive accession codes (Supplementary Tables 1 and 10). The analysis
datasets in TabulaTIME can be explored and visualized at http://
wanglab-compbio.cn/TabulaTIME/. The data that support the findings
ofthis study are available from the corresponding author upon request.

The originalimage data can be downloaded from https://zenodo.org/
records/13363711 (ref. 69). Source data are provided with this paper.

Code availability
Code related to the analyses in this study can be found on GitHub at
https://github.com/wanglabtongji/TabulaTiME.
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Extended Data Fig. 1| SCRNA-seq data collection and processing overview.
Related to Fig. 1. (a) Workflow of data collection and processing, including quality
control, malignant cell identification, batch effect removal, clustering, and
annotation. (b) Quality control for BRCA_GSE148673 dataset: High-quality cells
(blue) are defined as those with more than 1000 UMI counts and 500 gene counts,
while low-quality cells (red) fall below these thresholds. (c) Doublet identification
for the BRCA_GSE148673 dataset using Scrublet: Doublets were highlighted
inred. (d) Malignant cells identification in the BRCA_GSE148673 dataset by
CopyKat: Copy number variations are indicated as gain (red) and loss (blue),

with the left bar designating malignant cells (in orange) and non-malignant cells
(ingreen). (e) Entropy distribution measuring batch effects across 21 datasets,
including 146 patients with associated batch information. In each box (dataset),
entropy was computed for each cell, based on the patient distribution within
itsneighborhood (30 nearest neighbors). The datasets were classified into

two types, ‘with batch effects’ and ‘without batch effects’ according to entropy
median (0.7 as the cutoff). The entropy of raw data and batch-removed data are
colored by green and orange, respectively. The bottom of the box represents the
first quartile (Q1), and the top of the box represents the third quartile (Q3). The
height of the box represents the interquartile range (IQR), while the horizontal
lineinside the box indicates the median. The whiskers extend to the positions of
Q1-1.5*IQRand Q3 +1.5*IQR. (f) Batch effect removal for BRCA_GSE114727_10X
dataset: The panel on the left displays cells across patients before batch effect
removal, while the panel on the right showcases the same cells post-batch
removal. (g) UMAP visualization of BRCA_GSE148673 dataset: Clustering and cell
type identification are visualized using UMAP, with distinct colors representing
clusters and cell types. (h) Dot plot showing the expression of representative
signature genes for each cell type in the BRCA_GSE148673 dataset.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| MetaCell identification and batch correction. Related
to Fig. 1. (a) Workflow of MetaCell identification and integration. (b) Box plots
illustrating the distribution of gene coverage (left) and the degree of within-
MetaCell variation (right) across MetaCells, which encompass varying cell
counts across five datasets. The datasets, listed from top to bottom, include the
following number of samples and cells: 6 patients with 10,359 cells, 2 patients
with 4,375 cells, 14 patients with 33,043 cells, 3 patients with 28,678 cells, and 2
patients with 6,035 cells. The bottom of the box represents the Q1, and the top
ofthe box represents the Q3. The height of the box represents the IQR, while the
horizontal lineinside the box indicates the median. The whiskers extend to the
positions of Q1-1.5*IQR and Q3 + 1.5 *IQR. (c) Application of the Same Analysis
as (b) to NSCLC Datasets. The datasets, listed from top to bottom, include the
following number of samples and cells: 2 patients with 3,658 cells, 3 patients
with12,193 cells, 1 patient with 1,108 cells, 4 patients with 11,453 cells, and 5
patients with 40,218 cells. The bottom of the box represents the Q1, and the top
of the box represents the Q3. The height of the box represents the IQR, while the
horizontal line inside the box indicates the median. The whiskers extend to the
positions of Q1-1.5*IQR and Q3 + 1.5 *IQR. (d) Radar plots showing the metrics
for MetaCells under different cell numbers, including gene coverage, variation
within MetaCells, and the LISI (Local Inverse Simpson’s Index) score, are accessed

