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High flows contributed a large part of
annual contaminant yields in New
Zealand’s rivers
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Laura Keenan4, Ton Snelder5 & Crile Doscher2

Accurate contaminant yield estimation in rivers is essential to developing water quality policies and
monitoring their effectiveness over time.Weassessed the contribution of high-flows (≥90th percentile)
to total yields of nitrate-nitrogen, total nitrogen, total phosphorus, and E. coli calculated frommonthly
dataover 15 years (310–325sites) inNewZealand, andat 24 siteswith high-frequency (30-min) nitrate-
nitrogen and total phosphorus. High flows contributed 51–74% of annual contaminant yields at long-
term sites and 48%of nitrate-nitrogen and 63%of total phosphorus in the high-frequency sites.Mean
uncertainties in annual yields estimated from monthly monitoring data (compared to the true yield,
calculated from high-frequency records) were 29% for nitrate-nitrogen and 52% for total phosphorus.
Daily sampling was needed to reduce uncertainty to <10% especially in catchments with a high
proportion of agricultural land use.

Annual loads of contaminants like nutrients (nitrogen (N) and phosphorus
(P)), sediment and the faecal indicator bacteria Escherichia coli (E. coli) in
rivers are strongly influenced by high flows1–3. Management of land at the
property (i.e. farm) scale typically focuses on reducing losses of these con-
taminants to water as a load—the amount of contaminant transported by a
river, or more commonly as a yield—amount of contaminant transported
over a period (commonly a year), per unit area of the farm or catchment.
Assuming flow is measured continuously, yields cannot be accurately esti-
mated if concentrations during high-flows are poorly characterised (for
example if high-flow events are poorly represented in monthly concentra-
tionmonitoring datasets). Therefore, if farms are in a catchmentwhere high
flows are a strong driver of contaminant yield, it can be difficult to establish
accurate yields and the effect of on-farm management actions to reduce
farm and catchment yields. This inaccuracy can erode trust in the process
that implementson-farmmanagement actions to reduce contaminant loads
and meet water quality objectives.

The concentration and form (dissolved or total) of nutrients can also
influence the likelihood of water quality impairment from algal growth in
rivers or lakes4–6, what algal species proliferate, and their effects on trophic
interactions and human health7. Much work has shown that the yield and
concentration of particulate-boundN and P and E. coli increase with storm
size owing to greater inputs from contaminants concentrated or deposited
(e.g., via animal dung) onto topsoil and lost via surface runoff or artificial

drainage networks8–10. Owing to shorter residence times, dissolved nutrients
are thought to be more available to algae in smaller rivers than particulate-
bound nutrients, but long residence times mean all nutrient forms can
becomeavailable to algae in lakes and larger rivers.Hence, tounderstand the
risk to river or lakewater quality, it is necessary tounderstand if nutrients are
being preferentially lost in particulate form at high flows as it will enable the
better targeting of strategies tomitigate particulate losses (such asfilter strips
or sediment retention ponds)11.

We have a good understanding of the factors that influence the
proportion of contaminant yields associated with high river flows from
studies that have looked at a few catchments of similar characteristics.
However, our understanding is poor when we have tried to elucidate
common factors acrossmultiple catchments12. For example, snowmelt is
well understood as a consistent cause of contaminant losses from frozen
fields, especially those receiving manure in agricultural catchments13,14.
However, across a range of agricultural and forested catchments, both
positive and negative, correlations have been found between nitrate
concentrations and antecedent soil moisture conditions15,16. Hence, an
improved understanding of how climate, hydrology and land use factors
influence the contribution of high-nutrient flows to yields, their timing
and their location, is critical to determine the strategies that may be put
in place to reduce total nutrient yields in freshwaters and evaluate their
success over time.
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The frequency of sampling is a key factor that determines the accuracy
of contaminant yield estimates. Here, ‘accurate’ yield estimates are defined
to be as close as possible to the ‘true’ yield. Although continuous records of
contaminant concentrations and hence the true yield do not exist, high-
frequency sampling, often only a few minutes apart, is seen as the closest
proxy for continuous measurement and therefore can be combined with
high-frequency riverflowmeasurements to give themost accurate estimates
of the ‘true’ yield. High-frequency contaminant monitoring is becoming
more common, and the data can be used to informour understanding of the
interactions between catchment and streamprocess such as nutrient cycling
and stream metabolism and the effects of different lithologies, soil types,
management practices and flow paths on contaminant transfers17. Bieroza,
et al.17 also point out that high-frequency sampling can be used to detect
changes in load that infrequent sampling may miss. For example, Shore,
et al.18 showed that the underprediction of nutrient loads was exacerbated if
high flows coincided with, or were soon preceded by, an application of a
contaminant in a highly available form (e.g., slurry). Moreover, we argue
that high-frequency sampling can be used to estimate the contribution of
high flows to the ‘true’ yield.

