Abstract
The presence of microbiota in human tumors has been reported widely based on bioinformatic analyses of DNA sequencing datasets; however, the source of microbial sequences in atypical anatomical sites is challenging to validate, as these could derive from sampling, storage, handling and processing of samples, similar to what has been described in studies of ancient DNA. Contamination of microbial reference genomes can also be a source of microbial signals, causing misclassification of human reads. Here, we overview the required quality controls and validation approaches and summarize optimal practices to improve the rigor and standards of tumor microbiome studies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 185, 3789–3806 (2022).
Wang, J., Wang, Y., Li, Z., Gao, X. & Huang, D. Global analysis of microbiota signatures in four major types of gastrointestinal cancer. Front. Oncol. 11, 685641 (2021).
Cai, M., Kandalai, S., Tang, X. & Zheng, Q. Contributions of human-associated archaeal metabolites to tumor microenvironment and carcinogenesis. Microbiol. Spectr. 10, e0236721 (2022).
Dohlman, A. B. et al. The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe 29, 281–298 (2021).
Battaglia, T. W. et al. A pan-cancer analysis of the microbiome in metastatic cancer. Cell 187, 2324–2335 (2024).
Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574, 264–267 (2019).
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
Hong, C. et al. PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples. Microbiome 2, 33 (2014).
Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016).
Poore, G. D. et al. Retraction Note: Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 631, 694 (2024).
Sepich-Poore, G. D. et al. Robustness of cancer microbiome signals over a broad range of methodological variation. Oncogene 43, 1127–1148 (2024).
Gihawi, A. et al. Major data analysis errors invalidate cancer microbiome findings. mBio 14, e0160723 (2023).
Scott, A. J. et al. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut 68, 1624–1632 (2019).
Robinson, K. M., Crabtree, J., Mattick, J. S. A., Anderson, K. E. & Dunning Hotopp, J. C. Distinguishing potential bacteria–tumor associations from contamination in a secondary data analysis of public cancer genome sequence data. Microbiome 5, 9 (2017).
National Cancer Institute Center for Cancer Genomics. The Cancer Genome Atlas Program (TCGA) https://www.cancer.gov/ccg/research/genome-sequencing/tcga
Zepeda-Rivera, M. et al. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 628, 424–432 (2024).
Long, X. et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat. Microbiol. 4, 2319–2330 (2019).
Cullin, N., Azevedo Antunes, C., Straussman, R., Stein-Thoeringer, C. K. & Elinav, E. Microbiome and cancer. Cancer Cell 39, 1317–1341 (2021).
Knippel, R. J., Drewes, J. L. & Sears, C. L. The cancer microbiome: recent highlights and knowledge gaps. Cancer Discov. 11, 2378–2395 (2021).
Fu, A. et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 185, 1356–1372 (2022).
Parhi, L. et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 11, 3259 (2020).
Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806 (2019).
Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018).
Galeano Niño, J. L. et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 611, 810–817 (2022).
Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).
Coker, O. O. et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut 68, 654–662 (2019).
Choi, M. H. et al. Risk factors for Elizabethkingia acquisition and clinical characteristics of patients, South Korea. Emerging Infect. Dis. 25, 42–51 (2019).
Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).
Zapatka, M. et al. The landscape of viral associations in human cancers. Nat. Genet. 52, 320–330 (2020).
Rubin, H. The early history of tumor virology: Rous, RIF, and RAV. Proc. Natl Acad. Sci. USA 108, 14389–14396 (2011).
Polk, D. B. & Peek, R. M. Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10, 403–414 (2010).
Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).
Scanu, T. et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 17, 763–774 (2015).
Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).
Serna, G. et al. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer. Ann. Oncol. 31, 1366–1375 (2020).
Jiang, S.-S. et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe 31, 781–797 (2023).
Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).
Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).
Björk, J. R. et al. Longitudinal gut microbiome changes in immune checkpoint blockade-treated advanced melanoma. Nat. Med. 30, 785–796 (2024).
Hsu, C. L. & Schnabl, B. The gut–liver axis and gut microbiota in health and liver disease. Nat. Rev. Microbiol. 21, 719–733 (2023).
Bedarf, J. R. et al. Much ado about nothing? Off-target amplification can lead to false-positive bacterial brain microbiome detection in healthy and Parkinson’s disease individuals. Microbiome 9, 75 (2021).
