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Long-term fertilization promotes the
microbial-mediated transformation of soil
dissolved organic matter
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Mingming Xia1,2,3, Pengfa Li 1,4, Jia Liu5, Wenjing Qin5, Qingjun Dai6, Meng Wu1,2, Zhongpei Li1,2,
Daming Li7 & Ming Liu 1,2

Understanding dissolved organic matter (DOM) transformation is crucial for comprehending soil
biogeochemical cycling. However, the extent that soil microbes mediate DOM transformation at the
molecular level, and whether this is regulated by fertilization remain largely unknown. Here we
investigated soil DOM transformations under long-term fertilization using Fourier-transform ion
cyclotron resonance mass spectrometry, high-throughput sequencing, and machine learning.
Fertilization greatly promoted transformation potential of DOM molecules. Organic fertilization
increased themean transformation number of DOMmolecules by 260% compared to no-fertilization,
while chemical fertilization increased it by 193%. Machine learning indicated that intrinsic DOM
molecular characteristics could predict transformation potential, especially for medium- or low-
transformation-potential molecules. However, high-transformation-potential DOM molecules were
more influenced by soil microorganisms. Our study provides a parameter to characterize potential
transformation capacity of DOM molecules, the effects of different fertilization treatments on this
potential, and highlights microbial contributions to molecular transformation processes, identifying
the key microbial groups.

Paddy soils (0–100 cm) contain18Pg carbonworldwide,which is 10%higher
than the average for soils generally. They account for 1.2% of the global
carbon stock and 14.2% of the carbon stock in agricultural land1. The carbon
cycle in rice paddies is not only affects soil fertility and crop productivity, but
also an essential part of the global carbon cycle, which is important for
understanding and regulating global climate change. Rice paddies contribute
to greenhouse gas emissions, particularly methane (CH₄), because the
anaerobic conditions created by flooded fields promote the activity of
methanogenic microorganisms2. This increased microbial activity facilitates
the decomposition of organic matter, leading to enhanced carbon transfor-
mation processes that result in highermethane emissions3. Dissolved organic
matter (DOM) is an essential part of the soil carbon pool and plays an
important role in soil biogeochemical processes, plant productivity, and
human health4. The transformation of DOM molecules in rice paddies not
only enhances soil quality by improving nutrient availability and microbial

activity but also plays a crucial role in regulating greenhouse gas emissions,
such as carbon dioxide and methane. This process directly influences eco-
system functions, including carbon sequestration and plant growth, thereby
linking specific agricultural practices, such as fertilization and water man-
agement, to broader climate dynamics5. Previous studies on fertilization have
generally demonstrated that DOM is influenced by fertilization6. The
responses of DOM concentrations to fertilization vary across different loca-
tions globally, indicating that complex mechanisms may be at play7,8.
Numerous studies have highlighted changes in DOM concentration fol-
lowing fertilization, with a secondary focus on shifts in its bioavailability of
dissolved organic carbon9. However, because DOM molecules in soil eco-
systems are highly dynamic and diverse, it remains highly challenging to
comprehensively understand DOM transformations in soils.

Transformation potential refers to the ability of DOM molecules to
undergo biochemical changes, which influences their persistence,
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degradation, and contribution to soil organic matter cycling10. Unlike the
bioavailability of dissolved organic carbon, which specifically addresses the
fraction of DOM that is readily bioavailable to microorganisms11, trans-
formation potential encompasses broader biochemical reactions that
include both labile and recalcitrant compounds10. It is assumed that when
external conditions, such as nutrient levels or environmental factors, are
altered, DOMmolecules will undergo transformations12. Additionally, it is
assumed that the ability ofDOMtransformation is closely linked to external
drivers, meaning that changes in factors like fertilization or climate can
influencemolecular transformations13. Transformationpotential is typically
measured by analyzing the changes in molecular composition, often using
advanced techniques like mass spectrometry14. However, there is a lack of
consensus regarding the accurate characterization of the potential trans-
formation capabilities of soil DOMmolecules.

Previously, biochemical reaction categories have been mainly used as
the smallest research unit to investigate the transformation potential of
DOM molecules. However, characterizing DOM transformation potential
based on biochemical reaction classification is not sufficiently precise. For
instance, lignin is typically viewed as recalcitrant in degradation processes15.
However, lignin-like compounds can interconvert16, and recent findings
indicate that environmental factors influence lignin degradation, challen-
ging the notion of it being absolutely recalcitrant17. Thus, relying on bio-
chemical classifications can lead to imprecise conclusions about the
transformation potential of differentmolecules within the same category. In
previous research, the classification of the transformation potential ofDOM
molecules was based on their presence/absence under different states18 or
based on molecular weight to investigate the DOM transformation after
dividing molecules into different categories19. Nevertheless, it should be
noted that the aforementioned categorizations may lack generalizability,
which poses challenges in their application across diverse environmental
contexts. Recently, Yu et al.20 introduced a novel approach known as reac-
tomics, which enables the assessment of untargeted mass spectrometry
(MS) profiles at the reaction level. The principle of reactomics is to infer the
bioreactions betweenpairedDOMmolecules based onpairedmass distance
(PMD) information.Using this analysis, a previous studydemonstrated that
the microbe-mediated DOM transformations mainly include the oxidor-
eduction of CH–NH2 groups, transferring nitrogenous groups, and for-
mation of the C–N bond in the wastewater treatment process21.
Consequently, we assume that PMD-based reactomics may be a powerful
tool for deciphering soil DOM transformation.