The aims of this study were two-fold. The first aim was to calculate the
contribution of catchment average yields coming from high flows and total
flows for monitored sites and use these with catchment characteristics to
predict the contribution of high flows to total yields for unmonitored river
sites. These outputs were combined in an interactive national map showing
both yields at monitored sites and the percentage of average annual total
contaminant yield that is associatedwith high flows at rivers ≥4 order in the
NewZealand digital streamnetwork (DN2.4). Themapprovides userswith
information ofwhere highflowsmake a large contribution to total yield, and
thus, for example, where to target mitigation actions that are more effective
at mitigating the risk of contaminant losses during runoff events. The sec-
ond aim was to assess the effect of different sampling frequencies on the
accuracy of high flow and total flow yield estimates. This will provide
managers with information to adjust monitoring strategies in catchments
where the percentage of high flow yield is high, for example by targeting
water quality sampling during high river flow events to improve the accu-
racy of total yield estimations.

Results and discussion
To derive national maps of contaminant yields and components of yields
associated with high flows, we used nationally available monthly sample
results of the nutrient forms nitrate-nitrogen (nitrate-N), total nitrogen
(TN), dissolved reactive phosphorus (DRP) and total phosphorus (TP) and
the microbiological indicator E. coli. We selected these contaminants
because of their control of water quality attributes (either via direct toxicity
or of other attributes like algal growth), and their inclusion inmany policies
and remedial efforts to improve water quality, worldwide19–21. We chose to
present data as yields as they standardise losses by area enabling compar-
isons between catchments (and farms). To assess the effect of different
sampling frequencies, we used locally available high-frequency (30-min)
nitrate and turbidity (matched to TP)measurements and ‘sub-sampled’ the
data series to determine the error in estimating yields from data of differing
sample frequencies (varying from 2-hourly to monthly). Finally, we used
insights from the study to provide a commentary on the suitability of dif-
ferent monitoring strategies and frequencies to improve the accuracy of
contaminant yield estimates and to detect the effectiveness of actions to
mitigate mobile and immobile contaminant loss from land to water.

Behaviour and distribution of yields at monthly sampled sites
Across the 310–325 sites with monthly contaminant concentration and
river flow data, estimated median yields of nitrate-N and TN were,
respectively, 3.4 and 6.0 kg N ha−1 yr−1, for DRP and TP the respective
median yields were 0.1 and 0.6 kg P ha−1 yr−1, and for E. coli the median
yield was 1.1 × 106 cfu ha−1 yr−1. The distribution of yields is shown in
Supplementary Fig. 1. The estimatedmedian yields were slightly lower than
published median estimates of TN (9.0 kg ha−1 yr−1), TP (0.8 kg ha−1 yr−1),

and E. coli (5.0 × 1010 cfu ha−1 yr−1) lost from 55 agricultural catchments in
NewZealand22 but this was expected given that these published studies were
dominated by almost 100% agricultural land use and the 310–325 mon-
itored sites used in our study contained 26.8% non-agricultural land23.

The median percentage of yield associated with high flows (≥90th
flow percentile) was 51%, 55%, 42%, 66%, and 74% for nitrate-N, TN,
DRP, TP and E. coli of total yields, respectively (Fig. 1). On average, there
were 16 samples per site taken during high flows over the 15-year study
period, equivalent to ~9% of monthly samples and close to the 10% of
samples expected if flows ≥90th flow percentile were sampled randomly.
This implies that flows ≥90th percentile were, on average, representa-
tively sampled - numerically. Indeed, the ratio of observed (daily yield
calculated from monitoring data) to expected daily yields (from Weight
Regression over Time, Discharge and Season [WRTDS] estimates for the
same day) (Fig. 2) were close to one for nutrient forms for most flow
percentiles. Furthermore, the ratio converged towards one at higher
flows, suggesting that, on average, yields were estimated reasonably well
at higher flows by WRTDS. The same tendency was true for E. coli, but
overall predictions were farther from one compared with those for
nutrients (Fig. 2).

The percentage of average total yields associated with high flows was
greater than estimated in some other studies overseas, but can be explained
by a high percentage (73.2%) of catchments in agricultural land use (of
which 10% is estimated to be artificially drained)24, and steep slopes (mean
slope = 4%) that tend to be characterised by flashy hydrological responses.
For instance, in Illinois, Kelly et al.8 found the load of soluble (viz. dissolved)
reactive P associated with high flows was only 19% of total yield. This was
likely caused byflat cropping landwith conservation tillage thatwould likely
promote soil water and nutrient storage. In contrast, heavily tile-drained
land in themid-west region of the United States exhibits flashy hydrology25,
and high flows were found to transport 50-80% of total yield26–28. Similarly,
headwater catchmentswith steeper slopesand frequent rainfall led to 80%of
TP losses in high flows in Northwest England29.

Spatially, the sites with a high percentage of total yields associated
with high flows were widely distributed across both of New Zealand’s
main islands (Fig. 3). High percentages were associated with intensive
agricultural activity, whereas, lower percentages were more evident for all
contaminants in the central North Island and in some basins in the
central parts of the South Island. Lower percentages in the central North
Island are likely caused by high infiltration into porous soils and aquifers
of volcanic lithology leading to stable flows30, and in both areas by large
areas of low-intensity land use (often including conservation land31) that
reduce the availability of N, P and E. coli to be lost from land to
waterways during rainfall events32.