Tan, C. C. S. et al. No evidence for a common blood microbiome based on a population study of 9,770 healthy humans. Nat. Microbiol. 8, 973–985 (2023).
Emery, D. C. et al. 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. Front. Aging Neurosci. 9, 195 (2017).
Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra65 (2014).
Alonso, R., Pisa, D., Fernández-Fernández, A. M. & Carrasco, L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front. Aging Neurosci. 10, 159 (2018).
Thomson, C. A., McColl, A., Graham, G. J. & Cavanagh, J. Sustained exposure to systemic endotoxin triggers chemokine induction in the brain followed by a rapid influx of leukocytes. J. Neuroinflamm. 17, 94 (2020).
Komai-Koma, M., Gilchrist, D. S. & Xu, D. Direct recognition of LPS by human but not murine CD8+ T cells via TLR4 complex. Eur. J. Immunol. 39, 1564–1572 (2009).
de Miranda, N. F. C. C., Smit, V. T. H. B. M., van der Ploeg, M., Wesseling, J. & Neefjes, J. Absence of lipopolysaccharide (LPS) expression in breast cancer cells. Cell Oncol. 48, 1123–1126 (2025).
Branton, W. G. et al. Brain microbial populations in HIV/AIDS: α-proteobacteria predominate independent of host immune status. PLoS ONE 8, e54673 (2013).
Willis, K. A. et al. The closed eye harbours a unique microbiome in dry eye disease. Sci. Rep. 10, 12035 (2020).
D’Aquila, P. et al. Microbiome in blood samples from the general population recruited in the MARK-AGE Project: a pilot study. Front. Microbiol. 12, 707515 (2021).
de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).
Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).
Ge, Y., Lu, J., Puiu, D., Revsine, M. & Salzberg, S. L. Comprehensive analysis of microbial content in whole-genome sequencing samples from The Cancer Genome Atlas project. Sci. Transl. Med. 17, eads6335 (2025).
Breitwieser, F. P., Pertea, M., Zimin, A. V. & Salzberg, S. L. Human contamination in bacterial genomes has created thousands of spurious proteins. Genome Res. 29, 954–960 (2019).
Willerslev, E. & Cooper, A. Ancient DNA. Proc. Biol. Sci. 272, 3–16 (2005).
Hebsgaard, M. B., Phillips, M. J. & Willerslev, E. Geologically ancient DNA: fact or artefact?. Trends Microbiol. 13, 212–220 (2005).
Cooper, A. & Poinar, H. N. Ancient DNA: do it right or not at all. Science 289, 1139 (2000).
Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).
Liang, R. et al. Genomic reconstruction of fossil and living microorganisms in ancient Siberian permafrost. Microbiome 9, 110 (2021).
Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).
Ramos-Madrigal, J. et al. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr. Biol. 26, 3195–3201 (2016).
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).
de Goffau, M. C. et al. Recognizing the reagent microbiome. Nat. Microbiol. 3, 851–853 (2018).
Sepich-Poore, G.D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).
Cruz-Flores, R., López-Carvallo, J. A., Cáceres-Martínez, J. & Dhar, A. K. Microbiome analysis from formalin-fixed paraffin-embedded tissues: current challenges and future perspectives. J. Microbiol. Methods 196, 106476 (2022).
Zhu, K. et al. Protocol for a comprehensive pipeline to study ancient human genomes. STAR Protoc. 5, 102985 (2024).
Lam, S. Y. et al. Technical challenges regarding the use of formalin-fixed paraffin embedded (FFPE) tissue specimens for the detection of bacterial alterations in colorectal cancer. BMC Microbiol. 21, 297 (2021).
Chia, M., & Nagarajan, N. CSB5/FFPE_kitome: Metagenomic sequencing conducted on blank paraffin blocks or extraction controls. https://github.com/CSB5/FFPE_kitome (2025).
Tourlousse, D. M. et al. Characterization and demonstration of mock communities as control reagents for accurate human microbiome community measurements. Microbiol. Spectr. 10, e0191521 (2022).
Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).
Ma, S. et al. Population structure discovery in meta-analyzed microbial communities and inflammatory bowel disease using MMUPHin. Genome Biol. 23, 208 (2022).
Vijaya Chandra, S. H., Srinivas, R., Dawson, T. L. & Common, J. E. Cutaneous Malassezia: commensal, pathogen, or protector? Front. Cell. Infect. Microbiol. 10, 614446 (2020).