The interactions betweenDOMandmicroorganismshave consistently
garnered attention22 since DOM in natural ecosystems is the main nutrient
and energy source for microbes. As such, DOM is greatly consumed or
transformed by microbes. However, it remains largely unknown how
microorganisms mediate the transformation of DOM, since both the
microbial community and DOM transformation are highly complex21, and
the DOM transformation is difficult to track. Although some recent studies
have attempted to disentangle the microbial-mediated DOM transforma-
tion using ecological models, e.g., network analysis22, they only provided
some overall DOM–microbe interactions23, and the more refined relation-
ships between microorganisms and DOM transformations were not
revealed. For example, it remains uncertain whether microorganisms
influence the potential transformation of specific molecules or if certain
molecular reactions are directly mediated by given microorganisms.

Agricultural practices play a pivotal role in shaping the dynamics of
carbon sources and sinks in the environmen24. As the largest anthropogenic
wetlands on earth25, paddyfields serve as both carbon sources and sinks. The
transformation and dynamics of DOM in these systems influence carbon
sequestration and emissions, thereby impacting climate change. Specifically,
the biochemical processes that govern DOM production, degradation, and
turnover in paddy fields can either enhance or mitigate greenhouse gas
emissions, highlighting their importance in the context of global climate
change26.However, there is limited knowledge regarding the transformation
potential of DOM molecules in paddy soils under different fertilization
treatments and the mediating role of microorganisms. Using high-

resolution MS, we obtained molecular formulas for DOM compounds in
paddy soils under long-term different fertilization in this study. Based on
PMD analysis of molecular formulas detected by Fourier-transform ion
cyclotron resonance mass spectrometry (FT-ICR-MS), we determined the
maximum transformation number (MTN) of DOM molecules and intro-
duced the concept of molecular transformation potential (MTRP), which
focuses on tracking changes in specific reactants and products to show the
transformation potential of DOM under different conditions. Leveraging
machine learning, we also studied the impact of molecular characteristics
and microbes on MTRP. The aims of this study were to (i) identify a
parameter that can serve as an indicator of the potential transformation
capacity of DOM molecules, (ii) investigate the changes in the transfor-
mationpotential ofDOMmolecules under different fertilization treatments,
and elucidate the intrinsic factors driving these variations in paddy soils, and
(iii) understand how microorganisms contribute to the role in
enhancing MTRP.

Results and discussion
The physicochemicals of soil under different fertilization
The initial physicochemical properties of the untreated soil sample were as
follows: pH 5.11, total nitrogen (TN) 0.47 g kg−1, total phosphorus (TP)
0.5 g kg−1, total potassium (TK) 16.9 g kg−1, available nitrogen (AN)
0.0063 g kg−1, available phosphorus (AP) 0.0033 g kg−1, available potassium
(AK) 0.07 g kg−1, free iron oxide (Fe₂O₃) 20.31 g kg−1, free aluminum oxide
(Al₂O₃) 4.60 g kg−1, and organic matter (OM) 8.94 g kg−1. After long-term
exposure to different fertilization treatments, therewere changes in the soil's
physical and chemical properties.Compared to the control (no fertilization),
under chemical fertilization treatments, the OM, TN, and AN content
significantly increased, while AK, Fe₂O₃, and Al₂O₃ contents significantly
decreased. Under organic fertilization treatments, the TP, TK, and AP
contents significantly increased, while the Al₂O₃ content significantly
decreased (Supplementary Fig. 1).

The molecular composition of DOM under different fertilization
The FT–ICR–MSwas employed to determine themolecular composition of
DOM. There were 1503–6129 molecules detected under different fertiliza-
tion treatments (Supplementary Table 1). A total of 7682 distinct molecules
across the analyzed sampleswere also revealed.A vanKrevelendiagramwas
used to visualize the compound distribution (Supplementary Fig. 2(a)–(c)),
which distinctly divided soil DOM biochemical categories into seven
regions: carbohydrate, condensed aromatic, lignin, lipid, protein/amino
sugar, tannin, and other compounds. Lignin was the most abundant
molecule type in the DOM originating from the long-term fertilization
paddy soils, accounting for 59.4–60.6% of all assigned molecules (Supple-
mentary Fig. 2(d)). The highest abundance of lignin was under no fertili-
zation. Tannin and protein/amino sugar contents increased while lipid
content decreased under fertilization treatments, and the highest abun-
dances of both tannin and protein/amino sugar were under chemical fer-
tilization, and the lowest abundance of lipids was under organic fertilization
(Supplementary Fig. 2(d)). The principal coordinate analysis (PCoA)
showed significant variation in DOM composition under different fertili-
zation treatments (p < 0.001) (Supplementary Fig. 2(e)). The possible rea-
sons follow: first, organic fertilization introduces allochthonous DOM,
leading to an increase in tannins content and a decrease in lipid content
within the DOM pool27, which is similar to our results. Second, the appli-
cation of organic fertilizer has been shown to enhance microbial diversity
and composition28, and the increase in microbial diversity is believed to
contribute to the accumulation of recalcitrant compounds such as protein/
amino sugar29. Moreover, DOM transformation is partly influenced by
physical and chemical conditions30, which have different effects on the
components of DOM31.