To further investigate thepercentage of total yields associatedwithhigh
flows, we combined both yield types with catchment characteristics to
predict them (and the percentage of total yields associated with high flows)
for unmonitored rivers ≥4th order. The performance of these models, as
measured by the coefficient of determination, was classed (as perMoriasi et
al.33) as satisfactory (R2 > 0.6) for all but E. coli for both yield types, and for
the TP yields associated with high flows (Table 1). Performance, estimated
by the rootmean square error, was classed as good (0.75–1.0) to satisfactory
(1–2) for all analytes. Estimated yields from unmonitored ≥4th order rivers
were lower than for the monitored sites, owing to the higher percentage of
native and exotic forestry in unmonitored catchments (median = 34.1 vs
26.8%, respectively23).

Across ≥4th order rivers the percentage of total yields associated with
high flows was 46% (nitrate-N), 48% (TN), 45% (DRP), 66% (TP) and 74%
(E. coli) (Table 2). Consistent with the effect of catchment characteristics on
high-flow hydrology34, variables such as elevation and mean flow tended to
be more important for models of high flow yield than for total yield (Sup-
plementary Figs. 2 to 21). However, there were differences in the effect of
hydrology and/or catchment characteristics between contaminants. For
instance, stocking density was important for nitrate-N (Supplementary
Figs. 2 and 4), TN (Supplementary Figs. 6 and 8) andE. coli (Supplementary

https://doi.org/10.1038/s43247-025-02238-9 Article

Communications Earth & Environment |           (2025) 6:335 2

www.nature.com/commsenv


Figs. 18 and 20), commensurate with the importance of urine and dung
deposits by grazing animals on the loss of nutrients and faecal bacteria in
New Zealand35. In contrast, DRP (Supplementary Figs. 10 and 12) and TP
(Supplementary Figs. 14 and 16) appeared to be more responsive to
hydrological variables such as mean flow (Supplementary Figs. 13 and 14).

High-frequency data
Across the 24 sites with high-frequency nitrate-N, turbidity (converted
to TP) and flow data, we calculated loads using different sub-sampling of
the original high frequency data to determine if lower sampling fre-
quencies could accurately estimate the ‘true’ yield (the continuous

Fig. 1 | Contaminant yields are accounted for by flows greater than each per-
centile. Box plots showing the percentage of total yield accounted for by flows
greater than each percentile (upper and lower end of the box are the 75th and 25th

percentiles, with the median in the middle and the 95th and 5th percentiles as
whiskers, and outliers shown as dots). The mean number of samples per site greater
than each percentile is given along the top.
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record). Owing to lower spatial coverage of high-frequency data, a
preliminary analysis investigated if using WRTDS outputs from the
monthly sampling sites could be used as a surrogate for ‘true’ yields and
compare them against yields from weekly or monthly sub-samplings.
However, because the WRTDS outputs are smoothed, minimising
variability in daily loads, such a comparison is not possible (see Sup-
plementary Note 1 and Supplementary Fig. 28). Instead, we only

examined the influence of sub-sampling frequencies using the 24 con-
tinuous sites with high-frequency data.

Like the results obtained at the monthly sites, the high-frequency
data showed a high percentage of total yield was associated with high
flows (Supplementary Fig. 29). A Mann-Whitney test indicated that the
median yields of nitrate-N and TP in high flows and all flows, were
slightly greater (P = 0.026) for the continuous sites (0.9 kg P ha−1 yr−1)

Fig. 2 | Predicted over-observed daily yields forflows greater than each percentile.
Box plots showing the quotient of the predicted over observed daily yields for flows
greater than each percentile (upper and lower end of the box are the 75th and 25th

percentiles, with the median in the middle and the 95th and 5th percentiles as
whiskers, and outliers shown as dots).
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compared to the long-term sites (0.6 kg P ha−1 yr−1). Owing to the pre-
sence of some extreme outliers from equipment failure in the high-
frequency nitrate-N record for the Kakanui River at McCones, calcu-
lated yields for sub-sampled frequencies from six-hourly to fortnightly
were erroneous (Supplementary Fig. 30). We therefore filtered-out these

sub-sampling frequencies for this site from further analysis. As a check
of the validity of sub-sampling after filtering, the mean number of sub-
samples was within 10% of the expected number for each sub-sampling
frequency for both nitrate-N andTP (e.g., 11 vs 12 formonthly sampling;
Figs. 4 and 5).