for BRCA_GSE148673 and NSCLC_GSE117570 datasets. (e) Box plot illustrating
the distribution of LISl and entropies calculated from 736 patients across four
scenarios: direct integration of single-cell and MetaCell expression profiles, and
integrated single-cell and MetaCell expression profiles using CCA. Significance
was assessed using a two-sided Wilcoxon test and adjusted using the Benjamini-
Hochberg (BH) method. The bottom of the box represents the Q1, and the top

of thebox represents the Q3. The height of the box represents the IQR, while the
horizontalline inside the box indicates the median. The whiskers extend to the
positions of Q1-1.5*IQR and Q3 + 1.5 *IQR. (f) Boxplot showing the distribution
of ARland ASW calculated from 736 patients across four scenarios: direct
integration of single-cell and MetaCell expression profiles, and integrated single-
celland MetaCell expression profiles using CCA. Significance was assessed using
atwo-sided Wilcoxon test and adjusted using the BH method. The bottom of the
box represents the Q1, and the top of the box represents the Q3. The height of
the box represents the IQR, while the horizontal line inside the box indicates the
median. The whiskers extend to the positions of Q1-1.5*IQRand Q3 + 1.5*IQR.
(g) The pie plot showing the fractional distribution of MetaCells by source (left)
and treatment condition (right), with MetaCells labeled accordingly.

(h) UMAP visualization of all MetaCells, colored by the cancer type (left) and cell
type (right) respectively.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Characteristics of lymphocyte cells. Related to Fig. 2.

(a) Scatter plot showing the average cytotoxic score and exhausted score per cell
typein cytotoxic lymphocytes cell types, with colors representing cell type.

(b) Heatmap showing the proportion of different cytotoxic lymphocytes cell
typesin various cancer types or healthy tissues. The rows include a bar plot
representing the number of MetaCells (inlogl0 scale), and the origination of
cancer cells labeled by the different colors (c) UMAP visualization depicting the
distribution of MetaCells of conventional and regulatory lymphocytes, with

cell types represented by different colors. (d) Box plot showing the proportions
of distinct CD4" T cells subgroups across different sources, including blood
(red), normal tissue (green), precancerous (orange), tumor (purple), and
metastatic (blue), derived from 605 treatment-naive samples. Significance
labels in the figure was assessed via Kruskal-Wallis tests to compare each
subgroup distributions among five tissue types. Significance for pairwise source
proportions within each cell type, assessed via two-tailed unpaired Wilcoxon
tests, isreported in Supplementary Table 6. The open rectangle annotates the
comparative scope, with BH correction for multiple testing. The bottom of the
box represents the Q1, and the top of the box represents the Q3. The height of
the box represents the IQR, while the horizontal line inside the box indicates the
median. The whiskers extend to the positions of Q1-1.5*IQRand Q3 +1.5*IQR.

(e) Heatmap showing the proportion of different conventional and regulatory
lymphocyte cell types in various cancer types or healthy tissues. The rows
include abar plot representing the number of MetaCells (in log10 scale), and

the origination of cancer cells labeled by the different colors. (f) UMAP plot
showing the distribution of B and plasma MetaCells, with cell types distinguished
by colors. (g) Box plot showing the proportions of distinct B and plasma cells
subgroups across different sources, including blood (red), normal tissue (green),
precancerous (orange), tumor (purple), and metastatic (blue), derived from

462 treatment-naive samples. Significance labels in the figure was assessed
viaKruskal-Wallis tests to compare each subgroup distributions among five
tissue types. Significance for pairwise source proportions within each cell type,
assessed via two-tailed unpaired Wilcoxon tests, is reported in Supplementary
Table 6. The open rectangle annotates the comparative scope, with BH correction
for multiple testing. The bottom of the box represents the Q1, and the top of

the box represents the Q3. The height of the box represents the IQR, while the
horizontal line inside the box indicates the median. The whiskers extend to the
positions of Q1-1.5*IQR and Q3 + 1.5 *IQR. (h) Heatmap showing the proportion
of different B and plasma cell types in various cancer types or healthy tissues. The
rows include abar plot representing the number of MetaCells (in log10 scale), and
the origin of cancer cells labeled by the different colors.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Characteristics of myeloid cells. Related to Fig. 2.

(a) Line plots depicting the average silhouette width of myeloid cells across
arange of resolutions from 0.1to 1.5. (b) Clustering trees of the myeloid cells
colored according to the expression of known markers. The node colors
indicate the average of the log2 TPM of samples in each cluster. CLEC9A shows a
population of conventional type 1dendritic cells (cDC1), and C1QCis a marker of
macrophage cells. (c) Box plot illustrating cell purity for each myeloid cell type,
calculated using ROGUE from 797 samples. The bottom of each box indicates the
Q1, and the top represents the Q3. The height of the box reflects the IQR, and the
horizontal line inside the box indicates the median. The whiskers extend to the
positions of Q1-1.5*IQR and Q3 +1.5*IQR. (d) Dot plot depicting the expression
of representative marker genes of each myeloid cell type. (e) Box plot showing
the proportions of distinct dendritic cell subgroups across different sources,
including blood (red), normal tissue (green), precancerous (orange), tumor
(purple), and metastatic (blue), derived from 496 treatment-naive samples.
Significance labels in the figure was assessed via Kruskal-Wallis tests to compare

each subgroup distributions among five tissue types. Significance for pairwise
source proportions within each cell type, assessed via two-tailed unpaired
Wilcoxon tests, is reported in Supplementary Table 6. The open rectangle
annotates the comparative scope, with BH correction for multiple testing. The
bottom of the box represents the Q1, and the top of the box represents the Q3.
The height of the box represents the IQR, while the horizontal line inside the box
indicates the median. The whiskers extend to the positions of Q1-1.5*IQR and
Q3 +1.5*IQR. (f) Heatmap showing the ORs of myeloid cell sub types occurring
ineach source. OR > 1.5indicates that the cell type is preferred to distribute in the
corresponding source. Significance was assessed using the two-sided Fisher test
and adjusted using the BH method. (g) Heatmap showing the enriched pathways
for each myeloid cell subset. (h) Heatmap showing the number of overleaped
differentially expressed genes amongall cell types. (i) Heatmap depicting the
correlation of cell type signature scores calculated by GSVA between before and
after corrected in TCGA-ESCA dataset.
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Extended DataFig. 5| Heterogeneity of fibroblast subpopulations in
cancerous tissues. Related to Fig. 3. (a) Heatmap showing the ORs of cell types
occurringin eachsource. OR > 1.5 indicates that the cell type is preferred to
distribute in the corresponding source. Significance was assessed using the two-
sided Fisher test and adjusted using the BH method. (b) Left: heatmap showing
Jaccard similarity indices for comparisons among 1,470 robust NMF programs
based on their top 50 genes within the fibroblast cell lineage. Programs are
ordered by clustering and grouped into families of MPs with related functions
(marked by black dashed lines); MP families are numbered and labeled. Right:
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list of all MP names, separated into MP families. (c) Box plot depicting the
signature scores of MPs across fibroblast subtypes, calculated from 379 samples.
MPs are color-coded based on their functional annotations. The bottom of the
box represents the Q1, and the top of the box represents the Q3. The height of
the box represents the IQR, while the horizontal line inside the box indicates

the median. The whiskers extend to the positions of Q1-1.5*IQRand Q3 +1.5*
IQR. (d) Heatmapiillustrating the GSVA scores assigned to metabolic pathways
within each fibroblast subset, with the pathways categorized according to KEGG

nomenclature.
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Extended Data Fig. 6 | Spatial transcriptomics (ST) data processing and

the association between eFibro_CTHRC1 and immune infiltration. Related
to Fig. 4. (a) Workflow of ST data collection and processing, including quality
control and identification of malignant cells, clustering, and annotation. (b) A
representation of Hematoxylin and eosin (H&E) stained tissue sections from
apatient’s ST spot, along with spatial feature plots detailing read counts and
feature numbers for asingle ST spot. H&E image reproduced with permission
fromref. 39, AAAS. Scale bars, 50 pm. (c) Spatial feature plot identifying
malignant cells as predicted by CopyKat. (d) Spatial feature plot depicting the
deconvolution output from STRIDE. (e) Spatial feature plot demonstrating the
results of clustering analysis. (f) Violin plot showing the CTHRC1' fibroblasts
signature score across different spatial clusters. (g) Box plotsillustrating
theinferred associations between inducers of CTHRCI' fibroblasts and their
signature scores. The red box represents data calculated from 62 ST samples,
while the greenbox is derived from 9,460 samples across 23 cancer typesin the
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Extended Data Fig. 9| See next page for caption.
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Extended Data Fig. 9| The prognosis association of cell types. Related to Fig.
7.(a) Survival associations based on the signature genes of conventional and
regulatory lymphocytes, Blymphocytes, and endothelial subsets per cell type.
At the top, abar plot elegantly displays the pan-cancer survival associations
across 23 different cancer types, aggregated harmoniously using Stouffer’s
method. Columns are gracefully ordered by combined Z-score. At the bottom,
cancer-specific survival associations are tastefully presented, and statistical
significanceis calculated using the Cox Proportional-Hazards Model (b)

Violin plotsillustrating the signature scores of different lineages across five
distinct tumor ecosystems, comprising a total of 8,734 samples from the TCGA
project. The shape of the violin plotillustrates the distribution density of the
data. The wider sections indicate a higher concentration of data points near
that value (c) Box plots depicting the exhausted signature scores across three
tumor ecotypes, comprising a total of 4,882 samples from the TCGA project.
Statistical significance was evaluated using the two-tailed unpaired Wilcoxon
tests combined with a permutation test (10,000 resamplings) to compare the
signature score distribution across pairwise ecotypes; horizontal connectors
denote compared groups, with the corresponding p-value indicated above the
horizontal line. The bottom of the box represents the Q1, and the top of the box
represents the Q3. The height of the box represents the IQR, while the horizontal
lineinside the box indicates the median. The whiskers extend to the positions of
Q1-1.5*IQRand Q3 +1.5*IQR. (d) Box plot depicting the CD8" T cell infiltration
among five patient subtypes. The CD8" T cell infiltration was estimated using
Cibersort from 8,734 samples from the TCGA project. Statistical significance
of CD8' T cellinfiltration across pairwise patient subtypes was assessed using
the two-tailed unpaired Wilcoxon tests. Horizontal lines connect compared

groups, with corresponding p-values indicated above each line. The bottom of
the box represents the Q1, while the top represents the Q3. The height of the box
indicates the IQR, and the horizontal line inside the box represents the median.
The whiskers extend to the positions of Q1-1.5*IQR and Q3 + 1.5 *IQR. (e) Bar plot
showing the proportion of each tumor sample ecosystem in different molecular
cancer groups. (f) Heatmap displaying the average signature scores of fibroblast-
associated cell states in each fibroblast cluster from the BRCA_GSE176078
dataset, with cell states identified separately by TabulaTIME (on the left) and Luca
(ontheright). (g) Left: Bar plot depicting the accuracy of using SCINA predicted
annotations, based on distinct marker gene lists, versus annotation provided by
the original published papers. Right: Bar plot depicting the normalized mutual
information (NMI) of using SCINA predicted annotations, based on distinct
marker gene lists, versus the cluster label. The datasets, listed from left to right,
include the following number of samples and cells: 11 patients with 37,936

cells, 26 patients with 89,471 cells, 22 patients with 9,544 cells, 42 patients with
82,267 cells, and 12 patients with 90,603 cells. Significance was assessed using a
two-tailed unpaired Wilcoxon tests and adjusted using the Benjamini-Hochberg
(BH) method. The resulting p-values were 0.016 for ALL_GSE132509,0.00058

for BRCA_GSE176078, 0.055 for ESCA_GSE173950, 0.026 for NSCLC_GSE148071
and 0.48 for RB_GSE166173. The bottom of the box represents the Q1, and the

top of the box represents the Q3. The height of the box represents the IQR, while
the horizontal line inside the box indicates the median. The whiskers extend to
the positions of Q1-1.5*IQR and Q3 + 1.5 *IQR (h) Left: Alluvial diagram showing
changes in patient subtypes composition between TabulaTIME and Bagaev et
alidentified. Right: Scatter plot delineating the accuracy of different studiesin
distinguishing hot and cold tumors.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

O0OX O O 0OX OOOS

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Acquisition of immunofluorescence staining images from tissue sections used microscope (Leica, Microsystem)

Data analysis All analyses were performed using R v4.0.5 and Python v3.7.1. The source codes can be retrieved from https://github.com/wanglabtongji/
TabulaTiME. The following packages were used: MAESTRO v1.3.1, Seurat v4.3.0.1, inferCNV v1.3.3, Monocle v 2.18.0, Cellchat v1.1.3,
CopyKAT v1.0.5, nichenetr v1.0.0, GSVA v1.38.2, ROGUE v1.0, STRIDE v0.01, ClusterProfiler v 3.18.1, SELINA v0.1, NMF v0.26, ggplot2 v3.4.3,
survival v 3.5.7, ggpubr v0.6.0, ggsci v3.0.0, pheatmap v1.0.12, SCINA v1.2.0, xCell v1.1, TIMER v2.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data availability: Previously published datasets are available under their respective accession codes (Supplementary Tables 1 and 9). The analysis datasets in




TabulaTIME can be explored and visualized at http://wanglab-compbio.cn/TabulaTIME/. The data that support the findings of this study are available from the
corresponding author upon request. For the original image data, users can download it from https://zenodo.org/records/13363711.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Neither sex nor gender was considered in the study design, since the primary focus of this study was unrelated to sex or
gender. The sex was determined based on self-report.
Regarding the published dataset, the clinical information was gathered from the original paper and will not be detailed here.
For the mIHC analysis, there were seven patients - three males (NSCLC-1, NSCLC-2, and HNSCC-2) and four females
(HNSCC-1, HNSCC-3, CESC-1, and CESC-3).

Reporting on race, ethnicity, or Al the patients associated with mIHC analysis belong to the Asian race.
other socially relevant

groupings

Population characteristics The age of the patients NSCLC-1, NSCLC-2, HNSCC-1, HNSCC-2, HNSCC-3, CESC-1, and CESC-2 were 73, 55, 51, 74, 49, 55, and
44 years old, respectively. The clinical stage of the seven mIHC-associated patients includes three at stage | (NSCLC-1,
HNSCC-2, and CESC-2), two at stage Il (NSCLC-2 and HNSCC-3), one at stage Il (CESC-1), and one at stage IV (HNSCC-1).

Recruitment All sequencing-associated datasets analyzed herein are from patients presented in previously published studies. Patients
analyzed via mIHC were selected based on a confirmed diagnosis of NSCLC, HNSC, or CESC, with no prior treatment and
scheduled for curative-intent surgical resection.

Ethics oversight Informed consent was obtained in writing from all human participants prior to tissue collection. The consent forms included

disclosure of potentially identifiable information. Human tissue specimens were collected from the Shanghai Pulmonary
Hospital (for the NSCLC sections), the West China Hospital of Stomatology at Sichuan University (for the HNSC sections), and
the Shanghai East Hospital (for the CESC sections),under the approval of local medical ethics.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size In our research, we focus on analyzing the tumor microenvironment of solid tumors. We collected publicly available scRNA-seq datasets
associated with solid tumors, filtering the samples to include only those with more than 90% malignant cells, as samples with insufficient non-
malignant cells were excluded. The samples were defined based on the original studies. After conducting data quality control, we compiled an
extensive scRNA-seq dataset comprising 4,483,367 cells sourced from 746 patient samples across 36 cancer types, which include normal
tissues, precancerous lesions, primary tumors, and metastatic sites. Following rigorous quality control procedures, we retained a total of
4,456,392 high-quality cells for further analysis. For specific analyses, the sample size was counted the total number of samples that met the
criteria, such as being treatment-naive or including particular cell lineages.The corresponding sample sizes are indicated in the figure legends.
To investigate the spatial distribution of the cell types of interest, we collected publicly available spatial transcriptomics data. Given that our
analysis focuses on pan-cancer datasets, we gathered high-quality spatial transcriptomics data from 62 samples across six cancer types.
Additionally, to validate the presence of specific cell types, we obtained tumor tissues from seven additional patients across three cancer
types for mIHC staining, thereby enhancing the applicability of our findings across different cancers. To assess the clinical relevance of the
identified cell types, we included data from 8,743 patients across 23 cancer types.These cancer types were selected because TabulaTIME
includes corresponding scRNA-seq data from the TCGA project in our study.

Data exclusions  Considering potential technological biases, we concentrated on the compilation of datasets from 10X Genomics. For the scRNA-seq data
collected from published studies, we included only high-quality solid tumor datasets that contained over 1,000 cells. This rigorous selection
process culminated in the integration of data from 103 studies, encompassing 36 distinct cancer types, 746 donors, and a total of 4,483,367
cells. Cells with a UMI count below 1,000, fewer than 500 expressed genes, and those exhibiting more than 15% mitochondrial gene
expression were excluded from further analysis. Furthermore, to identify and eliminate doublets, we utilized Scrublet with its default
parameter of 0.06 for each dataset, resulting in the exclusion of 26,975 cells and leaving 4,456,392 cells for subsequent examination.

To delineate tissue structures, we incorporated spatial transcriptomics data from 62 patients across six cancer types. To ensure data quality,
we filtered spots based on a minimum detection threshold of 250 genes and a maximum mitochondrial gene expression of 25%. Additionally,
we excluded genes that had fewer than 10 read counts or were expressed in fewer than two spots. Moreover, to evaluate the clinical
relevance of the identified cell types, we included data from 8,743 tumor patients representing 23 cancer types sourced from the TCGA
project in our analysis.
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Replication To validate the co-existence of eFibro_CTHRC1 and Macro_SLPI across different cancer types, we analyzed tumor tissues from three HNSCC
patients, two NSCLC patients, and two CESC patients. Detailed information regarding the replicates is provided in Supplementary Table 8.
Upon staining the same cell type markers in seven patients, we observed co-localization of eFibro_CTHRC1 and Macro_SLPI in the HNSCC and
NSCLC patients. In contrast, in the CESC patients, eFibro_CTHRC1 was more likely to co-localize with Macro_SPP1 rather than Macro_SLPI.
This lack of confirmation in the CESC samples highlights the diversity of tumor microenvironments across distinct cancer types.

Randomization Randomization is not relevant to this study. Given that the study focuses on patients with solid tumors, a targeted selection of data was
essential, rendering random sampling inappropriate. As a result, the study is designed as observational. In observational studies, researchers
do not manipulate variables, which makes randomization unnecessary.

Blinding Blinding is not relevant to this study. In this study, we focus on identifying and dissecting pro-tumor associated cell types. Since the nature of
the study is purely observational rather than experimental, blinding is typically less applicable, as there is no intervention being tested.
Additionally, the effects of specific cell types on tumor progression can be measured objectively and quantified easily. Therefore, blinding may
not significantly impact the results, as the risk of bias is minimized in this context.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
X Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms

Clinical data

XXXXNX[]s
OoooonQ

Dual use research of concern

Plants

Antibodies

Antibodies used Multiplex immunohistochemistry: antibodies
anti-CTHRC1 Abcam Cat# ab85739, RRID:AB_10712489 1:400
anti-SLPI ThermoFisher Cat# PA5-82990, RRID:AB_2790146 1:500
anti-osteopontin Abcam Cat# ab214050, RRID: AB_2894860 1:1500
anti-CD68 Biolynx Cat# BX50031, RRID: AB_2936308 1:400
anti-cytokeratin pan Biolynx Cat# BX50143 1:300

Validation The antibodies used in this study were tested by their respective manufacturers.
Anti-CTHRC1: https://www.abcam.com/products/primary-antibodies/cthrc1-antibody-ab85739.html [application: IHC-P; species:
human]
Anti-SLPI: https://www.thermofisher.com/cn/zh/antibody/product/SLPI-Antibody-Polyclonal/PA5-82990 [application: IHC-P; species:
human]

Anti-osteopontin: https://www.abcam.com/products/primary-antibodies/osteopontin-antibody-epr21139-316-ab214050.html
[application: IHC-P; species: human]

Anti-CD68: https://www.biolynxtec.com/products/antibody/cd68.html [application: IHC-P; species: human]

Anti-cytokeratin pan: https://www.biolynxtec.com/products/antibody/cytokeratin-pan.html [application: IHC-P; species: human]

Plants

Seed stocks NA

Novel plant genotypes ~ NA

Authentication NA
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