PMD-based reactomics of DOM under different fertilization
Based on reactomics analysis, we identified reactant–product pairs with
specific PMD values20,21. We identified 131 PMDs as widely present among
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DOM molecules and quantified their relative intensities (Fig. 1). Low-
molecular-weight PMDs were prevalent, indicating that DOM transfor-
mation in the soil was more likely to involve the addition or reduction of
low-molecular-weight functional groups. Previous studies indicated that
smaller, plant-derivedmolecules aremore likely to undergo transformation
into larger, more complex compounds during DOM processing, particu-
larly through the addition or removal of low-molecular-weight functional
groups14,21, consistent with our study. Compared to organic fertilization,
both the CK and chemical fertilization treatments exhibited lower overall
reaction levels. For each specific DOM molecule, we quantified its total
PMD pair count (i.e., MTN) (Supplementary Data 1). To avoid bias caused
byDOMmolecule numbers,we calculated theMTNofdifferent fertilization
treatments after random sampling (high similarity between random sam-
ples, p = 0.98).We found the highestMTNvalues ofDOMmolecules under
organic fertilization (mean = 54), followed by chemical fertilization
(mean = 44) and then no fertilization (mean = 15). This suggested possibly
enhanced DOM transformation under organic fertilization. Usually,
organic fertilization results in a higher proportion of labile fractions32, which
may contribute to the higher DOM molecular transformation. Previous

studies also demonstrated that organic fertilization enhances soil
organic matter activity by increasing mineral-associated organic matter-C
turnover and reducing its mean residence time33, further supporting our
findings.

DOMmolecule transformation under different fertilization
We constructedmultiple PMDnetworks to reveal the coreDOMmolecules
involved in the transformations. The high proportion (accounting for
57.6%) of ligninmolecules in the network indicated their predominant roles
in soil DOM transformation (Fig. 2). For the same biochemical category,
fertilization treatments changed the proportion of molecules contained in
the network. Zou et al.34 also demonstrated that the application of fertili-
zation can regulate changes in themolecular composition of organicmatter,
consistent with our findings. For example, the fertilization treatment altered
the proportion of different types of molecules participating in transforma-
tions. The fertilization treatment increased the proportion of molecules of
carbohydrate (CK, 1.5%; fertilization, 1.6–1.8%), lipids (CK, 2.1%; fertili-
zation, 2.6–3.4%), and tannins (CK, 5.9%; fertilization, 7.9–8.7%), while
reducing those of lignin (CK, 57.6%; fertilization, 57.2–56.5%) and protein/

Fig. 1 | Fertilization-driven shifts in PMDs of
dissolved organicmatter (DOM).Top 30 of the 131
PMDs that are widely present among DOM mole-
cules (a) and their relative intensities in different
fertilization treatments (b). CK no fertilization
added and complete removal of crop straw, NK urea
and potassium chloride, NP urea and calcium-
magnesium phosphate, NPK urea, calcium-
magnesium phosphate, and potassium chloride,
NPKgm NPK chemical fertilization plus green
manure, NPKpm NPK chemical fertilization plus
pig manure, NPKst NPK chemical fertilization plus
rice straw. Each bubble represents the occurrence
frequency of a specific PMD under a given treat-
ment, with bubble size corresponding to the fre-
quency (value ranging from 1000 to 4000).
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amino sugar (CK, 5.6%; fertilization, 4.5–4.7%) (Fig. 2). This increase in AP
and TP due to fertilization enhanced the microbial breakdown of carbo-
hydrates and tannins, leading to higher proportions of these molecules
under fertilized conditions, aligning with the expected impact of phos-
phorus availability on the degradation rates of specific organic molecules35.
This explainswhy the proportions of carbohydrates and tannins involved in
transformations increased under fertilization treatments. Secondly, under
the no-fertilization treatment, the Al₂O₃ content increased compared to
fertilization. The Al₂O₃ can interact with lipids, tannins, and hydroxyl
groups in carbohydrates, reducing their bioavailability and making them
more resistant to transformation36,37. This explains why the proportions of
lipids, tannins, and carbohydrates involved in transformations decreased

under no-fertilization treatment, as higher Al₂O₃ levels made these mole-
cules less bioavailable. Additionally, the increase in nitrogen content due to
fertilization likely accelerates carbohydrate metabolism38. This further
confirms the increase in the proportion of carbohydrates involved in
transformations under fertilization treatments. Furthermore, the fertiliza-
tion treatments increased total MTN (Fig. 3) in specific chemical categories
based on the PMD network. Although the proportion of lignin molecules
was lower under the fertilization treatments, this is likely because lignin, a
major component of plant cell walls, is difficult to degrade and relies on
specialized microbial communities and enzymes39. The increased organic
matter content under fertilization supports a more diverse microbial
community, which facilitates lignin degradation and enhances its overall

Fig. 2 | PMD-based network and the proportion of molecules of specific bio-
chemical categories in the network. a CK plots with no fertilization and complete
removal of crop straw, b NP plots with urea and calcium–magnesium phosphate,
c NK plots with urea and potassium chloride, d NPK plots with urea,

calcium–magnesium phosphate, and potassium chloride, e NPKst plots with NPK
chemical fertilization plus rice straw; fNPKpmplots withNPK chemical fertilization
plus pig manure, and g NPKgm, plots with NPK chemical fertilization plus green
manure.
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transformation40.We selected the top 1% of molecules with higherMTN in
each treatment as key molecules, which were primarily composed of CHO
and CHON (Supplementary Fig. 3). The transformation reactions of
molecules were improved under fertilization treatments (Supplementary
Data 2). Application of organic (meanMTN89) and chemical (meanMTN
101) fertilization resulted in higher connectivity in the molecular network
compared to the control (mean MTN 44) (Supplementary Fig. 3).

Impact of molecular characteristics onmolecule transformation
We employed machine learning to predict MTRP classes based on mole-
cular characteristics. The k-means algorithm classified the molecules into
high (MTN > 70), medium (MTN> 39 and MTN ≤ 70), and low classes
(MTN ≤ 39). The average MTRP belongs to the low class under CK treat-
ment, middle class under chemical treatment, and high class under organic
treatment, partly indicating the difference in MTRP under different ferti-
lization treatments. The machine learning model achieved an accuracy of
85.47% on the test set, indicating a correlation between molecular char-
acteristics andMTRP classes. We also found that the DOMmolecules with
low transformation potential consistently demonstrated the highest preci-
sion and recall bymachine learning (precision: 91.7% in low transformation
potential, 85.7% in medium transformation potential, and 82.3% in high
transformation potential; recall: 89.1% in low transformation potential,
85.7% in medium transformation potential, and 80.3% in high transfor-
mation potential) (Fig. 4), suggesting that the molecular characteristics had
higher efficiency in predicting the transformation potential of low-
transformation-potential molecules. On the contrary, the transformation
potential of high-transformation-potential molecules cannot be accurately
predicted by molecular characteristics.

We calculated feature importance and found that molecular char-
acteristics such as O/C and H/C ratios were closely related to MTRP
(Supplementary Fig. 4(a)). To avoid the potential bias of a single algorithm,
we employed multiple algorithms, which consistently supported the same
conclusion (Supplementary Fig. 4(a)). Furthermore, the findings regarding
the effect of intrinsic molecule characters on MTRP under different treat-
ments were similar (Supplementary Fig. 4(b)). Therefore, we constructed a
distribution plot of MTRP based on Gibbs free energy and O/C and H/C
ratios (Supplementary Fig. 4(c)). The plot clearly demonstrated distinct
ranges of MTRP classifications, suggesting that to some extent, the dis-
tribution of MTRP classifications is determined by Gibbs, O/C, and H/C
ratios. Moreover, we observed a significant difference (p < 0.001) in the
aromaticity index (AI) values of DOM molecules with different transfor-
mation potential (Supplementary Fig. 5). Similar to previous research,
molecules with a high transformation potential had lower AI values than
those with low transformation potential41 and, to some extent, validates the

accuracy of the transformation potential classification derived from our
clustering analysis.

Relationships between microbial composition and DOM
transformation potential
Given that the molecular characteristics had a relatively lower efficiency in
predicting the transformationofhigh-transformation-potentialmolecules,we
hypothesize that the high-transformation-potential molecules may be more
affected by other factors such as soil microorganisms42,43. Therefore, differ-
ences in microbial communities under different fertilization treatments were
also observed in our study (Supplementary Figs. 6 and 7). The redundancy
analysis (RDA) indicated that soil AP, TP, and AK significantly influenced
community compositionof soilmicroorganisms, leading to shifts inmicrobial
community structure under different fertilization treatments (Supplementary
Fig. 8). On this basis, we conducted a Mantel test and Procrustes analysis to
investigate the potential links between DOMmolecules with different trans-
formation potentials and soil microbial community composition (Fig. 5a–c,
Supplementary Fig. 9). The high-transformation-potential, rather than
medium- or low-transformation-potential, DOMmolecules showed stronger
associations with microorganisms (low-transformation-potential: r= 0.049,
p = 0.078; medium-transformation-potential: r= 0.187, p = 0.028; and high-
transformation-potential: r = 0.513, p= 0.006). Furthermore, the associations
betweenmicrobial community and high-transformation-potential molecules
weremuchstrongerunderorganic fertilized soils than inorganic fertilized soils
(r= 0.632, p = 0.004 and r = 0.395, p = 0.005, respectively). These findings
clearly suggest that the high-transformation-potential molecules were more
influenced by soil microorganisms, especially under organic fertilization
treatments. Previous studies indicated that microbial diversity plays a crucial
role in shaping thechemicaldiversityof soilDOM16,44.Our results showed that
the stronger DOM molecule reactivity, the more it was affected by soil
microbial communities, consistent with a previous finding of a much greater
influence of microorganisms on reactive than on recalcitrant components27.
This may be attributed to less accessibility of recalcitrant components for
microbial utilization45.

Microbe-mediated reactions involved in DOM transformation
Based on the 131 PMDs identified above (Fig. 1), we were able to infer the
molecular transformation processes, which led to the identification of the
enzymatic reactions involved in DOM transformation. Then we compared
the enzymatic reactions with the KEGG database, which served as a bridge
to identify themicrobial taxa and enzymes involved inmediating the DOM
transformation processes (Supplementary Data 3). In Fig. 6a, we illustrate
that a larger proportion of operational taxonomic units (OTUs), a proxy for
microbial species inbiodiversity studies, enrichedunder organic fertilization

Fig. 3 | The total maximum transformation
number (MTN) of DOM molecules in different
biochemical categories under different fertiliza-
tion treatments based on the PMDnetwork.CKno
fertilization added and complete removal of crop
straw, NKurea and potassium chloride, NP urea and
calcium-magnesium phosphate, NPK urea,
calcium-magnesium phosphate, and potassium
chloride, NPKgm NPK chemical fertilization plus
green manure, NPKpm NPK chemical fertilization
plus pig manure, NPKst NPK chemical fertilization
plus rice straw.
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treatment contributed functional genes necessary forDOMtransformation.
Among the 243 differential OTUs, 187 (76.95%) were enriched under the
organic fertilization treatment and contributed to the functional genes
required for DOM transformation. Similarly, among the 102 differential
OTUs enriched under the chemical fertilization treatment, 62 OTUs
(60.78%) contributed to the functional genes required for DOM transfor-
mation. In contrast, among the 356 differential OTUs under the CK
treatment, only 105 OTUs (29.49%) contributed to the functional genes
required for DOM transformation (Fig. 6a). These findings suggest an
increased proportion of microorganisms that contributed to DOM trans-
formations in fertilized soils.

Figure 6b highlights the correlations between specific microbial taxa
and enzymes involved in DOM transformation, while Fig. 6c shows the
microbial groups enriched under different fertilization treatments. Under
organic fertilization treatment, there was an increase in key microbial
groups (Desulfobacterota and Gemmatimonadota) positively correlated
with the metabolic pathways of molecules with high transformation
potential. For example, caffeic acid O-methyltransferase catalyzes the
methylation of oxygen atoms on the hydroxyl groups of phenylpropanoids,
playing a critical role in the composition of monolignols, and is a key
enzyme in the biosynthesis of lignin and lignans46. In contrast, no fertili-
zation treatment increased the keymicrobial group (Chloroflexi), whichwas
negatively correlated with the metabolic pathways of molecules with high
transformation potential. For instance, lavonoid 3′-monooxygenase is
mainly involved in reduction reactions, which is closely related to carbon
degradation (Fig. 6b, c). Our study emphasized the importance ofmicrobial
roles in altering DOM MTRP. Thus, fertilization might be involved in
molecular transformation through changes in certain microbes and reg-
ulating key functional genes17,47,48.

Conclusion
Weconducted high-resolutionMSmeasurements, combinedwithmachine
learning and data mining based on PMD reactomics, to augment our
understanding of the transformation potential of DOM and its variation
under different fertilization treatments mediated by microorganisms. Our
study provides a critical parameter that can serve as an indicator of the
transformation potential of DOM molecules, offering a practical tool for
evaluating and managing paddy soil ecosystems, particularly in relation to
carbon cycling and transformation processes under different fertilization
treatments. The findings contribute to improving conceptual frameworks
related to soil organic matter transformation and microbial interactions.
Specifically, our results suggest that fertilization practices, especially organic
fertilization, can promote the transformations of DOMmolecules and that
the intrinsic molecular characteristics such as O/C and H/C ratios can
effectively be used to predict DOM transformation potential. The high-
transformation-potential DOM molecules were more influenced by soil
microorganisms such asDesulfobacterota and Gemmatimonadota. Despite
some uncertainties, the PMD-based reactomics method can be applied to
MS data, and it has been proven effective in water systems. Further research
is needed to validate its applicability in diverse natural environments, with
the aim of expanding its use to other ecological contexts in the future. This
understanding will ultimately contribute to a more comprehensive grasp of
the global carbon cycle.

Materials and methods
Experimental site and soil sampling
The soil samples were collected from a long-term paddy field experiment
site in Yingtan City, Jiangxi Province, China (28°15′30″N, 116°55′30″E).
This long-term test plot was established in 1990 and was reclaimed from
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Fig. 4 | Illustration of confusion matrix indicating the precision and recall of
molecular transformation potential classification under different fertilization
treatments. a NP plots with urea and calcium–magnesium phosphate, b NK plots
with urea and potassium chloride, c NPK plots with urea, calcium-magnesium
phosphate, and potassium chloride, d NPKst plots with NPK chemical fertilization
plus rice straw, e NPKpm plots with NPK chemical fertilization plus pig manure,
fNPKgm, plots with NPK chemical fertilization plus green manure. Each row of the

confusion matrix represents the actual class, while each column represents the
predicted class. “True” means the true transformation potential class of the mole-
cule; “Predict” means the predicted transformation potential class of the molecule;
and 1–3 represent the molecules with high, medium, and low transformation
potential, respectively. The percentages in the blue squares represent the percentage
of prediction correct under each classification, and the percentages in the brick red
squares represent the percentage of prediction errors under each classification.
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local red soil wasteland, so the climatic conditions, soil matrices, and initial
fertilitywere identical, and themain factor contributing to the differences in
soil properties was the 31 years of long-term differential fertilization. The
site is characterized by a subtropical monsoon climate, with an average
annual temperature of 17.6 °C and an average annual precipitation of

1795mm. All soils, classified as typical Ultisols (USDA Soil Taxonomy),
were derived from Quaternary red clay. Soil samples were collected in
November 2021 from the 0 to 20 cm depth range, with three replicates for
each of the seven different fertilization treatments: (1) CK, plots with no
fertilization added and complete removal of crop straw; (2) NP, plots with

Fig. 5 | Relationships between different microbes
and dissolved organic matter (DOM) with differ-
ent transformation potential. Mantel test-based
correlations betweenmicrobes and DOMmolecules
under (a) no-fertilization, b chemical fertilization,
and c organic fertilization treatment. Low, Mid, and
High mean high-transformation-potential DOM
molecules classified by machine learning. Color
gradient denotes Spearman’s correlation coeffi-
cients, edge color denotes the p-value, and edge
width corresponds to Mantel’s r statistic for the
corresponding distance correlations. Low
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115 kg ha−1 N and 68 kg ha−1 P2O5 per season; (3) NK, plots with
115 kg ha−1 urea and 41 kg ha−1 K2O per season; (4) NPK, plots with
115 kg ha−1 N, 68 kg ha−1 P2O5, and 41 kg ha

−1 K2O per season; (5) NPKst,
plots with NPK chemical fertilization plus 2500 kg ha−1 rice straw
per season; (6) NPKpm, plots with NPK chemical fertilization plus
2500 kg ha−1 pig manure per season; and (7) NPKgm, plots with NPK
chemical fertilizationplus 2500 kg ha−1 greenmanure (Astragalus sinicusL.)
per season. The C contents in rice straw, pig manure, and green manure
were 387, 267, and441 g kg−1 respectively.Accordingly, theNcontentswere
9.88, 21.22, and 28.22 g kg−1 respectively. These treatmentswere designed to
represent shifts in fertilization practices over different historical stages in
China, with a focus on several organic fertilization regimes that are repre-
sentative in southern regions. These seven treatments can be grouped into
three categories: no fertilization (1), chemical fertilization (2–4), andorganic
fertilization (5–7). After soil sampling, all samples were stored at 4 °C for
subsequent processing and analysis.

Soil chemical property measuring
Soil pHwas determined using a pHmeter in a 1:2.5 of soil:water suspension.
The total nitrogen (TN) content in soil was determined using the Kjeldahl
method. The available nitrogen (AN) was determined using the alkali
hydrolysis and micro diffusion method. Total phosphorus (TP) and avail-
able phosphorus (AP) were determined by the vanadium-molybdate pho-
tometric method, and total potassium (TK) and available potassium (AK)
were determined by inductively coupled plasma-atomic emission

spectrometry. Soil organic matter (OM) was determined using the potas-
sium dichromate volumetric method. Free iron oxide (Fe₂O₃) and free
aluminum oxide (Al₂O₃) in the soil were determined using atomic
absorption spectroscopy.

Fourier-transform ion cyclotron resonance MS (FT-ICR-MS)
analysis
TheDOMwas extracted fromsoil samples (6 g)using a soil-to-water ratioof
1:5 and ultrapure water. Ultrapure water used for all experiments and
solutions had a resistivity of 18.2MΩ cmat 25 °C and a total organic carbon
content lower than 5 ppb. The mixture was subjected to shaking for 12 h at
room temperature on a horizontal shaker. Subsequently, the solutions were
centrifuged at 1200×g for 10min and filtered through a 0.45 μmmembrane
filter. For clean-up, HPLC methanol (10mL) and acidified ultrapure water
(10mL, pH 2) were passed through PPL cartridges (Agilent Technologies,
Santa Clara, CA, USA). The DOM solution was then loaded onto the PPL
cartridges by gravity flow. Following that, DOM was collected from the
cartridges using 10mL of methanol (HPLC grade; Merck, Darmstadt,
Germany). The collected DOM eluates were stored at −20 °C in darkness
prior to electrospray ionization FT–ICR–MS analysis.

Adeuteratedoctadecanoic acid compoundwas added to the samples as
an internal standard, with a dosage of 15 μL (5 × 10−7 mol L−1) permilliliter
of the sample. The FT–ICR MS instrument (Bruker, Billerica, MA, USA)
utilized a 9.4 T actively shielded superconducting magnet in negative-ion
mode. Each sample was injected into the ESI source at a flow rate of
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Fig. 6 | Functional and taxonomic microbial associated with dissolved organic
matter (DOM) transformation under fertilization. a Venn diagram of OTUs
enriched under different fertilization treatments and OTUs providing functional
genes required for transformation. b Correlations between specific microbial taxa
and enzymes involved in DOM transformation. c Microorganisms enriched under
no fertilization (G1), chemical fertilization (G2), and organic fertilization (G3).
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180 μL h−1 using a syringe pump. The polarization voltage was set at 4.0 kV,
while the capillary column introduction and outlet voltage were 4.5 kV and
320 V, respectively. Ionswere accumulated in thehexapole for 0.001 sbefore
being transferred to the ICR cell. The mass-to-charge ratio (m/z) range
analyzed was 150–800 Da. A time-domain signal acquisition with a 4M
word size was selected. The signal-to-noise ratio and dynamic range were
enhanced through the accumulation of 128 domain FT–ICR transients.

The data obtained were processed using the Data Analysis software
(Bruker Daltonics version 4.2). The raw spectra were converted into a list of
mass-to-charge ratio (m/z) values using the FTMS peak picker algorithm,
with a signal-to-noise (S/N) threshold of 6 and an absolute intensity
threshold of 100. To minimize cumulative errors, all peaks from the entire
dataset were aligned with each other, ensuring the elimination of potential
mass shifts. The molecular formulas of the identified mass peaks were
determined using custom software designed for this purpose49. The assigned
molecular formulas were classified into distinct categories based on the
ratios of oxygen to carbon (O/C) and hydrogen to carbon (H/C) as follows:
lipids for H/C = 1.5–2.0, O/C = 0–0.3; aliphatic/proteins for H/C = 1.5–2.2,
O/C = 0.3–0.67; lignin/CRAM-like for H/C = 0.7–1.5, O/C = 0.1–0.67;
carbohydrates for H/C = 1.5–2.4, O/C = 0.67–1.2; unsaturated hydro-
carbons for H/C = 0.7–1.5, O/C = 0–0.1; aromatic structures for H/
C = 0.2–0.7, O/C = 0–0.67; and tannin for H/C = 0.6–1.5, O/C = 0.67–1.016.

Reactomics analysis and PMD network analysis
The PMD-based Reactomics was used to characterize the transformation
process of DOM molecules. It was previously reported that reactant and
product pairs in a reactionwere formed by exchanging functional groups or
atoms50. FT–ICR–MS can be used to analyze DOM molecules under dif-
ferent conditions to identify variations in molecular composition. Based on
this, PMD analysis helps to identify specific molecular transformation
events (such as oxidation, condensation, and hydrogenation), thereby
revealing the molecular transformation pathways of DOM. For instance, a
reaction generally occurs with the loss or addition of some typical groups
suchasCH2,O, orNH.ThePMD, calculatedby themassdifferencebetween
the reactant and product, can reflect such reaction rules. The aggregate of
PMDs in one samplewith complexDOMmoleculesmaypresent the overall
reaction profiles, called PMD-based Reactomics20. By performing PMD-
based metabolomics analysis using the R package ‘pmd’ in R version 4.2.3,
we constructed a peak list and applied the ‘GlobaStd’ function to identify
independent peaks within the list. The ‘getrda’ function was used for tar-
geted analysis ofMS data. Subsequently, the ‘getstd’ function was employed
to remove adducts, neutral losses, and common fragment ions50. By com-
paring against the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database46, representative PMD values were identified. For example, we
chose the pathways related to the carbon cycle, including carbon fixation
(sdhD, ACO, and acsB) and carbon degradation (pulA, celC, and CBH2).
Each reaction from these pathways was split into several reactant–product
pairs. The PMD was calculated from the mass difference of each
reactant–product pair. For each specific molecule, we quantified its total
PMD pair count, termed the maximum transformation number (MTN).
We posit that MTN reflects the molecule’s molecular transformation
potential (MTRP). The ‘getreact’ function was then utilized to quantify the
abundance of ion pairs in different samples20. In order to avoid the bias of
MTN caused by the difference in total molecule numbers under different
fertilization treatments, we calculated the MTN by randomly sampling the
smallest 1503 molecules (equal to the numbers under CK treatment) with
1000 bootstraps under different treatments.

The PMD-based network was built by searching for the specific
PMD values in DOM molecules in each sample. Each molecule in the
PMD-based network had a connection count, representing potential
transformation pairs.

Evaluation of transformation potential by machine learning
Cluster analysis based on machine learning was employed to evaluate the
transformation potential of each molecule. First, the MTN and molecular

characteristics were organized into a characteristic matrix, where each row
represented a molecule, and each column represented a specific char-
acteristic and MTN. The characteristic matrix was standardized using the
Z-score normalization method to eliminate the dimensional differences
among different characteristics and MTN. TheMTNwas weighted tenfold
to characterize the transformation potential of DOM molecules. We
employed the k-means algorithm to categorize MTRP into three classes
(low, medium, and high), selecting three molecules at random as initial
cluster centers through iterative optimization of the cluster center positions,
either until convergence or after a predetermined number of iterations. The
distance of eachmolecule to its cluster center (D) was calculated, taking into
account theweighting factor of the number of transformations, and thiswas
assigned to the nearest cluster center:

D xi; xj
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

wk xik � xjk
� �2

s
ð1Þ

whereDðxi; xjÞ is theweightedEuclideandistance betweenmolecules xi and
xj, n is the number of characteristics,wk is the weight factor of characteristic
k, andxik andxjk represent the valuesof samples xi andxj oncharacteristick,
respectively.

For each cluster, the weighted mean of all molecules within the cluster
was calculated, and the weighted mean then assigned as the new cluster
centroid (C). This process was iterated until the positions of the cluster
centroids no longer changed or the maximum number of iterations was
reached:

Ck ¼
PNk

i¼1wixikPNk
i¼1wk

ð2Þ

whereCk is the centroid of the kth cluster,Nk is the numberof data points in
the kth cluster,wi is the weight factor of data point xi, and xik is the value of
data point xi on feature k.

According to the final cluster centroids, MTRPs of molecules with
differentMTNwere clustered into low, medium, and high classes, and each
molecule was assigned to its respective cluster based on the MTN under
different fertilization treatments.

Evaluation of impact factors of transformation potential by
machine learning
Machine learning can also be used to investigate the impact of intrinsic
molecular characteristics on MTRP. Therefore, we utilized a supervised
machine learning approach using the random forest (RF) algorithm with
particle swarm optimization (PSO). Molecular characteristics were used as
input characteristics, and MTN was used as the data labels to construct the
datasets. In this study, seven datasets were constructed for three-class
classification (SupplementaryTable 1), and the datasetswere randomly split
into training and testing sets in an 8:2 ratio. We used 10-fold cross-vali-
dation in the low-level dataset to avoid the classifier training underfitting the
low-level dataset. The PSO algorithm was employed to optimize the
hyperparameters of the RF model, including n estimators, bootstrap,
oob_score, max_depth, min_samples_leaf, and max_leaf_nodes. By com-
puting the corresponding fitness values and continuously updating the
velocities and positions of particles, the optimal fitness value was achieved,
resulting in thedeterminationof the best hyperparameters for theRFmodel.
This approach enhanced the convergence speed and prediction perfor-
mance of the RF model.

To gain a more detailed understanding of the impact of individual
molecular characteristics onMTRP,we computed feature importance in the
PSO-RF model. Calculation of feature importance in the PSO-RF model is
typically based on two factors: the contribution of the characteristic to the
node splits in the decision trees and the importance of the characteristic in
the randomization process.
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For each decision tree during the training process, a different training
set was generated by samplingwith a replacement from the original training
set. At each node, a subset of characteristics was randomly selected from all
the characteristics. The selected characteristics were then used to split the
node in a way that maximized the purity of the target variable. The con-
tribution of each characteristic to the splits was recorded as a weight or
importance value. Subsequently, feature importance was aggregated. For
each characteristic, all decision trees in the RF were traversed, and for each
tree, the contribution of the characteristic at each node was accumulated.
Finally, the contribution values were averaged across all decision trees to
obtain the overall importance of the characteristic.

DNA extraction and sequencing analysis
Soil microbial genomic DNA was extracted from 0.5 g of fresh soil using a
FastDNA™ SPIN Kit (MP Biomedicals, Santa Ana, CA, USA). The DNA
sequencing was conducted on an Illumina NovaSeq platform51.

The PCR amplification process involved specific primers targeting the
16S rRNAgene for bacterial communities. The PCR conditions included an
initial denaturation step at 95 °C for 3min, followed by 35 cycles of dena-
turation at 95 °C for 30 s, annealing at 55 °C for 30 s, and extension at 72 °C
for 45 s, with a final extension at 72 °C for 10min.

Data preprocessing included quality filtering, trimming, and merging
of sequencing reads. The filtered sequenceswere assigned taxonomyusing a
reference database. The resulting sequences were then analyzed for
microbial diversity and community composition.

Data analysis
All statistical analyses were performed using R (v4.2.3). TheMantel test was
conducted with the R package “phyloseq” to evaluate correlations between
the compositions of microorganisms and DOM molecules52. Using the R
package ‘vegan’, Redundancy Analysis (RDA) examined microbial-soil
physicochemical properties relationships, while Procrustes analysis assessed
microbial-DOM consistency. Principal coordinate analysis (PCoA), based
on Bray–Curtis dissimilarity, was used to explore microbial community
structures. Linear discriminant analysis effect size (LEfSe) was used to
identify microbial features distinguishing different treatments, using the
“microeco” R package. For microbial community gene abundance predic-
tion, PICRUSt was used53, and a final list of latent function genes along with
their abundances was generated.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The Fourier transform ion cyclotron resonance mass spectrometry data,
along with Supplementary Data 1, 2, and 3, have been deposited in the
Dryad Digital Repository (DOI: 10.5061/dryad.pvmcvdnw4). The raw
sequence data reported in this paper are available in the NCBI Sequence
Read Archive repository under the BioProject ID of PRJNA1134104.
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