Fig. 3 | The influence of high flows on yields. Total contaminant yields associated with high flows, at monthly sampled and high-frequency (bottom right map) sites.
Numbers in the bottom right map refer to high-frequency sites listed in Table 2. Basemap from GAGM (https://gadm.org/data.html).
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For nitrate-N, the mean percentage of total yield associated with high
flows was 48%, varying from 20% in the spring-fed Kaiapoi River to 70% in
the steep Shag River (Table 3). The absolute difference to the true yield for
high flows (only) and for total flows increased to >10% for weekly and

monthly sampling (Table 4), with the Kakanui River at Gemmels exhibiting
the greatest mean differences across all sampling frequencies (44.1 and
20.9% for high flows and all flows, respectively; Fig. 4). For TP, the mean
absolute difference to the true yield for high flows was 63%, varying from

Table 1 | High-frequency sites

Contaminant/site name (size, km2) Start date Years of record Total yield (kg ha−1 yr−1) High flow yield (kg
ha−1 yr−1)

High flow/total yield (%)

Nitrate-N

1 Kakanui River at McCones (676) 06/09/2016 6.8 1.1 0.7 61

2 Kakanui River at Gemmels (294) 06/09/2016 1.1 1.1 0.5 46

3 Mill Creek (41) 01/09/2018 3.0 7.8 5.2 66

4 Shag River at Craig Road (430) 18/07/2017 5.9 0.9 0.7 70

5 Shag River at Shakey Bridge (505) 18/07/2017 2.9 1.0 0.7 73

6 Kaiapoi River (6) 16/10/2018 3.7 11.2 1.8 16

7 Hurunui River (2513) 10/07/2018 4.2 2.7 0.6 24

8 Windermere drain (52) 24/05/2019 4.2 6.0 1.8 31

9 Aparima River (1259) 04/01/2015 7.3 10.0 4.5 45

Total P

10 Mangaeho River (415) 27/05/2022 1.2 0.8 0.6 68

11 Mangati Stream (2) 30/06/2019 4.1 1.1 0.5 47

12 Tangahoe River (280) 14/09/2022 0.4 0.9 0.5 56

13 Waingongoro River (226) 31/01/2021 1.5 0.6 0.3 48

14 Wakapuaka River (43) 10/10/2018 4.9 0.6 0.2 39

15 Horokiri Stream (29) 01/01/2015 7.5 0.8 0.6 75

16 Pauatahanui Stream (39) 01/01/2015 7.5 2.3 1.8 81

17 Porirua Stream (33) 01/01/2015 7.1 2.6 2.1 81

18 Manawatu River (714) 17/03/2011 7.9 1.2 1.0 79

19 Mangahao River (280) 22/07/2011 3.1 0.5 0.3 66

20 Mangatainoka River (403) 11/08/2010 8.4 0.7 0.5 70

21 Ohura River (670) 14/02/2011 11.4 0.9 0.5 58

22 Pohangina River (487) 09/06/2010 8.7 1.1 0.7 66

23 Rangitikei River (2685) 26/08/2010 8.5 0.4 0.3 62

24 Tiraumea River (761) 30/03/2011 7.9 5.4 2.4 45

Name, length of data record, total yield, high flow yield and the percentage of total yield associated with high flows (high flow/total yield) of nitrate-nitrogen and total phosphorus for each high-frequency
data site.

Table 2 | Model performance for estimating national yields

Contaminant Model R2 Root mean squared error (log cfub or kg
ha−1yr−1)

Mean absolute deviation Mean absolute percent error

E. coli High flow 0.57 1.228 0.912 0.093

Total 0.55 1.066 0.804 0.076

Nitrate-N High flow 0.69 0.665 0.439 1.181

Total 0.66 0.688 0.479 1.395

TN High flow 0.74 0.505 0.372 1.558

Total 0.70 0.483 0.360 0.896

DRP High flow 0.63 0.548 0.417 0.142

Total 0.56 0.542 0.421 0.204

TP High flow 0.50 0.757 0.588 2.910

Total 0.48 0.629 0.486 1.542

Performance (coefficient of determination [R2], mean absolute error and themean absolute percent error) for the fit of a RandomForest model to sites with yield dataa for each contaminant for high flow and
total yields.
aThe number of sites with data were 323, 337, 336, 310 and 318 for E. coli, Nitrate-N, TN, DRP and TP, respectively.
bColiform forming units.
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39% in theWakapuakaRiver to 81% in the smaller Pauatahanui andPorirua
Streams (Table 3). Like nitrate-N, the absolute difference to the true yield of
TP for high flows and total flows increased to >10% forweekly andmonthly
sampling (Table 4), with the Tangahoe River exhibiting the greatest mean
differences across all sampling frequencies (32.3 and 23.7% for high flows
and total flows, respectively; Fig. 5).

Several other studies have compared the uncertainty that regular
but infrequent sampling can cause when compared to high-frequency
sampling and estimates of the true yield. For instance, Bieroza et al.36

also showed that the median uncertainty in the estimating TP load

was−0.02% for daily sampling and 16% forweekly sampling (compared
to the ‘true’ load estimated from hourly measurements) but varied
across both sampling frequencies depending on the time of sampling
(12 p.m. to 4 a.m.) from−10 to 9% and on the day of sampling from−69
to 77%. We didn’t vary time of the day in our analysis, as regular
sampling inNewZealand is usually conducted between 10 am and 4 pm,
but we did vary the day of sampling (up to seven days), yielding similar
absolute errors to Bieroza et al.36. Cassidy and Jordan37 examined sub-
sampling in three small Irish catchments dominated by pasture
(3–5 km2; compared to a mean of 535 km−2 studied here, Table 3). The

