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Contrasting impacts of irrigation and
deforestation on Lancang-Mekong River
Basin hydrology
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Irrigation expansion and subsequent deforestation substantially affect large basin variability.
However, given the complex interactions between hydrological variables, a more comprehensive
understanding of the hydrological impactswithin the coexisting land use changes is needed. Here, we
applied surface-groundwater-coupled simulations with historical river gauges and satellite
observations to evaluate long-termand seasonal changes in Lancang-MekongRiver Basin hydrology.
Increasing irrigation elevated soil moisture but depleted groundwater storage. Conversely,
deforestation reduced soil moisture, and increased lateral flow in areas with steep terrain
compensated for groundwater depletion. Irrigation affected runoff by augmenting evapotranspiration
and baseflow, which had opposite implications for runoff changes, causing a mixed spatial pattern of
decreases and increases. Meanwhile, decreases in soil moisture due to deforestation offset increases
in evapotranspiration due to irrigation, resulting in wider areas of runoff increases than decreases.
These illustrate the distinct hydrological impacts of different land use changes and a pathway to
complex system assessments.

Agricultural expansion leading to forest loss has significantly impacted
climate, food, energy, and ecological systems1–3. The continuous expansion
and intensifiedutilizationof croplandhavebeendrivenbyglobal population
growthand regional economicdevelopment, and the expansion in irrigation
has modified the surface and subsurface water balance4,5. In addition, the
decreased forest cover and its effects on water sustainability6 have been an
important factor influencing freshwater security risks7. However, the
hydrological influences and the underlying mechanisms of irrigation
increases and the subsequent deforestation are unclear, and clarifying them
is essential not only for research and resource management but also for
national and global progress toward the United Nations’ 2030 Sustainable
Development Goals on food, water, and forest8.

Systematically exploring and disentangling the influences of irrigation
and deforestation on hydrological processes are still challenging because of
the complex linkages and feedback between the water variables. Conse-
quently, recent studies mostly focused on the influence of a single water
variable or a specific aspect4,6,9. In the aspect of irrigation, soilmoisture (SM)
and evapotranspiration (ET) enhancements have been identified in regions

with irrigation, especially during the growing seasons10,11. Meanwhile, the
groundwater storage (GW) and terrestrial water storage (TWS) depletions
were driven by water overuse for heavy irrigation5,12,13, which was likely to
cause the spatiotemporal redistribution of streamflowandGW compared to
natural conditions14. Accordingly, missing the linkages of different water
variables limits our current understanding of irrigation’s impact on the
regional water cycle4,14,15. Moreover, a series of studies assessed the isolated
effects of forest loss on runoff increments by using paired-watershed
experiments6, the empirical Budyko frameworks9,16, and gauge observations
combined with statistic models17–19, which suggested that deforestation
could additionally influence the water cycle when it was accompanied by
irrigation.

To elucidate the impacts of irrigation and deforestation on the long-
term changes in water cycle variables and clarify the underlying mechan-
isms, we set up a high-resolution (5 arcmin) and fully coupled model based
on a set of climate, hydrological, and geological datasets for the Lancang-
Mekong River Basin (LMRB) (Fig. S1). The LMRB is one of the largest river
basins and is important for the livelihoods of over 70million people20. In the
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LMRB, a fast growth phase of the irrigation expansion originated in the
1980s–1990sdue to the rapid growthofpopulationand rice export21, leading
to an accelerating deforestation rate22,23. Considering the large uncertainties
derived from the lack of reservoir observations and actual operation rules24,
we selected the historical period of 1980–2010 for the focus of our investi-
gation. To obtain spatiotemporally explicit information about the water
cycle, we used the community water model (CWatM) coupled with the
modular three-dimensional finite-difference groundwater flow (MOD-
FLOW), hereafter referred to asCWatM-MODFLOW25.We calibrated it by
simultaneously using site-based streamflow observations and the gridded
satellite water storage product from Gravity Recovery and Climate
Experiment (GRACE)26,27 (Methods). Themodelwas run for two land cover
scenarios28. In the first scenario, the annual land cover was fixed as it was in
1980, labeled as the LAND_1980 experiment (exp). Comparably, the other
scenario was designed as a control (CTRL) exp, in which the dynamic
annual land cover change was simulated. As a result, the differences
(denoted by Δ) between CTRL exp and LAND_1980 exp were caused by
anthropogenic-induced vegetation changes and associated water use
changes (Methods). Since the anthropogenic vegetation changes primarily
manifested as different combinations of irrigation and deforestation, the
grid cells were grouped into three types: irrigation increases with no
deforestation (Irrigation(non-DF)), irrigation increases with deforestation
(Irrigation(DF)), and no irrigation change (non-Irrigation) (Fig. 1). Our

findings suggest that the contrasting mechanisms and effects of irrigation
and deforestation existed in different hydrological processes and differed in
seasons.

