Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Setting higher standards for reports of microbial species in human cancers

Abstract

The presence of microbiota in human tumors has been reported widely based on bioinformatic analyses of DNA sequencing datasets; however, the source of microbial sequences in atypical anatomical sites is challenging to validate, as these could derive from sampling, storage, handling and processing of samples, similar to what has been described in studies of ancient DNA. Contamination of microbial reference genomes can also be a source of microbial signals, causing misclassification of human reads. Here, we overview the required quality controls and validation approaches and summarize optimal practices to improve the rigor and standards of tumor microbiome studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Contamination and artefacts obscure true microbial signals in cancer microbiome studies.

Similar content being viewed by others

References

  1. Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 185, 3789–3806 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, J., Wang, Y., Li, Z., Gao, X. & Huang, D. Global analysis of microbiota signatures in four major types of gastrointestinal cancer. Front. Oncol. 11, 685641 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cai, M., Kandalai, S., Tang, X. & Zheng, Q. Contributions of human-associated archaeal metabolites to tumor microenvironment and carcinogenesis. Microbiol. Spectr. 10, e0236721 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dohlman, A. B. et al. The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe 29, 281–298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Battaglia, T. W. et al. A pan-cancer analysis of the microbiome in metastatic cancer. Cell 187, 2324–2335 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574, 264–267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong, C. et al. PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples. Microbiome 2, 33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poore, G. D. et al. Retraction Note: Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 631, 694 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Sepich-Poore, G. D. et al. Robustness of cancer microbiome signals over a broad range of methodological variation. Oncogene 43, 1127–1148 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gihawi, A. et al. Major data analysis errors invalidate cancer microbiome findings. mBio 14, e0160723 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Scott, A. J. et al. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut 68, 1624–1632 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robinson, K. M., Crabtree, J., Mattick, J. S. A., Anderson, K. E. & Dunning Hotopp, J. C. Distinguishing potential bacteria–tumor associations from contamination in a secondary data analysis of public cancer genome sequence data. Microbiome 5, 9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. National Cancer Institute Center for Cancer Genomics. The Cancer Genome Atlas Program (TCGA) https://www.cancer.gov/ccg/research/genome-sequencing/tcga

  16. Zepeda-Rivera, M. et al. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 628, 424–432 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Long, X. et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat. Microbiol. 4, 2319–2330 (2019).

    Article  PubMed  Google Scholar 

  18. Cullin, N., Azevedo Antunes, C., Straussman, R., Stein-Thoeringer, C. K. & Elinav, E. Microbiome and cancer. Cancer Cell 39, 1317–1341 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Knippel, R. J., Drewes, J. L. & Sears, C. L. The cancer microbiome: recent highlights and knowledge gaps. Cancer Discov. 11, 2378–2395 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fu, A. et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 185, 1356–1372 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Parhi, L. et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 11, 3259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galeano Niño, J. L. et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 611, 810–817 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coker, O. O. et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut 68, 654–662 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Choi, M. H. et al. Risk factors for Elizabethkingia acquisition and clinical characteristics of patients, South Korea. Emerging Infect. Dis. 25, 42–51 (2019).

    Article  Google Scholar 

  28. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zapatka, M. et al. The landscape of viral associations in human cancers. Nat. Genet. 52, 320–330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rubin, H. The early history of tumor virology: Rous, RIF, and RAV. Proc. Natl Acad. Sci. USA 108, 14389–14396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Polk, D. B. & Peek, R. M. Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10, 403–414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Scanu, T. et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 17, 763–774 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Serna, G. et al. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer. Ann. Oncol. 31, 1366–1375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang, S.-S. et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe 31, 781–797 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Björk, J. R. et al. Longitudinal gut microbiome changes in immune checkpoint blockade-treated advanced melanoma. Nat. Med. 30, 785–796 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hsu, C. L. & Schnabl, B. The gut–liver axis and gut microbiota in health and liver disease. Nat. Rev. Microbiol. 21, 719–733 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bedarf, J. R. et al. Much ado about nothing? Off-target amplification can lead to false-positive bacterial brain microbiome detection in healthy and Parkinson’s disease individuals. Microbiome 9, 75 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tan, C. C. S. et al. No evidence for a common blood microbiome based on a population study of 9,770 healthy humans. Nat. Microbiol. 8, 973–985 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Emery, D. C. et al. 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. Front. Aging Neurosci. 9, 195 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra65 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Alonso, R., Pisa, D., Fernández-Fernández, A. M. & Carrasco, L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front. Aging Neurosci. 10, 159 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thomson, C. A., McColl, A., Graham, G. J. & Cavanagh, J. Sustained exposure to systemic endotoxin triggers chemokine induction in the brain followed by a rapid influx of leukocytes. J. Neuroinflamm. 17, 94 (2020).