Fig. 4 | Uncertainties with sub-sampling for nitrate-nitrogen. Absolute percen-
tage difference between nitrate-nitrogen (NO3-N) yields estimated by different
sampling frequencies (2-hourly, 6-hourly, 12-hourly, daily, weekly, and monthly)

and the ‘true’ yields (calculated from high-frequency data), for high flow yields (top
graph) and total (All flows) yields (bottom graph) The different number of samples
reflect variation in flow at each site.
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mean error compared to the true TP load was 60% (close to the 63%
we estimated). However, some of this error was associated with
the method of load estimation, which was also the case for uncertainties
in nutrient loads from tile-drained landscapes in the US and Canada38.
Although not the aim of our work, which focuses only on sub-sampling
frequency, subsequent work has shown WRTDS tends to produce
outputs closer to the true load than models like Beale’s Ratio Estimator
that use average flows, and therefore are highly influenced by high
flows39,40.

Limitations and caveats
We used high-frequency data to determine if lower-frequency sampling
regimes would introduce uncertainty in yield estimates. High-frequency
data are not without uncertainty, which could be caused by sensor fouling
and drift41, data loss due to sensor damage, and poor correlations between
sensor data and other contaminants (e.g., between turbidity and TP)42. In
our study, we lost <5% of data owing to equipment failure, which did not
coincide with high flows and hence is unlikely to have affected our findings.
In general, relationships between turbidity and TP were good (mean

Fig. 5 | Uncertainties with sub-sampling for total phosphorus. Absolute percen-
tage difference between total phosphorus (TP) yields estimated by different sam-
pling frequencies (2-hourly, 6-hourly, 12-hourly, daily, weekly, and monthly) and

the ‘true’ yields (calculated from high-frequency data), for high flow yields (top
graph) and total (All flows) yields (bottom graph). The different number of samples
reflect variation in flow at each site.
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R2 = 0.81). Furthermore, few trends in concentrations were observed over
the period of record43 that could have changed relationships42. However, we
accept that there is a possibility that uncertainty estimates for deriving TP
from turbidity at sites with lower coefficients of determination (e.g.,
Waingongoro River R2 = 0.27) may themselves be prone to large error.

Accepting these factors as minor limitations of the high-frequency
data, it is important to note that sites were restricted to pastoral land uses in
five out of 16 regions of New Zealand. No differences were noted between
the proportion of sites (χ2 test) in the climate (P = 0.616), land cover
(P = 0.494), geology (P = 0.238) and source of flow (P = 0.907) River
Environment Classes between high-frequency and monthly sampled sites.
While this implies that the high-frequency sites were representative of the
proportion of long-term sites in these classes, they are unlikely to be
representative of sites in other regions (n = 11). Furthermore, too few sites
werepresent for there tobe significant correlationsbetween the contribution
of biophysical characteristics and error in either high or total flows or to

make robust predictions about their influence on error (Supplementary
Tables 1 and 2).

Policy impact
Many jurisdictions, both in New Zealand and internationally have
developed water quality improvement policies that link catchment
sources of contaminants to acceptable water quality and/or ecological
conditions in downstream receiving environments such as rivers, estu-
aries and lakes19,44. The development of water quality improvement tar-
gets, and related controls and regulations on resource use (point-source
and diffuse discharges) within the catchment, typically relies on catch-
ment models, which are generally calibrated to estimates of mean annual
in-river loads derived from monitoring data45–47. In New Zealand, much
like other jurisdictions, authorities have also set regulations requiring the
reduction of contaminant losses from farms, for example, nitrate-N
yields from farms by 5–20% over 10 years48 or 36% (to 20 kg N ha−1 yr−1)
by 203549. Although these regulations apply at the farm level, the water
quality outcomes are measured in the catchment at the downstream
receiving water body (river, lake, or estuary). In all these applications,
obtaining accurate estimates of in-river loads and yields is central to
supporting the development of robust water quality policies and evalu-
ating whether water quality outcomes (e.g., an overall 30% reduction in
nitrogen load being delivered to an estuary) are met or being progressed
towards over time. Developing and implementing water quality mon-
itoring strategies enabling more accurate estimates of loads and yields are
therefore critical to developing water quality policy and evaluating, and
reporting on, their success over time as is required by law in New
Zealand19. Understanding how hydrology, in particular high flows,
influence the temporal distribution of in-river loads is one important
consideration when developing or improving water quality monitoring
strategies to improve our ability to accurately characterise in-river loads
and yields.