Results
Widespread decreased correlation between SM and GW
The spatial distributions of the widespread deforestation and irrigation
during 1980–2010 in the LMRB were inconsistent; that is, 25% of the grid
cells exhibited a combination of deforestation and irrigation (i.e., Irriga-
tion(DF)), and 13% of the grid cells exhibited an increase in irrigation
without deforestation (i.e., Irrigation(non-DF)) (Fig. 1a). Within
LAND_1980 exp, the correlation between the SM and the aridity index
(r(Aridity index, SM)) was generally positive, and sowas the correlation between
the SM andGW (r(GW, SM)), with r(Aridity index, SM) > 0.5 and r(GW, SM) > 0 in
83% and 90% of the grid cells, respectively (Fig. 1b). The irrigation expan-
sion caused widespread decreases in these correlations, shown by negative
Δr(Aridity index, SM) andΔr(GW, SM) between CTRL exp and LAND_1980 exp,
especially in southwestern parts where the irrigation was enhanced sub-
stantially (Fig. 1b–d). The Δr values were more negative in the Irriga-
tion(non-DF) cells than in the Irrigation(DF) cells and non-Irrigation cells.
The negative Δr(GW, SM) in the non-Irrigation cells suggests that the
groundwater abstraction had an impact on the lateral groundwater
flow (Fig. 1e).

Fig. 1 | Weakened coupling due to irrigation increases and deforestation.
a Anthropogenic-induced vegetation changes during 1980–2010 in the Lancang-
Mekong River Basin (LMRB) were grouped into three types: no irrigation change
(non-Irrigation) and irrigation increases with or without deforestation (Irriga-
tion(DF) or Irrigation(non-DF), respectively). b–e Consequently, the relationships
between the aridity index and soil moisture (SM) and between the SM and
groundwater storage (GW) were changed. The x symbol in (a) is shown at a
10 arcmin resolution for clear visualization, within which deforestation occurred in

at least one out of four 5 arcmin cells. b Kendall’s rank correlation (r) in the
LAND_1980 experiment (no land cover change since 1980). c Differences (Δ) in r
between the control (CTRL) experiment and LAND_1980 experiment. In (b, c), the
color of each grid indicates the co-occurrence of two (Δ)r values. r was computed
from the annual values of aridity index, SM, andGW. The colors in (d) are tied to the
levels of irrigation increases in (a), and the bars in (e) denote the mean and 95%
confidence interval of the Δr among the non-Irrigation, Irrigation(DF), and Irri-
gation(non-DF) grids.
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Impacts of irrigation anddeforestation on the increase inSM and
decrease in GW
Within the cells in which both correlations decreased, irrigation increased
the SM and decreased theGW through abstraction (shown as positiveΔSM
and negative ΔGW, respectively, in Fig. 2a, d). However, comparable var-
iations in Δ(Irrigation withdrawal) could lead to more infiltrated water and
greater ΔSM for the Irrigation(non-DF) cells than for the Irrigation(DF)
cells because irrigation and deforestation had contrasting impacts (Figs.
S2 and 2b, c). The reverse deforestation impact was evidenced by the lower
infiltration and SM levels in the non-Irrigation grids with a lower forest
fraction (Fig. S3). In addition, similar variations in the Δ(Groundwater
abstraction) resulted in more negative ΔGW values in the Irrigation(non-
DF) cells compared to the Irrigation(DF) cells (Fig. 2e, f). The mechanisms
controlling this phenomenon include the following: 1) the steeper terrain in
the locations with deforestation contributed to higher lateral groundwater

flow, compensating for GW decreases (Fig. S4); and 2) the deforestation
itself reduced the recharge, enhancing the decreases in the GW (Fig. S3). It
should be noted that irrigation could also have led to a slight increase in the
baseflow (compared to thewithdrawal rate) due to the increased recharge in
the sub-grid groundwater cells unaffected by withdrawals (Fig. S5).

