Table 2 Model parameters and output of scenarios for mineral-enriched biomass pyrolysis and subsequent biochar soil application.

From: Mineral-enriched biochar delivers enhanced nutrient recovery and carbon dioxide removal

Scenario

Biomass

Mineral addition

Reference scenario

Biomass costs

Mineral costs

Stable carbon yield

CO2 removal costs

  

Types

Amounts

 

(US$ t−1)

(US$ t−1)

References

US$ t−1

% of reference

Baseline (a)

Miscanthus

8796

16

202

Baseline (b)

Woody residues

5096

25

140

Baseline (c)

Rice straw

5996

87

149

a

Miscanthus

Potassium acetate

1%, 2%

Baseline (a)

8796

100097

16

185, 168

−8, −17

b

Woody residues

Wood ash

5%, 10%, 20, 50%

Baseline (b)

5096

0

25

125, 121, 119, 150

−11, −14, −16, +6

c

Rice straw

Vermiculite

20%

Baseline (c)

5996

14074

87

131

−12

Baselines (d)

Miscanthus

0–200

16

388

Baselines (e)

Woody residues

0–200

25

403

Baselines (f)

Rice straw

0–200

87

376

d

Miscanthus

Potassium acetate

1%, 2%

Baselines (d)

0–200

750–1250

16

342, 301

−12, −22

e

Woody residues

Wood ash

5%, 10%, 20, 50%

Baselines (e)

0–200

0

25

349, 329, 310, 326

−13, −18, −23, −19

f

Rice straw

Vermiculite

20%

Baselines (f)

0–200

105–175

87

269

−28

  1. Simulation of biomass enrichment with (a, d) a refined, soluble mineral (potassium acetate) to bioenergy crop biomass (miscanthus), (b, e) mineral residues (wood ash) to forestry residues (woody residues) and (c, f) ground rocks (vermiculite) to agricultural residues (rice straw). For scenarios (d), (e) and (f), a range of biomass feedstock and mineral costs were modelled and the CO2 removal costs are given for the highest biomass costs (US$ 200 t−1) and medium mineral cost scenarios. Full results are displayed in Fig. 4. Details about modelling of CO2 removal costs can be found in the Supplementary Methods.