Our data shows that yields are strongly influenced by high flows,
and that there is considerable uncertainty in estimating the true yield
(both high flow and total) from monthly data sets. Excluding the influ-
ence of attenuation processes that may alter farm yields before they reach
a river, our data suggests that the present standard water quality mon-
itoring based on monthly sampling will result in a mean uncertainty of
29% in the estimation of in-river annual yields. This uncertainty is the
same as, or greater than, the overall reductions required on farm by some
policy targets. A similar conclusion was reached by Neal et al.50 who
suggested seven-hourly sampling as the optimal frequency for estimating
loads/yields. Progress towards or actual achievement of yield reduction
targets is likely to be difficult to evaluate unless different sampling stra-
tegies aiming at reducing the uncertainty in load estimates, including

Table 3 | Contribution of high flows to yields

Contaminant Yield Median Mean Standard deviation Interquartile range Percentage of yield from
high flows

E. coli High flows 23,889 56,840 72,585 84,882

Total 35,504 76,011 82,838 116,704 74

Nitrate-N High flows 0.65 1.12 1.10 1.41

Total 1.31 2.39 2.46 2.68 46

TN High flows 1.83 2.23 1.70 2.52

Total 3.69 4.47 3.24 4.25 48

DRP High flows 0.04 0.04 0.02 0.03

Total 0.09 0.09 0.04 0.07 45

TP High flows 0.32 0.36 0.22 0.23

Total 0.51 0.54 0.25 0.29 66

Mean, standarddeviation, and interquartile range of thepredicted annual yield (all kg ha−1 except forE. coliwhich is in coliform formingunits ha−1) of different contaminants for≥4thorder streams (n = 71540)
across New Zealand. Also given is the percentage of total yield associated with high flows.

Table 4 | Uncertainty caused by sampling frequency

Contaminant
yield and
sampling
frequency

Mean
number of
samples

Absolute mean (%)
difference (±95%
CI) for high flow
yields

Absolute mean (%)
difference (±95%
CI) for allflowyields

Nitrate-nitrogen (mean true yield = 4.6 kg ha−1; mean yield for high flows =
1.8 kg ha−1)

2-hourly 4179 3.7 (0.9, 6.5) 2.1 (0.3, 3.9)

6-hourly 1394 2.0 (0.7, 3.2) 0.8 (0.2, 1.4)

12-hourly 697 5.1 (1.4, 8.7) 2.3 (0.5, 4.2)

Daily 348 9.8 (3.0, 16.6) 5.7 (1.8, 6.9)

Weekly 50 17.2 (8.7, 25.7) 11.7 (4.6, 18.8)

Monthly 11 53.7 (23.0, 84.4) 28.7 (14.3, 43.1)

Total phosphorus (mean true yield = 1.6 kg ha−1; mean yield for high flows =
1.0 kg ha−1)

2-hourly 3481 0.7 (0.3, 1.5) 1.2 (0.7, 1.7)

6-hourly 1195 1.8 (1.0, 2.5) 3.8 (1.9, 5.7)

12-hourly 598 4.3 (1.7, 7.0) 4.8 (3.2, 6.3)

Daily 299 8.3 (3.0, 13.5) 7.3 (3.8, 10.9)

Weekly 43 28.4 (19.7, 37.1) 18.8 (14.9, 22.8)

Monthly 10 57.7 (43.2, 72.2) 52.4 (36.3, 68.7)

Mean number of samples and the absolutemean percentage difference (±95%confidence interval)
in yield (estimated yield based on lower sampling frequency vs true yield calculated from high-
frequency data) for high flows and total (all flows) for nitrate-nitrogen and total phosphorus.
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more frequent sampling, are implemented. Assuming sampling is opti-
mised to detect the signal of N losses from farms and that the lag time
between N being lost and detected in the receiving freshwater body is
short (note the mean lag time in New Zealand rivers is about 5 years51),
our data suggests daily sampling would give a mean uncertainty of ~6%
for N and P. We suggest that this magnitude of uncertainty would
improve confidence that progress towards achieving targets is being
measured appropriately. For instance, high-frequency sampling would
increase the likelihood of detecting the effect of 15 out of 24 strategies
developed in New Zealand to mitigate the loss of nutrients and E. coli
from land to freshwater (Supplementary Table 3). However, it should be
mentioned that like monthly sampling, yields determined from high-
frequency sampling will not be immune to variation caused by climate
and hydrology52–54. It is therefore also important to consider the influence
of climate on uncertainty in calculating yields, irrespective of the fre-
quency of sampling. Such considerations are now being explored with
adaptations to common methods to calculate yield such as
WRTDSplus55.

Higher frequency sampling will increase the cost to regulatory
authorities. Indeed, a recent study of sampling in New Zealand suggested
that the variation inherent with monthly sampling would require an
increase in monitoring costs by 4–5 times over the current costs to detect
water quality changes required to meet national bottom lines for nutrients,
sediment, and E. coli. Recent advances in real-time sensors have quickly
decreased the cost of analyses56. We do not suggest that all water quality
sampling be replaced by high-frequency sensors as (1) the cost of doing so
may be large, (2) operationally ready, high-frequency monitoring technol-
ogies are not available for all key water quality variables, and (3) such
increased monitoring effort is unlikely to be required at every existing
monitoring station. Instead, where accurately characterising contaminant
yields is critical to policy development or policy effectiveness evaluation, it
may be prudent to use our interactivemap of the degree towhich high flows
are influencing total yields to guide a reviewof currentmonitoring practices,
and potentially replace some manual low-frequency sampling with high-
frequency sensors, especially in streams that are strongly influenced by
agricultural land use. Doing so will enable poor practices, such as the runoff
of dairy shed effluent, to be quickly detected, processed, and the practice
corrected18,57.