    Article  CAS  Google Scholar 

  47. Komai-Koma, M., Gilchrist, D. S. & Xu, D. Direct recognition of LPS by human but not murine CD8+ T cells via TLR4 complex. Eur. J. Immunol. 39, 1564–1572 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. de Miranda, N. F. C. C., Smit, V. T. H. B. M., van der Ploeg, M., Wesseling, J. & Neefjes, J. Absence of lipopolysaccharide (LPS) expression in breast cancer cells. Cell Oncol. 48, 1123–1126 (2025).

    Article  Google Scholar 

  49. Branton, W. G. et al. Brain microbial populations in HIV/AIDS: α-proteobacteria predominate independent of host immune status. PLoS ONE 8, e54673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Willis, K. A. et al. The closed eye harbours a unique microbiome in dry eye disease. Sci. Rep. 10, 12035 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D’Aquila, P. et al. Microbiome in blood samples from the general population recruited in the MARK-AGE Project: a pilot study. Front. Microbiol. 12, 707515 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Ge, Y., Lu, J., Puiu, D., Revsine, M. & Salzberg, S. L. Comprehensive analysis of microbial content in whole-genome sequencing samples from The Cancer Genome Atlas project. Sci. Transl. Med. 17, eads6335 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Breitwieser, F. P., Pertea, M., Zimin, A. V. & Salzberg, S. L. Human contamination in bacterial genomes has created thousands of spurious proteins. Genome Res. 29, 954–960 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Willerslev, E. & Cooper, A. Ancient DNA. Proc. Biol. Sci. 272, 3–16 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hebsgaard, M. B., Phillips, M. J. & Willerslev, E. Geologically ancient DNA: fact or artefact?. Trends Microbiol. 13, 212–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Cooper, A. & Poinar, H. N. Ancient DNA: do it right or not at all. Science 289, 1139 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liang, R. et al. Genomic reconstruction of fossil and living microorganisms in ancient Siberian permafrost. Microbiome 9, 110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Ramos-Madrigal, J. et al. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr. Biol. 26, 3195–3201 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. de Goffau, M. C. et al. Recognizing the reagent microbiome. Nat. Microbiol. 3, 851–853 (2018).

    Article  PubMed  Google Scholar 

  66. Sepich-Poore, G.D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

  67. Cruz-Flores, R., López-Carvallo, J. A., Cáceres-Martínez, J. & Dhar, A. K. Microbiome analysis from formalin-fixed paraffin-embedded tissues: current challenges and future perspectives. J. Microbiol. Methods 196, 106476 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Zhu, K. et al. Protocol for a comprehensive pipeline to study ancient human genomes. STAR Protoc. 5, 102985 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lam, S. Y. et al. Technical challenges regarding the use of formalin-fixed paraffin embedded (FFPE) tissue specimens for the detection of bacterial alterations in colorectal cancer. BMC Microbiol. 21, 297 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chia, M., & Nagarajan, N. CSB5/FFPE_kitome: Metagenomic sequencing conducted on blank paraffin blocks or extraction controls. https://github.com/CSB5/FFPE_kitome (2025).

  71. Tourlousse, D. M. et al. Characterization and demonstration of mock communities as control reagents for accurate human microbiome community measurements. Microbiol. Spectr. 10, e0191521 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ma, S. et al. Population structure discovery in meta-analyzed microbial communities and inflammatory bowel disease using MMUPHin. Genome Biol. 23, 208 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vijaya Chandra, S. H., Srinivas, R., Dawson, T. L. & Common, J. E. Cutaneous Malassezia: commensal, pathogen, or protector? Front. Cell. Infect. Microbiol. 10, 614446 (2020).