Impacts of irrigation and deforestation on changes in runoff
In contrast to SM, theΔRunoff did not exhibit a consistent spatial pattern in
the LMRB during 1980–2010 (Fig. 3a). By partitioning runoff into surface
runoff and baseflow, results showed that Δ(Surface runoff) and ΔBaseflow
contributed contrastingly, with respective positive and negative propor-
tions, and the largerproportionofΔ(Surface runoff) thanΔBaseflow implies
that the former dominated the ΔRunoff (Fig. 3b). The partial information
decomposition (PID) was then applied, since the SM and ET have inter-
actions and dependencies in controlling the surface runoff (Methods).

Fig. 2 | Long-term changes of SM and GW due to contrasting impacts of irri-
gation and deforestation. a, d The 31-year changes (the differences between CTRL
exp and LAND_1980 exp) in the SM and GW for the Irrigation(non-DF), Irriga-
tion(DF), and non-Irrigation grid cells in the LMRB. b–c, e–fContrast in the impacts
of irrigation and deforestation. The SM, GW, irrigation withdrawal, groundwater

abstraction, and recharge are the yearly values used to calculate the changes based on
the Sen’s slope in each grid with a significant trend (p < 0.05) (Methods). The bars in
the lower left corners of (a, d) denote the mean and 95% confidence interval among
the Irrigation(non-DF), Irrigation(DF), and non-Irrigation grids. The colors in (b, c)
are tied to (a), and those in (e, f) are tied to (d).
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The redundant information about ΔSM and ΔET, as well as the unique
information about ΔET, largely contributed to the negative Δ(Surface
runoff) changes (Fig. 3c), especially for the Irrigation(non-DF) cells
(Fig. S5a–c). That is, the increases in ΔSM induced ΔET increases by sup-
portingmore crop transpiration andmore pondedwater evaporation in the
expanded paddy areas, leading to the decreases in Δ(Surface runoff) (Figs.
S6 and 3d). Therefore, with the converse increases in ΔBaseflow, the
ΔRunoff in the Irrigation(non-DF) grids exhibited a mixed pattern of 57%
grid cells in decreases and 43% grid cells in increases (Figs. S5d–f and 3a).

For the Irrigation(DF) grids with a combination of irrigation and
deforestation, theΔ(Surface runoff)was dominated by unique or redundant
information aboutΔET and tended tobemorepositive than the situation for
Irrigation(non-DF) (Figs. 3c and S5a–c). This is attributed to the above
finding that the increases inΔSMwere lower in the Irrigation(DF) grids than
in the Irrigation(non-DF) grids, causing less ΔET increases from both
perspectives of transpiration and evaporation (Figs. 2a and S6). Conse-
quently, although deforestation simultaneously alleviated the decreases in
Δ(Surface runoff) and the increases in ΔBaseflow caused by irrigation
(Fig. 3e), the ΔRunoff was primarily influenced by the fact that the surface
runoff predominantly increased (Fig. 3a).

Exceptional impacts of irrigation and deforestation in summer
From the perspective of seasonality, we found that the ΔRunoff influenced
by irrigation changed from positive to negative during summer months,
after which it returned to positive (Fig. 4a). TheΔRunoff was mainly due to
the seasonal Δ(Surface runoff), except for the elevated contribution of the
ΔBaseflow, which alleviated the decrease in the ΔRunoff during summer

(Figs. 4b and S7d). In addition, theΔ(Surface runoff) wasmainly controlled
by theΔET that was increased by theΔSM (Fig. S7a–b), since the redundant
information about ΔSM and ΔETmade the largest contribution (Fig. 4c).

Compared to the Irrigation(non-DF) grids, thedecreases inΔRunoff in
summer were intensified in the Irrigation(DF) grids (Fig. 4a) because of the
lower increases inΔBaseflow in the Irrigation(DF) grids (Fig. S7d); however,
the increases inΔRunoff were greater in the othermonths, which eventually
caused more grids with positive ΔRunoff changes (Figs. 4a and 3a). These
greater increases in ΔRunoff, which were dominated by the Δ(Surface
runoff), were mainly caused by the lower increases in ΔET and its driver,
ΔSM (Figs. 4b–d and S7a–b). Exceptionally, theΔSM among Irrigation(DF)
grids show opposite changes to that of Irrigation(non-DF) grids in summer
because the irrigation during crop growing seasons increased the ΔSM but
deforestation countered the impact of the irrigation (Fig. S7a).

Discussion
The widespread high correlation between the r(Aridity index, SM) and r(GW,

SM) in the LAND_1980 exp during 1980–2010 in the LMRB (Fig. 1)
indicates that precipitation was the major source of the SM and the
correlation between the GW and SM was stable when the regional water
cycles were not affected by irrigation and deforestation. Such high cor-
relations between the aridity index and SM (>0.6) have also been iden-
tified in different parts of the world, particularly in the western Europe
and the southern United States, which have experienced a wetting trend
of precipitation in recent decades (1991–2019)29. In addition, site-based
observations of water table depths30 and observation-validated ground-
water simulations31 have revealed that there were highly positive

Fig. 3 | Long-term changes of runoff due to the contrasting impacts of irrigation
and deforestation. a Changes in the runoff during the 31-year study period in
the LMRB. b Proportions of Δ(Surface runoff) and ΔBaseflow, together with
c contributions of the ΔSM and ΔET (namely, evapotranspiration) to the Δ(Surface
runoff), reveal that d–e the inverse impacts of irrigation and deforestation on the
different hydrological processes consequently enhanced the ΔRunoff. The calcula-
tions of the changes are the same as in Fig. 2. The percentages in the lower left corner

of (a) are based on the number of positive/negative cells, and the dashed lines
indicate the mean values. The proportions in (b) were calculated by dividing either
the Δ(Surface runoff) or ΔBaseflow changes by the ΔRunoff changes. The con-
tributions in c are based on the partial information decomposition, which quantifies
the interactions and dependencies in amultivariate system (Methods). d, e show the
average levels of contributions under the impacts of irrigation and deforestation.
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correlations between the groundwater level and SM in regions where
groundwater is an important source for buffering the reliance of SM on
precipitation. Therefore, the widespread negative Δr(Aridity index, SM) and
Δr(GW, SM) values suggest that the increase in irrigation could decrease the
reliance of SM on the aridity index and could disturb the relationship
between the GW and SM (Fig. 1).

Notably, we found that the impacts of deforestation and irrigation on
the SM and GW were different. (1) The irrigation expansion increased the
SM, while the deforestation decreased the SM. (2) The increase in the
irrigation-induced groundwater abstraction reduced the GW and the
recharge changed by lower forest area boosted the decrease in the GW
(Fig. 2). The irrigation impact was conducted by exploitation of GW and
provided additional water to increase the SM and recharge in the irrigated
cells4,14,25,32. In contrast, deforestationwith lower tree density, resulting in less
dense roots and organic matter (from litter), would reduce the water infil-
tration and water-holding capacity of the soil and consequently reduce the
recharge and baseflow33,34. Furthermore, our findings demonstrate the
positive dependency of ET (specifically, transpiration) to SM in water-
limited regions35,36 (Fig. S6), differently from energy-limited watersheds in
Brazil where increased SMwas a negative response to decreased ET rates by
deforestation37. In this context, the hydrological mechanisms of irrigation
expansion via deforestation were elucidated by isolating and comparing the
impacts of irrigation and deforestation.

The occurrence of the spatially inconsistent ΔRunoff in the Irriga-
tion(non-DF) grid cells highlights not only the contrasting impacts of the
increases in the ΔSM and ΔET on the Δ(Surface runoff) but also the con-
trasting impacts of the decreases in Δ(Surface runoff) and increases in
ΔBaseflow (Fig. 3). Building upon the general notion that increasing SM
benefits runoff generation while increasing ET decreases the amount of
water available for the formation of runoff 4,38, we determined that the ΔET
via positive SM-transpiration coupling and the ΔET enhanced by water
evaporationon the saturated SMof the expandedpaddy areaswere themain
factors controlling the Δ(Surface runoff) in the context of irrigation
expansion9,39. Moreover, widespread increases in recharge and baseflow
during irrigation expansion, which have also been observed in other basins
in which irrigation is utilized32,40, could buffer runoff deficits predominantly
caused by decreases in surface runoff in most grids or increased runoff in
other grids due to increased surface runoff. This resulted in an almost half-
and-half mix pattern of both decreases and increases.

The impact of the decreases in forest cover on the increases in runoff
(Fig. 3) is supportedby the sensitivity calculationsof theBudykoassumption
for global runoff dataset16, statistical analyses of streamflow records18,19, and
watershed modeling37. From this perspective, in the study area, the defor-
estation conducted to achieve irrigation expansion led to additional surface
runoff beyond that caused by irrigation (Figs. 3 and S5), except for the

summer when irrigation caused runoff deficits (Fig. S7). This is consistent
with observations of other large river basins in Brazil17. Moreover, defor-
estation led to decreased recharge and baseflow due to alteration of the soil
structure,which further exacerbated the runoff deficit (Figs. 4 andS7). In the
other months, the ΔRunoff, which was predominantly caused by the
Δ(Surface runoff), was increased by irrigation, and deforestation decreased
the ΔET, thus leading to a greater increase in the ΔRunoff. Overall, the
impactofdeforestationonΔRunoffwas in contrastwith that of irrigationvia
different mechanisms for different seasons, shifting to the runoff pattern
with more long-term increases.

By identifying those potential mechanisms by which irrigation and
deforestation impact surface and subsurface hydrological processes con-
trastingly, this study enhanced our understanding of how and why the
pivotal water variables (like SM, GW, ET, baseflow, runoff) could be
changed in the long term and between the seasons, and what were the
connections between variables. The findings could benefit the broader
investigations in other water-limited regions35, especially under the context
thatwidespread shifts from energy-limited towater-limited conditionswere
projected due to climate change36. The changing climate also affected
baseflow through the changes in precipitation, evaporative demand and
snow fraction41. Further assessments of human-natural water systems were
suggested by taking into account more reliable reservoir operation
information24 and dynamic farmer decisions interacted with the hydro-
logical environment42. Additionally, based on multi-source observation
adjustments and numerical experiments, our approaches hold practical
applicability on a global scale28, and the multivariate analysis framework
could be adapted to other complex systems43.

Methods
Model setup and forcing data
TheCWatM is a physics-based large-scale hydrologicalmodel that includes
human impacts such as irrigation, water withdrawal for other purposes,
surface reservoirs, and land cover44. CWatM-MODFLOW further allows
the modeling of groundwater lateral flow, groundwater exchanges with
surface soil and water, and groundwater pumping25. Surface water-
groundwater exchanges are characterized by (1) groundwater recharge
from the CWatM to MODFLOW and (2) groundwater capillary rise and
baseflow simulated by MODFLOW to the lower soil layer and the river
network system in CWatM. The land cover changes are characterized using
the six classes44, and the groundwater abstraction was calculated based on
the water demands for livestock, industry, domestic use44, and irrigation25.

We appliedCWatM-MODFLOWto the LMRBusing high resolutions
of 5 arcmin (~9 km at the Equator) for CWatM and 1.5 km for MOD-
FLOW. Within the coupled model, the simulations were applied at time
steps of 1 day and 1 week for CWatM and MODFLOW, respectively.

Fig. 4 | Seasonal variability of the runoff changes
under the impacts of irrigation and deforestation.
a Seasonal variability ofΔRunoff. bContributions of
Δ(Surface runoff) and ΔBaseflow to ΔRunoff.
c–d Contributions of ΔSM and ΔET to Δ(Surface
runoff) in the LMRB during 1980–2010. Unlike
Fig. 3, the ΔRunoff in (a) was calculated using the
daily ΔRunoff during the 31-year study period on
the same day, and each ΔRunoff of a day is the
average among the Irrigation(non-DF)/Irriga-
tion(DF)/non-Irrigation grid cells.
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Regarding driving themodel at a high resolution, we used a regional climate
product for 1980‒201045. This recently developedproductwas derived using
the Weather Research and Forecasting (WRF) model to dynamically
downscale the 0.25° fifth generation of the European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global
climate (ERA5) global data to 9 km in East Asia. It has a reliable repre-
sentation comparedwith other products and has been validated using gauge
and satellite observations45. The forcing datasets were resampled to a reso-
lution of 5 arcmin.

Regional parameterization
The regional parameterizations were improved in both the CWatM and
MODFLOW parts. For CWatM, the unsaturated hydraulic conductivity in
the soil layers (K;m d-1)wasdeterminedusing the vanGenuchten equation46

(Eq. (1)) based on the soil saturated conductivity (Ks; m d-1), the actual,
maximum, and residual amounts of SM (θ, θs, and θr, respectively, in cm3

cm-3), a pore-size related parameter (m), and an empirical shape factor
(l)44,47, as follows:

K ¼ Ks
θ � θr
θs � θr

� �l

1� 1� θ � θr
θs � θr

� �1=m
" #m( )2

ð1Þ

where Ks, θ, θs, θr, and m, provided in the CWatM default maps, were
calculated based on the soil properties from the Harmonized World Soil
Database 1.248 and thepedotransfer functions fromtheHydraulicProperties
of European Soils (HYPRES)49. However, we found that the range of the
providedm for our study area exceeds the lower limit of 0.550, causing K to
remain at low levels and the fluxes of the percolation in the groundwater
recharge to be much lower than the preferential flow (Fig. S8). The study in
the North China Plain51 adjusted the magnitude of the percolation within
the groundwater recharge using an exponential equation with a calibrated
site-specific parameter α instead of Eq. (1) (see examples of K-θ curves in
Fig. S8) based on an earlier field investigation in their study region52. In
contrast to their attempts, the parameters of Eq. (1) for the LMRB refer to
HiHydroSoil v2.053, which applies pedotransfer functions based on
thousands of soil samples and performs significantly better thanHYPRES54.
Moreover, l, whichwas originally interpretedas a physical parameter related
to the tortuosity structure of the connected pores55, was found to always be
lower than its predetermined value of 0.5 in further studies47,56, providing
flexibility to compensate for a conceptual deficiency of the capillary bundle
models57. Therefore, l was adjusted to an appropriate value during the
calibration to accurately predict K in groundwater-soil exchanges58.

ForMODFLOW, the upwardflow from the groundwater system to the
soil layer and channels of CWatM was calculated by using DRN package,
which was determined by simulated water table depth and permeability in
each cell. Then, the partitioning of upward groundwater flow into capillary
rise feeding the soils and baseflow feeding the rivers was conducted by
computing 500m resolution river networks with a flow accumulation area
threshold of 25 km259 based on the 3 arcs (~90m at the Equator) hydro-
logically conditioned digital elevation model (C-DEM) of HydroSHEDS60.
This partitioning was further calibrated for each catchment by adding an
adjusted factor25. The aquifer permeability and porosity were obtained from
global hydrogeologymaps 2.0 (GLHYMPS 2.0)61. In addition, we improved
the identification of permafrost distribution using the new dataset based on
comprehensive field data62 (Fig. S1), and we conceptualized the permafrost
as an aquitard layer with a low hydraulic conductivity of 5.2 × 10-11m/s63,64.
The specific yield is close to the porosity for aquifers with a large grain size,
but it ismuch smaller than the porosity for aquifers with a small grain size65.
Therefore, the specific yield was approximated to be 80% of the porosity for
sand and larger grain sizes, and this reduction scale was calibrated for slit
and clay66.

Based on a limited geological survey67 and our study’s purpose of
surface water-groundwater interactions68,69, we considered one unconfined
aquifer layer with varying thicknesses from the mountains to sediments for

sub-basins 1–10 (Fig. S1)70. In contrast, sub-basin 11, which is mainly
located in theCambodiaMekongRiverDelta aquifer,was considered to be a
confined aquifer71, and we applied a global field data-based relationship
between the specific storage and porosity to characterize the specific
storage72. The method of determining the aquifer thickness distribution70

was embedded in the model. Accordingly, the elevation differences (E) in
the C-DEM along the drainage direction network from the hydrological
data and maps based on shuttle elevation derivatives at multiple scales
(HydroSHEDS) database were used to classify the cells into alluvial aquifer
and mountain range aquifer cells. The relative differences (E’) normalized
from E (Eq. (2)) were used to rate the z-scores (Z in Eq. (3)), which indicate
the likelihood that the alluvial aquifer cells form a thick layer close to the
river or a thinner layer farther away from the steam70.

E0 ¼ 1� E � Emin

Emax � Emin
ð2Þ

Z ¼ G�1 E0ð Þ ð3Þ

whereG−1 is the inverse standardnormal distribution, and themapping ofZ
was combined with a log-normal distribution of thickness values with a
randomly sampled average (A) and a fixed coefficient of variation (Cv) (Eq.
(4))69,70.

thickness ¼ eln Að Þ 1þCvZð Þ ð4Þ

where A was adjusted during the calibration, and the mountain range cells,
which mainly consisted of hard rock with secondary permeability, were
assumed to have only a thin aquifer below the soil layers with the fifth
percentile of the thickness distribution.

Calibration scheme and model performance
The LMRB was divided into 11 independent sub-basins based on the
locations of thehydrological station and thedrainagedirection (Fig. S1), and
each sub-basin had different parameters for characterizing the spatial het-
erogeneity within this large river basin73. For each sub-basin, we calibrated
and validated the model using the daily discharge at the gauge station
locations and the monthly TWS anomalies among the sub-basin cells. The
calibration and validation periods were 2002‒2006 and 2007‒2010,
respectively (Table S1), as theGRACETWSdatasets are available from2002
and the operations of hydropower dams after 2010would obscure the focus
of this research. The calibration was performed using non-dominated
sorting genetic algorithm II (NSGA-II) to evolve the 14 parameters asso-
ciated with snowmelt, crop evapotranspiration, open water evaporation,
exchanges between soil and groundwater, soil depth, interflow, infiltration,
preferential flow, groundwater recharge, runoff concentration and routing,
reservoir and lake storage, and aquifer thickness distribution. Three
objective functions were utilized to obtain the Pareto-optimal solutions: (1)
the modified Kling-Gupta efficiency (KGEdis) between the simulated and
observed discharge26,74, (2) the correlation coefficient (r’TWS), and 3) the root
mean square error (RMSETWS) between the simulated and observed TWS
anomalies51,75, where the r’TWS and RMSETWS scores were integrated from
the grid level to the sub-basin level to achieve consistency with KGEdis (see
the following methods).

The scarce valuable gauge discharge data have long been a primary
concern for LMRB research and resource management20,76. In contrast, the
satellite-observed TWS data, as a reliable constraint that improves water-
shed simulations, were integrated considering variables such as theGW and
SM26,77. Accordingly, the KGEdis had a higher weight of 0.7 for the fitness
comparisons inNSGA-II, compared to the other two objectives that need to
be maximized (i.e., r’TWS and 1-RMSETWS). Although the r’TWS and
RMSETWS are comparable in terms of importance, we found that the r’TWS,
which exhibited larger variations, hadhigher sensitivity for theParetomulti-
optimization, so their weights were set to 0.2 and 0.1, respectively. These
weights were also used to determine themetric (M) for selecting the optimal
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parameters among the Pareto frontiers (Eq. (5)), as follows:

M ¼ 0:7×KGEdis þ 0:2× r0TWS þ 0:1× 1� RMSETWS

� � ð5Þ

where r’TWS and RMSETWS were calculated in each 0.5° cell and then
averaged for each sub-basin, consistent with KGEdis. The observed TWS
anomalies at a 0.5° resolution were the ensemblemean of the Jet Propulsion
Laboratory mass concentration (mascon) product (0.5° resolution)78 and
theCenter for SpaceResearchmasconproduct (0.25° resolution)79 following
the recent study80. The simulated TWS anomalies were implemented with
anarea-basedupscaling from5arcmin to0.5° during the calibrations. Sucha
multi-objective calibration strategy has been proven to have the ability to
decrease the equifinality of the parameterization and reduce the
uncertainties of hydrological predictions26,27.

TheNSGA-IIwas set upwith a population size of 256, a recombination
pool size of 80, and 60 generations to ensure convergence. For each set of
parameters, the CWatM-MODFLOWwas used to conduct a warmup run
for 20 years using the daily averagemeteorological forcing for 1980‒2010 20
times, which proved to be sufficient to initialize the water table25,51,81. Since
the hydrologic predictions for each sub-basin were largely impacted by the
discharge from the upstream area of each sub-basin, the calibration and
validation were employed consecutively from the upstream sub-basins to
the downstream sub-basins. The overall performance is shown in Fig. S1b,
which shows that our multi-objective parameter optimization method can
provide a robust representation of both the surface and subsurface hydro-
logical processes. We found that the performance of the TWS simulations
was poor for the first sub-basin (Fig. S9), which was probably because the
parameterization of the groundwater system in this regionwas data-limited
and had large uncertainties. Fortunately, this region was not the primary
focus of the analysis in this research.

Experimental design and data analysis
The hydrological model was run for two land cover scenarios28, namely
LAND_1980 exp and CTRL exp. Accordingly, Δ values in each of the
variables were the differences between CTRL exp and LAND_1980 exp,
reflecting the impacts of deforestation and irrigation on the water cycle, and
these impacts occurred in different combinations among the grid cells:
Irrigation(non-DF), Irrigation(DF), and non-Irrigation.

Kendall’s rank correlation, which avoids linearity assumptions, was
applied to identify the relationships between the aridity index and SM
(denoted as r(Aridity index, SM)) and between the GW and SM (denoted as
r(GW, SM))

19,36. The aridity index was calculated as the ratio of precipita-
tion to potential evapotranspiration, representing the hydro-climatic
conditions that could control the SM82, and the variabilities of the GW
and SM were found to be consistent in different hydro-climatic
conditions83,84. In Figs. 1–3, the aridity index is based on the annual
amounts of precipitation and potential evapotranspiration, which were
summed using the daily simulated values, and the SM and GW are the
annual averages of the daily simulated values. After calculating these
values in each grid of the LAND_1980 exp and CTRL exp, the change in r
(i.e., Δr(Aridity index, SM) or Δr(GW, SM)) was obtained by subtracting the
values of LAND_1980 exp from those of CTRL exp. Therefore, the Δr
was positive when r was higher in CTRL than in LAND_1980.

The long-term changes in the variables (e.g., ΔSM and ΔGW) were
calculated basedonanon-parametric estimationmethod (Eq. (6))76 for each
grid and each day. In Figs. 2 and 3, the changes were calculated in each grid
for the annual averages of the SM and GW and the annual amounts of the
irrigation withdrawal, groundwater abstraction, recharge, baseflow, surface
runoff, evapotranspiration, and runoff. The recharge is defined as the net
groundwater recharge from the soil (i.e., recharge minus capillary flow). In
addition to showing these overall changes during the study period
(1980–2010), the changes shown in Fig. 4 demonstrate that the seasonal
variabilitywas calculated based on the dailyΔ values (e.g.,ΔRunoff) over the
31-yearperiodon the sameday,where eachΔvalue for adaywas the average
among each type of grid cell (Irrigation(non-DF)/Irrigation(DF)/non-

Irrigation), given by

Δ change ¼ k× n ð6Þ

wheren is the number of years in the study period, i.e., 31, k is the Sen’s slope
estimated for each grid or each day (mm/yr or mm/d) based on the 31 Δ
values for each variable. Sen’s slope estimates the trend of a time series by
applying the slope of the Kendall-Theil robust line, and it has been widely
used to describe the magnitudes of the trends of climate and hydrological
variables. The Mann-Kendall test was conducted at a significance level of
95% for the overall changes.

As runoff consists of surface runoff and baseflow, the ratios of either
|Δ(Surface runoff)| or |ΔBaseflow| to |Δ(Surface runoff)|+|ΔBaseflow| were
used to quantify their respective contributions to the ΔRunoff changes85. In
contrast, the ΔSM and ΔET have interactions and dependencies in con-
trolling theΔ(Surface runoff)38, so their contributions in such amultivariate
system were quantified by employing partial information decomposition
(PID)43. PID measures the amount of information that the ΔSM or ΔET
uniquely contributes to the Δ(Surface runoff), the redundant information
between ΔSM and ΔET, and the synergistic information (Eq. (7)).

I ΔSM � ΔET;Δ Surface runoffð Þð Þ ¼ U ΔSM;Δ Surface runoffð Þð Þ
þU ΔET;Δ Surface runoffð Þð Þ þ R ΔSM � ΔET;Δ Surface runoffð Þð Þ

þS ΔSM � ΔET;Δ Surface runoffð Þð Þ
ð7Þ

where I is the total mutual information, and U, R, and S are the unique,
redundant, and synergistic information, respectively. The computation was
conducted using the method of refs. 43,86, and the unique, redundant, and
synergistic contributions of the ΔSM and ΔET to the ΔRunoff variability
were U/I, R/I, and S/I, respectively. The unique ΔSM and ΔET information
reflects the direct contributions of the irrigation-induced and/or
deforestation-induced ΔSM and ΔET variations to the Δ(Surface runoff),
respectively, while the redundant information reflects the contributions of
the coupled variations inΔSM andΔET to theΔ(Surface runoff)43.When the
Δ(Surface runoff) increased and the redundant information made the
largest contribution, we assumed that the increase in the ΔSM drove
the Δ(Surface runoff), although there was negative feedback between the
ΔSM and ΔET. In contrast, when the Δ(Surface runoff) decreased and the
redundant information made the largest contribution, the increase in
the ΔET induced by the increase in the ΔSM contributed to the Δ(Surface
runoff).

Data availability
The forcing datasets45 are available from http://biggeo.gvc.gu.se/
TPReanalysis/. The HiHydroSoil v2.053, HydroSHEDS C-DEM60,
and GLHYMPS 2.061 for parameterization are available from https://
www.futurewater.eu/projects/hihydrosoil/, https://www.hydrosheds.org/
hydrosheds-core-downloads, and https://borealisdata.ca/dataset.xhtml?
persistentId=doi:10.5683/SP2/TTJNIU, respectively. The discharge data is
from the Mekong River Commission (MRC) website (https://portal.
mrcmekong.org/). The Jet Propulsion Laboratory mascon product78 and
the Center for Space Research mascon product79 for TWS anomalies are
available from https://grace.jpl.nasa.gov/data/get-data/ and https://www2.
csr.utexas.edu/grace/RL06_mascons.html, respectively.

Code availability
The CWatM-MODFLOW model25 and the pre-processing code for
groundwater parameterization are available on Zenodo (https://doi.org/10.
5281/zenodo.6609072). The multi-objective calibration method based on
NSGA-II canbe accessed in the tutorialfiles onGitHub (https://github.com/
iiasa/CWatM). A demo to implement the PID method86 is also available
from GitHub (https://github.com/pwollstadt/IDTxl).
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