Materials and methods
Monthly river water quality data
We obtained daily mean flow and monthly water quality data (nitrate-N,
TN, DRP, TP, and E. coli concentration results from grab samples) from
New Zealand’s 16 regional authorities via the Land, Air, Water Aotearoa
website (www.lawa.org.nz), and from the National Institute of Water and
Atmospheric Research’s (NIWA) National River Water Quality Network
(NRWQN) (see Supplementary Table 4 for descriptive statistics). The
analysis was restricted to water quality sites where flow is also monitored.
We usedmonthly data for the period 2006–2021. Sampling for this datawas
done on the same weekday ±1 day, four weeks apart for each site. Fifteen
years of data are long enough to account for trends caused by short-term
climatic variation58. A description of the sites, and the methods used to
create a consistent data set are available elsewhere52,59–61. To determine if the
sites were representative of those across the national river network we first
placed sites into a series of six hierarchical River Environment Classes62 (or
New Zealand’s Digital River Network 2.5) that group sites according to
factors like climate, topography, hydrology andgeology.We thenused a chi-
square test if the homogeneity of the proportion of sites within 25 out of 30
classeswas like theproportionof river segmentsper class across thedrainage
network (Supplementary Table 5).

Estimating loads frommonthly sample data
Daily loads for each site were estimated using the Weighted Regression on
Time, Discharge and Season (WRTDS)63 using the EGRET package in R64.
TheWRTDSmodel uses a dynamic regression between concentrations and

adailyflow record, to impute daily concentration, and load as the product of
daily (estimated) concentration and flow. The performance of thesemodels
by contaminant is presented in Supplementary Table 6. Although we
concluded that their performance was, on average, good, we were not
confident that they produced realistic loads for some sites with very high
loads and could not be explained by, for example, widespread intensive
agriculture in the catchment. These sites had estimated loads that, when
converted to yields by dividing by their catchment areas and period of
record, were greater than the mean plus three times the interquartile range.
They represented 6%, 3% and 5% of the data for DRP, TP and E. coli,
respectively and were removed from our database. Following removal and
due to variations in contaminants sampled over time, the number of sites in
our database varied from 310 for DRP to 325 for nitrate-N.

Predicting the proportion of annual yields associated with
high flows
Using continuous flow data, we inspected the daily mean flow for each site
and calculated the 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, and 99th
percentiles of flow. We then used WRTDS predictions of daily mean con-
centrations andmultiplied these by daily mean flow to generate daily mean
load.We isolated and summed the daily loads for those days when flowwas
greater than each percentile and for all days (thereafter called ‘total’ load or
yield). Both the total and percentile loads were divided by catchment area
and 15 years to generate annual average yields. We used the estimated site
annual yields as response variables for models of total yields and yield that
occurs during flows ≥90th flow percentile across New Zealand, hereafter,
‘high flow’ yield65,66. We present predictions of both yields, and as the per-
centage of high flow yield associated with total yield.

To model total and high flow yields nationally, we used predictor
variables (Table 5) extracted from the national drainage network data-
base (Digital Network DN2.5), and subsequent hydrological
modelling67, which contained data for each river reach (as 560,000 seg-
ments between upstream and downstream confluences) and their
catchments62. The predictors were chosen based on their ability to pre-
dict nutrient concentrations and flow characteristics61,68,69. We natural
log-transformed the total and high flow yields and used 70% of the data
along with the predictors in Table 5 to train a Random Forest model in
Minitab70 with 300 trees, aminimum internal node size of five, and six as
the number of predictors for internal node splitting. We used the
remaining 30% of the data to test the performance of the models out-
putting the coefficient of determination (R2), root mean squared error
(RMSE), mean absolute deviation (MAD), and mean absolute percent
error along with plots of the relative importance of each variable (see
Supplementary Figs. 2 to 21). We used a Random Forest model because
they are able to handle non-normally distributed and categorical data,
non-linear relationships and high order interactions with high predic-
tion accuracy71.

The final model outputs were restricted to estimates of segments of
rivers ≥4th order or greater in the digital river network. We limited our
modelling to these ‘larger’ rivers after inspecting the dataset for repre-
sentativeness and finding that very few (<10%) of the 310-325 sites were in
smaller order streams, which meant that there was a greater proportion of
lowland streams present in our database than expected in the network
(Supplementary Table 5). Predictions for each contaminant were back-
transformed and corrected for retransformation bias72 and used in an
interactive map.

Interactive map
The interactive map application (https://www.monitoringfreshwater.co.nz/
rivers) allows theuser to explore thepercentageof total average contaminant
yield associated with high flows in ≥4th order rivers. The user chooses a
contaminant and can then either click on individual existing monitoring
sites or segments of rivers of fourth order or greater in the digital river
network. The map was developed in the Python programming language
using the Dash web application framework (https://dash.plotly.com/).
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Short-term, high-frequency water quality data
High-frequency nitrate-N data, measured using TriOS Opus UV spectral
sensors, were obtained from seven regional authorities for nine sites
(Table 1). These sites were installed by regional authorities to be repre-
sentative of local land use, but because of budget constraintswere not able to
be installed at more sites, giving better geographical coverage.

High-frequency turbidity data, measured using VisoTurb® 700
IQ WTW sensors, were provided by four regional authorities for
15 sites. All data were supplied at either 5-, 10- or 15-min intervals
but were matched and averaged with flow to the nearest 30-min
interval to make a consistent 30-minute concentration and flow data
set. The high-frequency sites had data records varying from 0.4 to
11.4 years (Table 1). Although smaller (620 km2) on average than
monthly sampling sites (1039 km2), the mean stream order was the
same (4th order). Data were checked and periods of corrupt or
missing data were removed (<1% of data).

For turbidity data, we matched log-transformed observations of tur-
bidity to the log-transformed concentration of contaminants (N and P
fractions, and E. coli) frommonthly grab samples for the period 2006-2021.
This analysis (see Supplementary Figs. 22– 27) indicated that TN and TP
were very strongly related to turbidity (R2 > 0.82, averaged across all sites).
Total P tended to have the strongest relationships and hence we used the
regression relationship for each site to estimate a synthetic high-frequency
TP record. Although other researchers have used more sophisticated
techniques like RandomForests regression to predict TP from turbidity and
catchment characteristics, the coefficient of determination was no better
(74%) than our simple linear approach73.

Influence of sampling frequency on the accuracy of yields
To assess the effect of different sampling frequencies on the accuracy
of high flow and total flow contaminant yield estimates, we sub-
sampled the high-frequency data records. The ‘true’ yield was taken
as the product of 30-min contaminant concentration and flow
observations, summed across the entire data set for which full years
(January–December) were available, then divided by catchment area
and annualised. Sub-sampling was performed at monthly, weekly,
daily, and 12-, 6-, and 2-hourly intervals. The daily and sub-daily
data sets were generated by filtering the existing data set to match the
required sampling rate; for example, daily samples were those taken
at 12 a.m., 12-hourly at 12 a.m. and 12 p.m., 6-hourly at 12 and 6 am
and 12 and 6 pm, and so on. Weekly samples were randomly selected
to occur on a weekday (commensurate with current regional
authority sampling regimes) at 12 p.m., and this was repeated seven
times to obtain an average of the sub-sampled yield estimate.
Monthly samples were similarly selected on a random day of the
month, which was then taken throughout the term of the time series,
at 12 p.m., and again repeated seven times to obtain an average sub-
sampled yield. The absolute percentage difference of sub-sampled
total yields and high flows yields to the total and high flow ‘true’
yields was then calculated and annualised so that the time series were
able to be plotted on a standardised scale for each sub-sampling
frequency.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Filtered load and high-frequency data can be found at23: https://figshare.
com/s/b9c0972f4e84f056173d.
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Table 5 | Model predictors

Parameter Description (unit)

nzsegment REC2 (also known as Digital Network, DN2.5) Reach identifier

nzreach A deprecated ID variable that was used in REC1 to join to
REC2 classifications

Dist2Coast Distance to the coast (m)

downcoordX.x Easting

downcoordY.x Northing

usArea Upstream catchment area (km2)

usRain Mean annual catchment rainfall (mm)

usPET Annual potential evapotranspiration of catchment (mm)

MeanFlow Mean annual flow (m3/sec)

usLake Percentage of catchment occupied by lakes (%)

usElev Mean elevation above sea level of the watershed or basin (m)

usSlope Mean slope of the watershed or basin in degrees

usTmin Mean minimum June air temperature, (deg C x 10)

usTmax Mean maximum January air temperature, (deg C x 10)

usRainVar Coefficient of variation of annual catchment rainfall (mm)

usRainDays10 Catchment rain days greater than 10mm/month (mean #
days/mo)

usRainDays20 Catchment rain days greater than 20mm/month (mean #
days/mo)

usRainDays100 Catchment rain days greater than 100mm/month (mean #
days/mo)

usHardness Mean catchment induration (hardness) of regolith

usPhosphorus Mean catchment phosphorous content of regolith

usParticleSize Mean catchment particle size of regolith

USCalcium Mean catchment calcium content of regolith

usIntensiveAg Proportion of land in intensive agriculture (%)

usLowPasture Proportion of land in low intensive pastoral agriculture (%)

usNativeForest Proportion of land in native forest (%)

usUrban Proportion of land in urban (%)

usScrub Proportion of land in scrub (%)

usWetland Proportion of land in wetland (%)

usExoticForest Proportion of land in exotic forest (%)

usBare Proportion of bare land (%)

SUDensityTotal Stock unit density (su/ha)

PropDairy Proportion of land in dairy farming (%)

PropBeef Proportion of land in beef farming (%)

PropSheep Proportion of land in sheep farming (%)

PropDeer Proportion of land in deer farming (%)

downcoordX.y Easting

downcoordY.y Northing

StreamOrder.y REC1 Stream order

ORDER_ REC2 Stream order

CLIMATE REC2 Climate

SRC_OF_FLW REC2 Source of Flow

GEOLOGY REC2 Geology

LANDCOVER REC2 Land cover

NET_POSN REC2 Net position

VLY_LNDFRM REC2 Valley landform

Stream and catchment characteristics30,35 used as predictors in our yield models.
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