Fletcher, A. A., Kelly, M. S., Eckhoff, A. M. & Allen, P. J. Revisiting the intrinsic mycobiome in pancreatic cancer. Nature 620, E1–E6 (2023).
Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).
Forbes, M. et al. Benchmarking of human read removal strategies for viral and microbial metagenomics. Cell Rep. Methods 5, 101218 (2025).
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22, 178 (2021).
Pochon, Z. et al. aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow. Genome Biol. 24, 242 (2023).
Salzberg, S. L. et al. Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system. Neurol. Neuroimmunol. Neuroinflamm. 3, e251 (2016).
Breitwieser, F. P., Baker, D. N. & Salzberg, S. L. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 19, 198 (2018).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Willner, D. et al. Comparison of DNA extraction methods for microbial community profiling with an application to pediatric bronchoalveolar lavage samples. PLoS ONE 7, e34605 (2012).
Costello, M. et al. Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. BMC Genomics 19, 332 (2018).
Magalhães, A. P., França, Â, Pereira, M. O. & Cerca, N. RNA-based qPCR as a tool to quantify and to characterize dual-species biofilms. Sci. Rep. 9, 13639 (2019).
Kapoor, V. et al. Distribution of human-specific bacteroidales and fecal indicator bacteria in an urban watershed impacted by sewage pollution, determined using RNA- and DNA-based quantitative PCR assays. Appl. Environ. Microbiol. 81, 91–99 (2015).
Fuchs, B. M., Syutsubo, K., Ludwig, W. & Amann, R. In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 67, 961–968 (2001).
Rickerts, V. et al. Comparison of quantitative real time PCR with sequencing and ribosomal RNA-FISH for the identification of fungi in formalin fixed, paraffin-embedded tissue specimens. BMC Infect. Dis. 11, 202 (2011).
Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).
McDonald, D. et al. Greengenes2 unifies microbial data in a single reference tree. Nat. Biotechnol. 42, 715–718 (2024).
Fenhalls, G. et al. Localisation of mycobacterial DNA and mRNA in human tuberculous granulomas. J. Microbiol. Methods 51, 197–208 (2002).
Loukil, A., Kirtania, P., Bedotto, M. & Drancourt, M. FISHing Mycobacterium tuberculosis complex by use of a rpoB DNA probe bait. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00568-18 (2018).
Liu, J., Kang, R. & Tang, D. Lipopolysaccharide delivery systems in innate immunity. Trends Immunol. 45, 274–287 (2024).
Oumarou Hama, H., Aboudharam, G., Barbieri, R., Lepidi, H. & Drancourt, M. Immunohistochemical diagnosis of human infectious diseases: a review. Diagn. Pathol. 17, 17 (2022).
Austin, G. I. & Korem, T. Planning and analyzing a low-biomass microbiome study: a data analysis perspective. J. Infect. Dis. 233, 76–86 (2026).
Zhao, L. et al. Characterization of the consensus mucosal microbiome of colorectal cancer. NAR Cancer 3, zcab049 (2021).
Roelands, J. et al. An integrated tumor, immune and microbiome atlas of colon cancer. Nat. Med. 29, 1273–1286 (2023).
Barb, J. J. et al. Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA using mock samples. PLoS ONE 11, e0148047 (2016).
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).
Liu, Y., Elworth, R. A. L., Jochum, M. D., Aagaard, K. M. & Treangen, T. J. De novo identification of microbial contaminants in low microbial biomass microbiomes with Squeegee. Nat. Commun. 13, 6799 (2022).
Acknowledgements
This study was supported by a National Medical Research Council grant OFYIRG21nov-0024 to M.C., a National Institutes of Health grant R35-GM130151 to S.L.S., a National Research Foundation Investigatorship grant NRFI09-0015 to N.N. and a Spinoza grant from De Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) to J.N.
Author information
Authors and Affiliations
Contributions
Conceptualization: S.L.S., M.C., J.N., N.N.; data analysis: M.C., N.N.; writing, original draft: S.L.S., M.C., J.N., N.N.; writing, review and editing: S.L.S., M.C., J.N., N.N., A.T., N.F.C.C.d.M., V.S., J.W., R.I., B.M., E.W.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Cancer thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Salzberg, S.L., Chia, M., Tay, A. et al. Setting higher standards for reports of microbial species in human cancers. Nat Cancer (2026). https://doi.org/10.1038/s43018-026-01121-6
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s43018-026-01121-6