    Article  PubMed  Google Scholar 

  75. Fletcher, A. A., Kelly, M. S., Eckhoff, A. M. & Allen, P. J. Revisiting the intrinsic mycobiome in pancreatic cancer. Nature 620, E1–E6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Forbes, M. et al. Benchmarking of human read removal strategies for viral and microbial metagenomics. Cell Rep. Methods 5, 101218 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22, 178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pochon, Z. et al. aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow. Genome Biol. 24, 242 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Salzberg, S. L. et al. Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system. Neurol. Neuroimmunol. Neuroinflamm. 3, e251 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Breitwieser, F. P., Baker, D. N. & Salzberg, S. L. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 19, 198 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Willner, D. et al. Comparison of DNA extraction methods for microbial community profiling with an application to pediatric bronchoalveolar lavage samples. PLoS ONE 7, e34605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Costello, M. et al. Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. BMC Genomics 19, 332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Magalhães, A. P., França, Â, Pereira, M. O. & Cerca, N. RNA-based qPCR as a tool to quantify and to characterize dual-species biofilms. Sci. Rep. 9, 13639 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kapoor, V. et al. Distribution of human-specific bacteroidales and fecal indicator bacteria in an urban watershed impacted by sewage pollution, determined using RNA- and DNA-based quantitative PCR assays. Appl. Environ. Microbiol. 81, 91–99 (2015).

    Article  PubMed  Google Scholar 

  88. Fuchs, B. M., Syutsubo, K., Ludwig, W. & Amann, R. In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 67, 961–968 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rickerts, V. et al. Comparison of quantitative real time PCR with sequencing and ribosomal RNA-FISH for the identification of fungi in formalin fixed, paraffin-embedded tissue specimens. BMC Infect. Dis. 11, 202 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).

    Article  PubMed  Google Scholar 

  91. McDonald, D. et al. Greengenes2 unifies microbial data in a single reference tree. Nat. Biotechnol. 42, 715–718 (2024).

    Article  CAS  PubMed  Google Scholar 

  92. Fenhalls, G. et al. Localisation of mycobacterial DNA and mRNA in human tuberculous granulomas. J. Microbiol. Methods 51, 197–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Loukil, A., Kirtania, P., Bedotto, M. & Drancourt, M. FISHing Mycobacterium tuberculosis complex by use of a rpoB DNA probe bait. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00568-18 (2018).

  94. Liu, J., Kang, R. & Tang, D. Lipopolysaccharide delivery systems in innate immunity. Trends Immunol. 45, 274–287 (2024).

    Article  CAS  PubMed  Google Scholar 

  95. Oumarou Hama, H., Aboudharam, G., Barbieri, R., Lepidi, H. & Drancourt, M. Immunohistochemical diagnosis of human infectious diseases: a review. Diagn. Pathol. 17, 17 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Austin, G. I. & Korem, T. Planning and analyzing a low-biomass microbiome study: a data analysis perspective. J. Infect. Dis. 233, 76–86 (2026).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhao, L. et al. Characterization of the consensus mucosal microbiome of colorectal cancer. NAR Cancer 3, zcab049 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Roelands, J. et al. An integrated tumor, immune and microbiome atlas of colon cancer. Nat. Med. 29, 1273–1286 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Barb, J. J. et al. Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA using mock samples. PLoS ONE 11, e0148047 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Liu, Y., Elworth, R. A. L., Jochum, M. D., Aagaard, K. M. & Treangen, T. J. De novo identification of microbial contaminants in low microbial biomass microbiomes with Squeegee. Nat. Commun. 13, 6799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a National Medical Research Council grant OFYIRG21nov-0024 to M.C., a National Institutes of Health grant R35-GM130151 to S.L.S., a National Research Foundation Investigatorship grant NRFI09-0015 to N.N. and a Spinoza grant from De Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) to J.N.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.L.S., M.C., J.N., N.N.; data analysis: M.C., N.N.; writing, original draft: S.L.S., M.C., J.N., N.N.; writing, review and editing: S.L.S., M.C., J.N., N.N., A.T., N.F.C.C.d.M., V.S., J.W., R.I., B.M., E.W.

Corresponding authors

Correspondence to Steven L. Salzberg, Jacques Neefjes or Niranjan Nagarajan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salzberg, S.L., Chia, M., Tay, A. et al. Setting higher standards for reports of microbial species in human cancers. Nat Cancer (2026). https://doi.org/10.1038/s43018-026-01121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43018-026-01121-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer