Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Past, present and future of drug conjugates for cancer therapy

Abstract

Drug conjugates have emerged as promising tumor-targeted cytotoxics with an improved therapeutic index compared to classical chemotherapeutics. Although traditionally based on antibody ligands, high-throughput screening methods, such as peptide display and DNA-encoded chemical libraries, have enabled the isolation of ultra-high-affinity small ligands and the generation of drug conjugates with better tumor-targeting performance. This Perspective examines the history, major clinical milestones and future of drug conjugates for cancer treatment. We also discuss a new wave of combination modalities, linker strategies, and the development of conjugates based on large and small delivery vehicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic comparison between conventional chemotherapy and tumor-targeted moieties.
Fig. 2: Mechanism of action of ADCs.
Fig. 3: History of approvals of targeted cytotoxics.
Fig. 4: From large antibody-based drug conjugates to PDCs and SMDCs.

Similar content being viewed by others

References

  1. Gilman, A. The initial clinical trial of nitrogen mustard. Am. J. Surg. 105, 574–578 (1963).

    Article  CAS  PubMed  Google Scholar 

  2. Camidge, R. The story of Taxol: nature and politics in the pursuit of an anti-cancer drug. BMJ 323, 115 (2001).

    Article  PubMed Central  Google Scholar 

  3. Van Cutsem, E. et al. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group. J. Clin. Oncol. 24, 4991–4997 (2006).

    Article  PubMed  Google Scholar 

  4. van der Veldt, A. A. M. et al. Biodistribution and radiation dosimetry of 11C-labelled docetaxel in cancer patients. Eur. J. Nucl. Med. Mol. Imaging 37, 1950–1958 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chari, R. V. J., Miller, M. L. & Widdison, W. C. Antibody–drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. Engl. 53, 3796–3827 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Srinivasarao, M., Galliford, C. V. & Low, P. S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov. 14, 203–219 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Cazzamalli, S., Corso, A. D. & Neri, D. Targeted delivery of cytotoxic drugs: challenges, opportunities and new developments. Chimia (Aarau) 71, 712–715 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Lambert, J. M. & Berkenblit, A. Antibody–drug conjugates for cancer treatment. Annu. Rev. Med. 69, 191–207 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  PubMed  Google Scholar 

  10. Doronina, S. O. et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 21, 778–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Li, W. et al. Synthesis and evaluation of camptothecin antibody–drug conjugates. ACS Med. Chem. Lett. 10, 1386–1392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elmroth, K., Nygren, J., Mårtensson, S., Ismail, I. H. & Hammarsten, O. Cleavage of cellular DNA by calicheamicin γ1. DNA Repair (Amst.) 2, 363–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Tang, Y. et al. Real-time analysis on drug–antibody ratio of antibody–drug conjugates for synthesis, process optimization, and quality control. Sci. Rep. 7, 7763 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sadowsky, J. D. et al. Development of efficient chemistry to generate site-specific disulfide-linked protein– and peptide–payload conjugates: application to THIOMAB antibody–drug conjugates. Bioconjug. Chem. 28, 2086–2098 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Stefan, N. et al. Highly potent, anthracycline-based antibody–drug conjugates generated by enzymatic, site-specific conjugation. Mol. Cancer Ther. 16, 879–892 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Senter, P. D. Potent antibody drug conjugates for cancer therapy. Curr. Opin. Chem. Biol. 13, 235–244 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Doronina, S. O. et al. Novel peptide linkers for highly potent antibody–auristatin conjugate. Bioconjug. Chem. 19, 1960–1963 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Polakis, P. Antibody drug conjugates for cancer therapy. Pharmacol. Rev. 68, 3–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Staudacher, A. H. & Brown, M. P. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br. J. Cancer 117, 1736–1742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kovtun, Y. V. et al. Antibody–drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 66, 3214–3221 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Demetri, G. D. et al. First-in-human phase I study of ABBV-085, an antibody–drug conjugate targeting LRRC15, in sarcomas and other advanced solid tumors. Clin. Cancer Res. 27, 3556–3566 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Fitzgerald, A. A. & Weiner, L. M. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 39, 783–803 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo, Y. et al. Rational identification of novel antibody–drug conjugate with high bystander killing effect against heterogeneous tumors. Adv. Sci. (Weinh.) 11, e2306309 (2024).

    PubMed  Google Scholar 

  24. Han, Y., Tian, X., Zhai, J. & Zhang, Z. Clinical application of immunogenic cell death inducers in cancer immunotherapy: turning cold tumors hot. Front. Cell Dev. Biol. 12, 1363121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Denekamp, J. Vascular attack as a therapeutic strategy for cancer. Cancer Metastasis Rev. 9, 267–282 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Singh, A. P. & Shah, D. K. A “dual” cell-level systems PK–PD model to characterize the bystander effect of ADC. J. Pharm. Sci. 108, 2465–2475 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zana, A. et al. Fibroblast activation protein triggers release of drug payload from non-internalizing small molecule drug conjugates in solid tumors. Clin. Cancer Res. 28, 5440–5454 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Cazzamalli, S., Dal Corso, A., Widmayer, F. & Neri, D. Chemically defined antibody– and small molecule–drug conjugates for in vivo tumor targeting applications: a comparative analysis. J. Am. Chem. Soc. 140, 1617–1621 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bartlett, N. L. et al. Brentuximab vedotin activity in diffuse large B-cell lymphoma with CD30 undetectable by visual assessment of conventional immunohistochemistry. Leuk. Lymphoma 58, 1607–1616 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Goyal, A., Hordinsky, M. & Lazaryan, A. Impressive response of CD30-negative, treatment-refractory mycosis fungoides to brentuximab vedotin. Dermatol. Ther. 32, e12835 (2019).

    Article  PubMed  Google Scholar 

  31. Cahuzac, H. & Devel, L. Analytical methods for the detection and quantification of ADCs in biological matrices. Pharmaceuticals 13, 462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lamont, L. et al. Quantitative mass spectrometry imaging of drugs and metabolites: a multiplatform comparison. Anal. Bioanal. Chem. 413, 2779–2791 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shastry, M. et al. Rise of antibody–drug conjugates: the present and future. Am. Soc. Clin. Oncol. Educ. Book 43, e390094 (2023).

    Article  PubMed  Google Scholar 

  34. Hamann, P. R. et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. 13, 47–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Wei, A. H. & Tiong, I. S. Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML. Blood 130, 2469–2474 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Appelbaum, F. R. & Bernstein, I. D. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood 130, 2373–2376 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Fanale, M. A. et al. A phase I weekly dosing study of brentuximab vedotin in patients with relapsed/refractory CD30-positive hematologic malignancies. Clin. Cancer Res. 18, 248–255 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Jagadeesh, D. et al. Response to brentuximab vedotin by CD30 expression in non-Hodgkin lymphoma. Oncologist 27, 864–873 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cabel, L. et al. TOPOLOGY: a phase II study to evaluate the efficacy and toxicities of PLX038, in patients with locally advanced or metastatic triple-negative breast cancer. J. Clin. Oncol. 42, TPS1142 (2024).

    Article  Google Scholar 

  40. Oflazoglu, E. et al. Macrophages contribute to the antitumor activity of the anti-CD30 antibody SGN-30. Blood 110, 4370–4372 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Lewis Phillips, G. D. et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody–cytotoxic drug conjugate. Cancer Res. 68, 9280–9290 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Perez, E. A. et al. Relationship between HER2 expression and efficacy with first-line trastuzumab emtansine compared with trastuzumab plus docetaxel in TDM4450g: a randomized phase II study of patients with previously untreated HER2-positive metastatic breast cancer. Breast Cancer Res. 16, R50 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. von Minckwitz, G. et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. In 50 Landmark Papers Every Breast Surgeon Should Know (eds Wyld, L. et al.) Ch. 38 (CRC, 2024).

  44. Kantarjian, H. et al. Inotuzumab ozogamicin, an anti-CD22–calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 13, 403–411 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Kantarjian, H. M. et al. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia in the INO-VATE trial: CD22 pharmacodynamics, efficacy, and safety by baseline CD22. Clin. Cancer Res. 27, 2742–2754 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Wintering, A. et al. CD22low/Bcl-2high expression identifies poor response to inotuzumab ozogamicin in relapsed/refractory acute lymphoblastic leukemia. Blood Adv. 7, 251–255 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. DeAngelo, D. J. et al. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia: outcomes by disease burden. Blood Cancer J. 10, 81 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cortés, J. et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N. Engl. J. Med. 386, 1143–1154 (2022).

    Article  PubMed  Google Scholar 

  49. Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N. Engl. J. Med. 387, 9–20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meric-Bernstam, F. et al. Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: primary results from the DESTINY-PanTumor02 phase II trial. J. Clin. Oncol. 42, 47–58 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Yu, E. Y. et al. Enfortumab vedotin after PD-1 or PD-L1 inhibitors in cisplatin-ineligible patients with advanced urothelial carcinoma (EV-201): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 22, 872–882 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Wahby, S. et al. FDA approval summary: accelerated approval of sacituzumab govitecan-hziy for third-line treatment of metastatic triple-negative breast cancer. Clin. Cancer Res. 27, 1850–1854 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Santi, D. V., Cabel, L. & Bidard, F.-C. Does sacituzumab-govitecan act as a conventional antibody drug conjugate (ADC), a prodrug of SN-38 or both? Ann. Transl. Med. 9, 1113 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lewis, G. D. et al. The HER2-directed antibody–drug conjugate DHES0815A in advanced and/or metastatic breast cancer: preclinical characterization and phase 1 trial results. Nat. Commun. 15, 466 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chooniedass, S. et al. DeBouganin diabody fusion protein overcomes drug resistance to ADCs comprised of anti-microtubule agents. Molecules 21, 1741 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bardia, A. et al. Biomarker analyses in the phase III ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann. Oncol. 32, 1148–1156 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Gray, J. E. et al. Therapy of small cell lung cancer (SCLC) with a topoisomerase-I-inhibiting antibody–drug conjugate (ADC) targeting Trop-2, sacituzumab govitecan. Clin. Cancer Res. 23, 5711–5719 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Santi, D. V., Ashley, G. W., Cabel, L. & Bidard, F.-C. Could a long-acting prodrug of SN-38 be efficacious in sacituzumab govitecan-resistant tumors? BioDrugs 38, 171–176 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vergote, I. et al. Tisotumab vedotin as second- or third-line therapy for recurrent cervical cancer. N. Engl. J. Med. 391, 44–55 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Matulonis, U. A. et al. Efficacy and safety of mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study. J. Clin. Oncol. 41, 2436–2445 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lonial, S. et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 21, 207–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Tilly, H. et al. Polatuzumab vedotin in previously untreated diffuse large B-cell lymphoma. N. Engl. J. Med. 386, 351–363 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Wadleigh, M. et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood 102, 1578–1582 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Kantarjian, H. M. et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med. 375, 740–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nguyen, T. D., Bordeau, B. M. & Balthasar, J. P. Mechanisms of ADC toxicity and strategies to increase ADC tolerability. Cancers (Basel) 15, 713 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Nolting, B. Linker technologies for antibody–drug conjugates. Methods Mol. Biol. 1045, 71–100 (2013).

    Article  PubMed  Google Scholar 

  67. Zhang, D. et al. Catalytic cleavage of disulfide bonds in small molecules and linkers of antibody–drug conjugates. Drug Metab. Dispos. 47, 1156–1163 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Migliorini, F. et al. A pH-responsive crosslinker platform for antibody–drug conjugate (ADC) targeting delivery. Chem. Commun. (Camb.) 58, 10532–10535 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Jeffrey, S. C. et al. Minor groove binder antibody conjugates employing a water soluble β-glucuronide linker. Bioorg. Med. Chem. Lett. 17, 2278–2280 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Dubowchik, G. M. et al. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug. Chem. 13, 855–869 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Caculitan, N. G. et al. Cathepsin B is dispensable for cellular processing of cathepsin B-cleavable antibody–drug conjugates. Cancer Res. 77, 7027–7037 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Dorywalska, M. et al. Molecular basis of valine–citrulline–PABC linker instability in site-specific ADCs and its mitigation by linker design. Mol. Cancer Ther. 15, 958–970 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Fu, Z., Li, S., Han, S., Shi, C. & Zhang, Y. Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Transduct. Target. Ther. 7, 93 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bargh, J. D., Isidro-Llobet, A., Parker, J. S. & Spring, D. R. Cleavable linkers in antibody–drug conjugates. Chem. Soc. Rev. 48, 4361–4374 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Choi, K. Y., Swierczewska, M., Lee, S. & Chen, X. Protease-activated drug development. Theranostics 2, 156–178 (2012).

  76. Backhaus, P. et al. Translational imaging of the fibroblast activation protein (FAP) using the new ligand [68Ga]Ga-OncoFAP-DOTAGA. Eur. J. Nucl. Med. Mol. Imaging 49, 1822–1832 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, I.-J. et al. Selective antibody activation through protease-activated pro-antibodies that mask binding sites with inhibitory domains. Sci. Rep. 7, 11587 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rossin, R. et al. Chemically triggered drug release from an antibody–drug conjugate leads to potent antitumour activity in mice. Nat. Commun. 9, 1484 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fu, C. et al. Peptide–drug conjugates (PDCs): a novel trend of research and development on targeted therapy, hype or hope? Acta Pharm. Sin. 13, 498–516 (2023).

    Article  CAS  Google Scholar 

  80. Srinivasarao, M. & Low, P. S. Ligand-targeted drug delivery. Chem. Rev. 117, 12133–12164 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Dennis, M. S. et al. Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res. 67, 254–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    Article  CAS  PubMed  Google Scholar 

  83. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. Tamura, K. et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive breast cancer previously treated with trastuzumab emtansine: a dose-expansion, phase 1 study. Lancet Oncol. 20, 816–826 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Shuch, B. et al. [89Zr]Zr-girentuximab for PET–CT imaging of clear-cell renal cell carcinoma: a prospective, open-label, multicentre, phase 3 trial. Lancet Oncol. 25, 1277–1287 (2024).

    Article  CAS  PubMed  Google Scholar 

  86. Carter, P. J. & Rajpal, A. Designing antibodies as therapeutics. Cell 185, 2789–2805 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Carter, P. J. Introduction to current and future protein therapeutics: a protein engineering perspective. Exp. Cell Res. 317, 1261–1269 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Ma, X., Wang, M., Ying, T. & Wu, Y. Reforming solid tumor treatment: the emerging potential of smaller format antibody–drug conjugate. Antib. Ther. 7, 114–122 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Borsi, L. et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int. J. Cancer 102, 75–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Ongaro, T. et al. A novel anti-cancer L19–interleukin-12 fusion protein with an optimized peptide linker efficiently localizes in vivo at the site of tumors. J. Biotechnol. 291, 17–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Schmidt, M. M. & Wittrup, K. D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther. 8, 2861–2871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Takatsuji, R. et al. Ribosomal synthesis of backbone-cyclic peptides compatible with in vitro display. J. Am. Chem. Soc. 141, 2279–2287 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Heinis, C., Rutherford, T., Freund, S. & Winter, G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 5, 502–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Bashir, B. et al. Results from first-in-human phase I dose-escalation study of a novel bicycle toxin conjugate targeting EphA2 (BT5528) in patients with advanced solid tumors. J. Clin. Oncol. 42, 3443–3452 (2024).

    Article  CAS  PubMed  Google Scholar 

  95. Fakiri, M. E. et al. Development and preclinical characterization of a novel radiotheranostic EphA2-targeting bicyclic peptide. Theranostics 14, 4701–4712 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Baum, R. P. et al. Feasibility, biodistribution, and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using 177Lu-FAP-2286: first-in-humans results. J. Nucl. Med. 63, 415–423 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hofman, M. S. et al. First-in-human safety, imaging, and dosimetry of a carbonic anhydrase IX-targeting peptide, [68Ga]Ga-DPI-4452, in patients with clear cell renal cell carcinoma. J. Nucl. Med. 65, 740–743 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Poli, G. L. et al. Radretumab radioimmunotherapy in patients with brain metastasis: a 124I-L19SIP dosimetric PET study. Cancer Immunol. Res. 1, 134–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Wei, X., Schlenkhoff, C., Schwarz, B., Essler, M. & Ahmadzadehfar, H. Combination of 177Lu-PSMA-617 and external radiotherapy for the treatment of cerebral metastases in patients with castration-resistant metastatic prostate cancer. Clin. Nucl. Med. 42, 704–706 (2017).

    Article  PubMed  Google Scholar 

  100. Millul, J. et al. An ultra-high-affinity small organic ligand of fibroblast activation protein for tumor-targeting applications. Proc. Natl Acad. Sci. USA 118, e2101852118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Puglioli, S. et al. Selective tumor targeting enabled by picomolar fibroblast activation protein inhibitors isolated from a DNA-encoded affinity maturation library. Chem 9, 411–429 (2023).

    Article  CAS  Google Scholar 

  102. Vergote, I. & Leamon, C. P. Vintafolide: a novel targeted therapy for the treatment of folate receptor expressing tumors. Ther. Adv. Med. Oncol. 7, 206–218 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gerber, H. P., Sapra, P., Loganzo, F. & May, C. Combining antibody–drug conjugates and immune-mediated cancer therapy: what to expect? Biochem. Pharmacol. 102, 1–6 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Bauzon, M. et al. Maytansine-bearing antibody–drug conjugates induce in vitro hallmarks of immunogenic cell death selectively in antigen-positive target cells. Oncoimmunology 8, e1565859 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Powles, T. et al. Enfortumab vedotin and pembrolizumab in untreated advanced urothelial cancer. N. Engl. J. Med. 390, 875–888 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. Goto, Y. et al. TROPION-Lung02: datopotamab deruxtecan (Dato-DXd) plus pembrolizumab (pembro) with or without platinum chemotherapy (Pt-CT) in advanced non-small cell lung cancer (aNSCLC). J. Clin. Oncol. 41, 9004 (2023).

    Article  Google Scholar 

  107. Natangelo, S. et al. Radiation therapy, tissue radiosensitization, and potential synergism in the era of novel antibody–drug conjugates. Crit. Rev. Oncol. Hematol. 195, 104270 (2024).

    Article  PubMed  Google Scholar 

  108. Hingorani, D. V. et al. Precision chemoradiotherapy for HER2 tumors using antibody conjugates of an auristatin derivative with reduced cell permeability. Mol. Cancer Ther. 19, 157–167 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Wei, Q. et al. The promise and challenges of combination therapies with antibody-drug conjugates in solid tumors. J. Hematol.Oncol. 17, 1 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Koide, Y. & Kodaira, T. Concurrent antibody–drug conjugates and radiotherapy: a new perspective on radiation necrosis in HER2-positive breast cancer brain metastases from the DESTINY-Breast03 and HER2CLIMB trials. ESMO Open 9, 103620 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Salvestrini, V. et al. Safety profile of trastuzumab-emtansine (T-DM1) with concurrent radiation therapy: a systematic review and meta-analysis. Radiother. Oncol. 186, 109805 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Sgouros, G., Bodei, L., McDevitt, M. R. & Nedrow, J. R. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat. Rev. Drug Discov. 19, 589–608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pretelli, G., Mati, K., Motta, L. & Stathis, A. Antibody–drug conjugates combinations in cancer treatment. Explor. Target. Antitumor Ther. 5, 714–741 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gross, S. M. et al. Analysis and modeling of cancer drug responses using cell cycle phase-specific rate effects. Nat. Commun. 14, 3450 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. O’Malley, D. M. et al. Mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody–drug conjugate (ADC), in combination with bevacizumab in patients (pts) with platinum-resistant ovarian cancer: final findings from the FORWARD II study. J. Clin. Oncol. 37, 5520 (2019).

    Article  Google Scholar 

  117. Boswell, C. A. et al. Effects of anti-VEGF on predicted antibody biodistribution: roles of vascular volume, interstitial volume, and blood flow. PLoS ONE 6, e17874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Halin, C. et al. Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor α. Cancer Res. 63, 3202–3210 (2003).

    CAS  PubMed  Google Scholar 

  119. Thurber, G. M. et al. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat. Commun. 4, 1504 (2013).

    Article  PubMed  Google Scholar 

  120. Zana, A. et al. A comparative analysis of fibroblast activation protein-targeted small molecule–drug, antibody–drug, and peptide–drug conjugates. Bioconjug. Chem. 34, 1205–1211 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. van der Veldt, A. A. M. et al. Toward prediction of efficacy of chemotherapy: a proof of concept study in lung cancer patients using [11C]docetaxel and positron emission tomography. Clin. Cancer Res. 19, 4163–4173 (2013).

    Article  PubMed  Google Scholar 

  122. Oehler, S. et al. A DNA-encoded chemical library based on chiral 4-amino-proline enables stereospecific isozyme-selective protein recognition. Nat. Chem. 15, 1431–1443 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Loganzo, F., Sung, M. & Gerber, H.-P. Mechanisms of resistance to antibody–drug conjugates. Mol. Cancer Ther. 15, 2825–2834 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, M. et al. Optimal sequential strategies for antibody–drug conjugate in metastatic breast cancer: evaluating efficacy and cross-resistance. Oncologist 29, e957–e966 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Verhoeff, S. R. et al. [89Zr]Zr-DFO-girentuximab and [18F]FDG PET/CT to predict watchful waiting duration in patients with metastatic clear-cell renal cell carcinoma. Clin. Cancer Res. 29, 592–601 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Vegt, E. et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J. Nucl. Med. 51, 1049–1058 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Rotta for the support in preparing the original figures. The preparation of this article was entirely funded by Philochem AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Neri.

Ethics declarations

Competing interests

D.N. is the cofounder, CEO, CSO and President of the Scientific Advisory Board of Philogen. S.C. and E.P. are employed by Philochem AG, the research and development unit of the Philogen Group.

Peer review

Peer review information

Nature Cancer thanks Sara Hurvitz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazzamalli, S., Puca, E. & Neri, D. Past, present and future of drug conjugates for cancer therapy. Nat Cancer 6, 1494–1504 (2025). https://doi.org/10.1038/s43018-025-01042-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43018-025-01042-w

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer