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An automatic sediment-facies classification
approach using machine learning and feature
engineering
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The delineation of sediment facies provides essential background information for a broad
range of investigations in geosciences but is often constrained in quality or quantity. Here we
leverage improvements in machine learning and X-ray fluorescence core scanning to develop
an improved approach to automatic sediment-facies classification. This approach was
developed and tested on a regional-scale high-resolution elemental dataset from sediment
cores covering various sediment facies typical for the southern North Sea tidal flat, Germany.
We use a machine-learning-built classification model involving simple but powerful feature
engineering to simulate the observational behavior of sedimentologists and find that
approach has 78% accuracy, followed by error analysis. The model classifies the majority of
sediment facies and also, importantly, highlights critical sections for further investigation.
Research resources can thus be allocated more efficiently. We suggest that our approach
could provide a generalizable blueprint that can be applied and adapted for the research
question and data type at hand.
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ediment facies is defined as an assemblage of sediments that

records specific characteristics of a depositional environ-

ment. It hence provides fundamental sedimentological
information in space and time, which builds the necessary geo-
logical background for studying past surface processes on Earth!.
For instance, the change of sediment facies through time assists
scientists in reconstructing the evolution of paleoenvironments> 4,
Moreover, the knowledge of sediment facies makes available a
proper selection of geochemical proxies for a better interpretation
of paleoclimatic variations®~8. Exploring geological resources, such
as for methane hydrates, oil, and gas, or offshore wind parks also
requires regional investigations of sediment facies®10. Basically, all
research initiatives rely on the classification of sediment facies as a
preliminary step.

Evolution in computer science and computing power made
machine learning (ML) techniques available to various disciplines
over the past two decades!!. Research has started to include ML
to achieve in-depth scientific findings previously constrained by
conventional methods and data resolutions!>!3. ML applications
also have been introduced to the geoscience community, such as
support vector machine (SVC), random forest (RF), and artificial
neural networks'4-18, However, applications are still at an early
stage. The data coverage usually remains small, which can be
expressed in either the amounts of data (<10k), target classes
(e.g., sediment facies and geochemical zones, <6), or features (e.g.,
measuring analytes, <10). For instance, input data are mostly
geophysical measurements (e.g., seismic profiles and borehole
logging data)!418-21 or laborious measurements (e.g., grain-size
variations and quantitative element concentrations)!>!7, which
have resolution limits (tens of centimeters to meters in scale).
Target classes are thus often homogeneous sediments (e.g.,
unique tephra layers or sandstones)!0-20-22 instead of complex
units having the sedimentary structure in an mm scale (e.g,
laminated stream channel deposits). Furthermore, the ML mod-
els’ decision commonly depends on individual data points rather
than on comprehensive observations, including adjacent data
points, which compare much better to the way how sedi-
mentologists work and investigate. Insua et al.!° determine that
their single-point-observation ML models perform worse on
composite carbonates than sand layers. All these factors limit the
complexity and diversity of applications. The same is true for the
fact that developing codes are rarely open-source.

Evolution in core scanning techniques (e.g., X-ray fluorescence
(XRF) core scanner, computed tomography (CT), multi-sensor
core logger (MSCL), and hyperspectral imaging (HSI)) provide
the possibility of acquiring near-continuous (um-scale resolu-
tion), non-destructive and rapid measurements covering both
geophysical and geochemical data from natural archives®23-2>. A
large quantity of sediment investigations is thus integrated with
higher spatial resolution and much more measuring detail?®.
Therefore, data variety and size ascend to a new level, which helps
resolve previously unachievable scientific questions (e.g., paleo-
climatic variation and anthropogenic interaction with the natural
environment)?’-2%, Among these scanning techniques, XRF core
scanning is selected for this study as the primary technique to
acquire measurements. It is evolved from a well-developed che-
mometric community®’, and its applications have been prosper-
ous since 20008, Its rapid measuring provides a wide range of
elemental signals3!, which are adopted by the vast Earth and
environmental research society (e.g., paleoceanography, paleo-
limnology, paleoseismology, pollution history2?-32-34). Besides the
chemical properties, XRF core scanning data offer proxies
representing physical and biological properties, such as grain
size>> and diatom productivity®3. Physical measurements, like CT
and MSCL techniques, provide more convenient and economical
ways to acquire data compared to XRF core scanning, e.g., no
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Fig. 1 Sediment facies information. Abbreviation, age, and sedimentary
environment for facies occurring in the study area, a tidal flat in the
northern German Wadden Sea (adopted from Capperucci et al. (2022)%9).
Positions of facies in relation to sea level and age are only for illustration.
For details, see Supplementary Table S1.

core opening is needed. However, they are not direct or sufficient
information to describe the sediment composition content?!. HSI
has a high potential in acquiring high-resolution chemical and
physical measurements useful for ML applications, but it can be
more precise when coupled with XRF data3¢. XRF core scanning
may give the most comprehensive and reliable information to
simulate the sedimentologists’ observational behavior, which
includes multiple analyses (e.g., grain size, carbonate content,
organic matter, and fossils). Currently, unsupervised ML appli-
cations with XRF data are common for data exploration, but not
many developments in supervised ML330:36,

Our approach aims at enhancing the automatic sediment-facies
classification by overcoming most restrictions. This is inherited
from the successes of two evolutions: ML and core scanning
techniques. High-resolution elemental profiles obtained by XRF
core scanning were acquired under the interdisciplinary Wadden
Sea Archive (WASA) project?® from the UNESCO World
Heritage-listed Wadden Sea in Northern Germany. This region
belongs to a dynamic geological setting, where the environment
varies due to the rapidly rising sea level during the Holocene from
glacial (terrestrial) to shallow marine?37-38. Thus, the studied
sediments provide comprehensive geochemical signals and broad
coverage (11 sediment facies, 53 core sections, 19k data points, for
details: Fig. 1 and Methods), spanning the Late Pleistocene
throughout the Holocene?”. Instead of effortlessly applying ML
algorithms, we tested different feature engineering methods, like
data transformations and principal component analysis (PCA), to
simulate the sedimentologists’ observational behavior by
extending the model’s single-point to a multi-point analysis.
Simple (logistic regression (LR)) and complex (kernel SVC, RF)
ML algorithms were included to compare their feature
engineering-integrated performance. Careful evaluations invol-
ving cross-validation (CV), tailor-designed measures, and error
analysis were carried out during these steps to guarantee the
generalization of the models.

The results indicate a noticeable benefit of feature engineering
that empowers the use of simple ML algorithms, giving enhanced
performance (78% accuracy) and applicability to a standard
computer. In addition, the optimal model provides an outcome
with a confidence level, which highlights critical parts of the
sediment records to allocate more resources for analyzing and
saving resources from the remaining sediments. The approach is
expected as a blueprint to inspire further studies in Earth and
environment communities regardless of data type, region,
and objective. More importantly, this brings interdisciplinary
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Fig. 2 Evaluations of built models. a The best cross-validation (CV) score of each combination of feature engineering (data representations and principal
component analysis—PCA) and ML algorithms (logistic regression—LR, kernel support vector machine—SVC, random forest—RF classifiers). The CV

score is relevant to the mean accuracy during CV iterations. b The fragmentation is quantified by the number of boundaries and accuracy of the optimal
model built from each data representation in the test set. ¢, d The modified confusion matrices describe the performance of the optimal models built from
(¢) rolling data and (d) raw data when applied to the test set. The y-axis represents the facies from the lithological description by sedimentologists. The x-
axis stands for the model-classified facies. The numbers represent the percentages of data in each row, i.e., recall in statistical terminology. For instance, at
the top left of (d), only 3% of data points recognized as hcf by sedimentologists are correctly classified by the model, while 51% of these data points are

misclassified as mf by the model. For abbreviations, refer to Fig. 1.

scientific research to a new era and scale of capability based on
state-of-the-art technological innovations.

Results
Contribution to feature engineering. A series of models were
built to classify sediments using the high-resolution elemental
profiles automatically. The performances from each combination
of feature engineering and ML algorithms were evaluated by the
mean accuracy of five-fold CV scores. The output and visuali-
zation of the grid search are presented in Supplementary
Figs. S3-5. The highest CV scores for each combination are
illustrated in Fig. 2a. The CV scores increase after data repre-
sentations, and the rolling representation results in the best
scores. Only 5 out of 9 comparisons between using or not using
PCA transformation indicate “including PCA” as the better fea-
ture engineering. Thus, there is no clear advantage of using a PCA
transformation. After data representation, the complex ML
algorithms (SVC and RF), which have the enhanced learning
power of non-linearity, provide no noticeable advantage over the
simple algorithm (LR).

Furthermore, the best models using each kind of data (Fig. 2a,
raw data: SVC with PCA, rolling data: LR without PCA, 2D data:

LR with PCA) were evaluated in the test set. Figure 2b shows that
the model using rolling data provides the highest accuracy (78%)
and fewest boundaries (98). Its boundary amount is about 20
times that sedimentologists gave (5), which is still noticeably
lower than the model using raw data output (591). The model
using 2D data does not perform as well as the one with rolling
data but is still better than raw data. When considering the large
size of 2D data (nine times rolling data), creating a burden for
computing, the preference for the rolling data approach is
confirmed.

The optimal model built on the best ML combination (LR
learned from rolling data without PCA) indicates its increasing
performance on laminated facies. When comparing the accuracies
of channel fill deposits (especially hcf, Fig. 2¢c) to those of the
model using raw data (Fig. 2d), the misclassification to sand and
mud flats is remarkably reduced. This points out that the rolling
representation describes the laminated characteristic of channel
fill deposits well enough, comprising two kinds of homogeneous
sublayers (sand and mud). The optimal model does not classify
those sediments separately but together as one facies to recognize
a specific depositional environment. The simple algorithm is thus
allowed to surpass more complex algorithms to the benefit of
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Fig. 3 The optimal model's discriminating behavior. Weights of features in
the decision function of the optimal model built using LR from the rolling
data without PCA transformation. The x-axis contains the features of rolling
data (i.e., rolling mean and standard deviation of the raw elements). The y-
axis is the facies (abbreviations refer to Fig. 1). The darker color, the more
decisive that feature is in classifying to a specific facies. A negative
coefficient indicates the negative influence of the feature.

feature engineering. This finding offers an efficient way of
applying automatic sediment-facies classification by demanding
less computing power due to less model complexity.

Decision function of the model. Owning to the capability of LR,
our optimal model built using LR on the rolling data without
PCA transformation gives weights describing which features
(rolling mean and standard deviation of elements) are dis-
criminating for each facies (i.e., decision function, Fig. 3). In the
following expression, the elements refer to their rolling mean
values if without “variance” specification, which represents the
essence of standard deviation. Classifying as hsm has (1) sub-
stantial negative weights on Ti and Fe, (2) positive weights on Si,
Ca, and Sr, and (3) positive weights on the variance of Ca and Ti.
The channel fill deposits (hcf and Icf) positively rely on Ca but
negatively on Si. To distinguish these two facies, hcf has an evi-
dent influence through Si variance, while Icf has a noticeable
negative weight on Ba. Furthermore, the decision of Icf is less
affected by the variances of elements compared to hcf. sf has
substantial positive weights on Si and Ca but negative on CI, and
mf has a positive weight on Ca while negative weights on Rb and
Ba. It has an overall negative weight on the variance of elements,
especially on S. la has (1) strong negative weights on both Ca and
Sr, (2) an apparent positive weight on Br but a negative weight on
its variance. pt has a positive weight on S and a negative weight
on K. It also has some weights on the variance of Rb and Sr., so
has remarkable positive weights on Si, S, and Ba but negative
weights on Cl, Ca and Fe. pm has (1) positive weights on K, Fe,
Rb, and Ba, (2) negative weights on Ca and Br, and (3) positive
weights on the variance of Cl and Fe. pef has noticeable positive
weights on Cl and Ba but a negative weight on Ca. mo has the
highest (1) positive weights on K, Ti, and Fe, (2) a negative weight
on Br, and (3) positive weight on the variance of Br when com-
pared to other facies.

Misclassification of the model. Besides the improvements that
benefited from feature engineering, the optimal model has lim-
itations causing misclassifications. Error analysis summarizes four
main error-causing categories (Fig. 4a). The first category, with
63.6% occurrence frequency, describes the situation that the pre-
dictions could be correct, but this facies change is omitted to fit a
general picture of environmental interpretation by sedimentolo-
gists. This is because the capture of composite characteristics is

limited by the initially defined (fixed) window size during the
rolling representation. For those laminations or sediment sections
having a thickness >32 mm (window size: 17 data points), the
optimal model cannot identify them as composite facies. These
misclassifications are often considered minor sedimentary struc-
tures. For instance, minor low-energy channel fill deposits are
misclassified to high-energy channel fill deposits in core Sections
N31-1 (Fig. 4b), which might reveal a small-scale channel dee-
pening. In fact, sedimentologists have a flexible observation win-
dow to identify facies, but our ML-based optimal model can only
start from a local measurement and joins with nearby information.
Therefore, these misclassifications should be considered as the
model looks too detailed rather than classification problems.

Another error category is the transition boundary problem,
having a 41.2% occurrence frequency (Fig. 4a). Figure 2c shows
that the accuracies for peat, soil, Pleistocene eolian/fluvial
deposits, and Pleistocene marine sediments are relatively low
compared to the other facies. In most cases, the boundaries
between these facies are gradual and/or indistinct. It is difficult for
sedimentologists to draw a clear separation between them via
macroscopic observation and elemental variation. For example,
soils developed from Pleistocene sediments are similar in their
elemental composition and cause confusion in the model. This
cause of misclassification can be found in the boundaries of pt-so-
pef (lower part of N71-4, Fig. 4b). The relevant transition
boundary bias has also been mentioned in a pilot automation
study nearby?!

The third category having a 21.4% occurrence frequency
(Fig. 4a), is related to the limitation of macroscopic observation
by sedimentologists. Sedimentologists describe these misclassified
sediments with doubts since they are visually similar to several
sediment facies. For instance, in N18-2 (Fig. 4b), around 0.6 m
depth, structureless sediments are described as eolian/fluvial
deposits like their neighbors by sedimentologists. However,
according to their elemental profiles, the optimal model classified
them differently from the neighbors as Pleistocene marine
sediments. This is reasonable because the Pleistocene sand
flat sediments might be visually identical to the structureless
eolian/fluvial deposits unless checking their diatom and
geochemical data.

Subjective and opposing judgments also happen between
sedimentologists. Our model provides a consistent judgment
through its fixed and relatively small observation window. Only a
few cases, like wood fragments, are misclassified as high-energy
shallow marine sediment. But these are out of the model’s ability.
This material (3.7% occurrence frequency, Fig. 4a) is not in the
facies list of training data for model building. The detailed error-
analysis result and comparison results are listed in Supplementary
Data 1 and Figs. S6 and 7.

Highlighting critical segments. Our optimal model estimates the
confidence level of each classification. Figure 5a demonstrates an
example of the probability distribution along the core depth of
one selected core section. The probability values are dispersed
along the facies if the model lacks confidence in its classification.
In contrast, the high probability in specific facies stands for the
model’s confident decision. To more conveniently recognize the
confidence level of our model, the maximum probability among
facies for each data point is extracted (Fig. 5b). The higher the
maximum probability value, the more confident the decision is.

The relation between the model’s confidence level and its error
rate is illustrated in Fig. 5c. The misclassifications (labeled as
incorrect) mainly have a low maximum probability, suggesting
that the more uncertain our model is, the more likely it is wrong.
Empirically, the model’s classification has a higher chance of
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are attached. For abbreviations, refer to Fig. 1.

being wrong when the maximum probability value is <0.3.
Therefore, sedimentologists can focus on sediment sections with a
low maximum probability to carry out further examinations, such
as microscopic observations or quantitative geochemical analyses,
while adopting the automatic classification done by the model if
the maximum probability is >0.3. This provides a valuable
outcome by highlighting the critical part where the expertise and
experience of sedimentologists are needed for correct facies
classification. When applying the model to the whole dataset of
WASA (all 92 cores, 383 sections, 159 k data points), only 1% of
the sediments are marked as critical, requiring further analysis.

Discussion
A simple but powerful recipe of feature engineering (centered log-
ratio transformation and rolling representation) is proposed to fit

the specific needs of sedimentological applications after testing
several combinations of feature engineering methods. The best
model does not need complex ML algorithms (SVC and RF), thus
reducing computation time and model size. A possible reason
explaining the usefulness of rolling representation is its combination
of measurements (i.e., chemical, physical, and biological-related XRF
data) and heterogeneities from the sample and adjacent sediments.
This data representation moves from a single-point observation to a
multi-point (window-sized) observation, which simulates human
observation by considering the context of sedimentary features to
define the sediment facies. The rolling mean draws an overall ele-
mental fingerprint of the sediments, while the rolling standard
deviation describes heterogeneity within this fingerprint.

By interpreting the optimal model’s decision function (Fig. 3),
we can realize the model’s classification behavior and inspect its
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justifiability. The weights in classifying hsm reflect that the model
characterizes the alternating coarse sand (Si) and shell fragments
(Ca, Sr) as its standard and has a dominant marine influence39-41.
The model takes the abundance of shell fragments and relatively
few sand grains as the key to discriminating channel fill deposits.
Notably, the model recognizes more contrasting sediment prop-
erties in hcf than lcf by considering the variances of individual
elements. The negative contribution of Ba, which correspondingly
happens to mf, may show the lack of this element in finer sedi-
ments (clay minerals). Having a high contribution to the elements
related to coarse grain (Si) and shell fragment (Ca) and a negative
contribution to seawater (Cl) describes the composition of sf and
its distance to the sea correctly>®-4l. The model depicts the
homogeneous characteristic of mf by giving a negative con-
tribution to the variances of individual elements. la is character-
istic of a lower contribution from shell fragments, but more
homogeneous organic matter (Br) is recognized by the model34.
Interestingly, the model uses the proxy for pyrite (S), less con-
tribution of mineralogical sediments (K), and the slightly het-
erogeneous composition based on the variance to differentiate pt
from la, which is also organic-rich”#2. The weights for distin-
guishing paleosoils can be related to the leaching (Ca, Fe)

6

process®3-4>, but also the transition boundaries to adjacent
sediments, which creates mixed signals and usually leads to bias
(e.g., the influence of above peat (S)). Although the sedimentation
process of pm is relevant to those Holocene shallow marine
sediments, our model learns a major difference between them:
lacking carbonate and organic matter due to long degradation.
Meanwhile, the abundance of K and Ba is a vital differentiation
possibly caused by different sediment provenances®. The distinct
characteristics of pef are carbonate-free and structureless, which
are well described by the model’s weights. However, the reason
for the model considering Cl and Ba is unclear. To classify mo
from other facies, the model maps its function in having the
highest weights for mineralogical elements (K, Ti, Fe) and a
negative contribution of organic matter (Br). Most of the weights
in the decision function are sensible. A few of them do not have
an appropriate explanation, possibly due to the bias caused by
rolling transformation.

The comprehensive evaluation of the model is estimated by
using robust CV in the training set as well as boundary amount
and balanced accuracy in the test set. Based on a performance of
78% accuracy and the result of detailed error analysis, most
misclassifications are summarized as (1) minor structures that
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were ignored by sedimentologists, (2) confusion caused by tran-
sition boundaries, and (3) sediments visually identical to several
facies (Fig. 4). These error categories are related to the subjective
decision by sedimentologists and thus are described as unavoid-
able bias?’. They can also be considered as opinion variations
among sedimentologists, not actual errors. Therefore, it is
important for sedimentologists to identify these arguable sedi-
ment sections (as quantified by the confidence level, Fig. 5a) from
the entire sediment record to concentrate efforts and discussions.

As mentioned for the model’s limitations, our approach has
not yet fully simulated the sedimentologist’s behavior. With a
flexible observational window and a bigger picture of environ-
mental interpretations in mind, the complex or customized
architecture of neural network algorithms, like long short-term
memory, may cause improvements. Also, more sediment facies
can be considered, which should boost the success of automation.
Numerous ML applications use images containing pattern
recognition, segmentation, and further well-built deep learning
architecture (e.g.,!14849), Replacing XRF data with images may
be a worthy attempt because it gives higher resolution at a lower
measurement cost. Yet, its nature of losing some information that
XRF data has needs to be aware.

Our study provides not only a model to automatically classify
sediments from the Wadden Sea in Germany, but also can be
considered as a methodological blueprint for projects, regardless
of the type of data and the region investigated. Compared to other
studies developing an automatic classification of geological
records!>17:18:21 " our approach has elevated the application to a
new level, which has (1) input data with comprehensive infor-
mation that is widely accepted in the Earth and environmental
sciences and (2) broader data coverage and facies variability.
Scientifically, a large-scale scientific investigation, such as the
whole Wadden Sea area (>1500km?), needs a less time- and
labor-consuming research approach to be accomplished?!. In
industrial terms, cost-efficiency and the capability of managing
large-scale exploration data are in demand. Since our model can
automatically classify the relatively simple but often vast sediment
sections, experts can deal with critical sections and focused ana-
lyses. Thus, the resources (time, personnel, material) can be
redistributed more efficiently. Our future toward a standard
operative procedure of automatically coring, scanning, classifying,
and digitally archiving sediments requires further systematic
scientific and commercial developments. Hopefully, our advances
will assist in exploring new perspectives on Earth and environ-
mental sciences. Furthermore, this evolution shall facilitate
the preservation of geoscientific knowledge since investigations
will be conducted digitally and promote the findability, accessi-
bility, interoperability, and reusability principles®® (especially
reusability).

Methods

Data acquisition. This study was developed under the framework of the inter-
disciplinary WASA project?°. Ninety-two sediment cores (length: up to 6 m, dia-
meter: 8 and 10 cm) were recovered from tidal flats, channels, and offshore around
the island of Norderney. A team of sedimentologists carried out lithological
descriptions and sediment-facies interpretation through macroscopic
observation’’. High-resolution elemental profiles were acquired from a COX Itrax-
XRF core scanner at the GEOPOLAR lab, University of Bremen, scanned at a fixed
setting, and subsequently processed by the Q-spec software (version 2015; COX®
Analytical Systems). Twelve elements (Si, S, Cl, K, Ca, Ti, Fe, Br, Rb, Sr, Zr, Ba)
were chosen based on signal reliability. All data and information were adopted
from a previous study*? that compiled the geochemical and geophysical mea-
surements of the sediment cores. Fifty-three representative sediment core sections
(length: <1.2 m, locations: Supplementary Fig. Sla, with 19,823 data points) cov-
ering 11 sediment facies (Fig. 1) were selected for this approach in order to con-
strain computing time. Data points representing cracks and rough or uneven
sediment surfaces were excluded. The facies labels extracted from lithological
descriptions and elemental profiles were aligned according to their depth.

Feature engineering. The developing scheme of this study is demonstrated in
Supplementary Fig. S2a. The dataset was randomly split into training and test sets
for a robust evaluation. The test set contains one section for each facies while the
remaining sections were used for training. A series of feature engineering methods
(i.e., data transformations in ML terminology) were deployed to enhance the
performance of the models built by supervised ML algorithms. Then, combinations
of these methods were tested to find the most useful one. The steps are the
following.

Elemental data were normalized by the geometric mean in each data point to
eliminate the variance caused by the machine and the sediment itself, such as XRF
tube aging, water content, and grain size, to achieve a better prediction. In addition,
the logarithm was applied to free the normalized data from asymmetry and closed-
sum effects®->2. Together, this data treatment is called centered log-ratio
transformation, which is commonly applied to compositional data”3.

To capture the composite character of sediment facies, the neighboring
information of each data point needs to be included in the data point. We propose
two data representations for comparison. The first is rolling representation, where
the dataset is represented by a centered moving mean and its standard deviation
(Supplementary Fig. S2b) for each element. The moving window size was set to 17
data points since the step-size resolution of the Itrax XRF core scanner is 2 mm,
and the thickness of beddings is predominantly <1 cm for studied sediments*2. The
second is called 2D representation. It collects adjacent data points as a chunk of
data (17 data points * 12 elements) and raveled them to an array of new
dimensions (Supplementary Fig. S2c). This approach is common in image analysis,
which transforms a 2D pixel data matrix into a 1D array. These representations
were implemented for each core section individually to prevent the model building
from data snooping®%.

In the next step, the represented dataset was standardized to zero mean and unit
standard deviation, which is essential for some ML algorithms. PCA with
correlation matrix and whitened settings was included in the workflow to discuss
its need in feature engineering. Yet, the standardization was not applied to the
dataset for the combination of RF classifier without PCA because RF is not
sensitive to the variable’s scale difference.

Model building and evaluation. After feature engineering, three algorithms were
applied to learn the dataset and to build models to classify sediments into facies by
analyzing elemental profiles automatically. LR classifier using ‘Ibfgs’ as solver> and
L2 regularization was selected from linear algorithms. LR learns from the data to a
model with a linear combination of weights derived from the maximum likelihood
convergence. It is a classic soft classifier that produces probability as an outcome in
dealing with multi-class problems®. Hence, it quantifies the uncertainty of pre-
dictions rather than just classification results. Kernel SVC and RF classifiers were
selected from sophisticated non-linear algorithms. The kernel technique of SVC
allows for exploring data relations in the infinite space, which includes element
ratios. Furthermore, SVC has the ability to tolerate noise due to its soft-margin
policy when finding the hyperplane in classification’. RF is an aggregation of
decision trees that enforces its non-linear learning capability and decreases the
overfitting potential by the nature of randomization (both samples and features).
Each decision tree is constructed by a series of decision-making to separate samples
into the desired classification, which simulates the human’s intuitive behavior. In
addition, the decision tree is free from the scale of data, so there is no need for
normalization prior to the implementation, which is more convenient and leads to
a difference in the workflow (Fig. S2a)>8%%. These three algorithms are well-
developed in the ML community and commonly adopted by other disciplines
The algorithms were implemented with the balanced class (i.e., facies) weights®! to
deal with our imbalanced facies distribution (Supplementary Fig. S1b).

Prior to the final evaluation, an exhaustive search for parameters using five-fold
CV was utilized to (1) assess the usefulness of data representation, (2) evaluate the
need of using PCA, and (3) fine-tune parameters (LR: C, SVC: C and y, RF:
n_estimators and max_depth) for building models. In brief, those parameters
control the regularization strength of algorithms to achieve a better
generalization®®. C for LR refers to an inverse of regularization strength that
penalizes the cost function based on L2 regularization®0. C for SVC stands for
the penalty for SVC’s hyperplane margin in the cost function. A higher C
characterizes a harder margin that tolerates fewer misclassifications (potential
noise) according to its trained hyperplane. y for SVC is a parameter in the Gaussian
kernel (also known as Radio Basis Function) that defines how effective a single
training sample is. These two parameters control the regularization but with a
different approach. Both C (for LR and SVC) and y should be positive floats>*0.
We started the searching range from the default 1.0 (C) and 1/n_features (y) in the
logl0 interval. n_estimators refer to the number of decision trees composing the
forest (RF aggregation). A higher number of trees provides a higher randomization
level and thus creates higher regularization. max_depth restricts the size of each
decision tree to avoid overfitting”460, We searched n_estimators from 100 to 5000
with a max_depth from 3 to 15 to find the optimal performance while
compromising the computer memory consumption. The details of parameter
searching are listed in Supplementary Figs. S3-5.

During each iteration of CV, the training set was split into two sets (second
training and validation sets) following the splitting strategy. The 24 training set
was learned by a pipeline composed of feature engineering and algorithm with
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specific parameters to build a model. The model’s performance was evaluated by its
accuracy for the validation set. Instead of using simple accuracy, which calculates
the overall percentages of correct predictions, we used balanced accuracy, a macro-
average of recall scores per class or, equivalently, the mean of accuracies from 11
facies®263 for evaluation. This helps with the search for optimal parameters that
build models predicting all facies fairly well rather than predicting the dominant
facies only. A mean validation accuracy (CV score) was calculated after iterations,
which is more robust in facing data heterogeneity. In total, 18 CV scores were
collected from the best CV scores of each combination (3 kinds of data, with or
without PCA, 3 algorithms).

Once the optimal parameters were decided based on CV results, these
algorithms learned the whole training set to build optimal models. The test set was
then used for evaluating the models’ performances. The performance was described
by balanced accuracy, demonstrated in a modified confusion matrix, and the
number of boundaries, describing the fragmentation problem of predicted facies.

Error analysis was also carried out on the test set to investigate the underlying
causes of misclassifications and consequently prioritize possible improvements*7.
Misclassifications were thoroughly checked via both elemental profiles and images
to summarize error categories. Each misclassification was given one or multiple
error categories. In the end, the occurrence amount of each category was divided by
the total amount of misclassification as frequency, i.e., the category’s contribution.

All computations and visualizations were conducted using the SciPy ecosystem
in Python®%64-68_ The function of providing model probability was adopted from
the well-developed Scikit-learn package®.

Data availability

The data is published in accordance with and under the license “CC-BY: Creative
Commons Attribution 4.0 International”: Lee, An-Sheng; Enters, Dirk; Zolitschka, Bernd
(2022): XRF down-core scanning profiles and sediment facies of sediments from the East
Frisian Wadden Sea, Germany. PANGAEA, https://doi.org/10.1594/PANGAEA.946251.

Code availability
All computer codes and instructions are open-access on https://github.com/dispink/
WASA_faciesXRF.
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