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Climate change-induced amplification of
extreme temperatures in large lakes
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Lake surface temperature extremeshave shifted over recent decades, leading to significant ecological
and economic impacts. Here, we employed a hydrodynamic-ice model, driven by climate data, to
reconstruct over 80 years of lake surface temperature data across the world’s largest freshwater
bodies. We analyzed lake surface temperature extremes by examining changes in the 10th and 90th
percentiles of the detrended lake surface temperature distribution, alongside heatwaves and cold-
spells. Our findings reveal a 20–60% increase in the 10 and 90 percentiles detrended lake surface
temperature in the last 50 years relative to the first 30 years. Heatwave and cold-spell intensities,
measured via annual degree days, showed strong coherence with the Arctic Oscillation (period: 2.5
years), Southern Oscillation Index (4 years), and Pacific Decadal Oscillation (6.5 years), indicating
significant links between lake surface temperature extremes andboth interannual and decadal climate
teleconnections. Notably, heatwave and cold-spell intensities for all lakes surged by over 100% after
1996 or 1976, aligning with the strongest El-Niño and a major shift in the Pacific Decadal Oscillation,
respectively, marking potential regional climate tipping points. This emphasizes the long-lasting
impacts of climate change on large lake thermodynamics, which cascade through larger ecological
and regional climate systems.

Lake surface temperature (LST) extremes can significantly impact aquatic
and terrestrial ecosystems1–3.Unlike the gradual long-term increase in global
mean surface temperature, these events often arise abruptly, leaving little
time for both human andnatural systems to adapt1,4. Such events can lead to
widespread species mortality, rapid long-distance range shifts, decreased
aquaculture production in commercial fisheries, and even political tension
over shared water bodies1,2,4,5. Over the past few decades, the frequency,
duration, and intensity of LST extremes have increased1,3, with projections
indicating further intensification in the future6,7. These findings collectively
underscore the urgent need to study the evolution of LST extremes,
including their amplification over time, within the context of a warming, yet
increasingly variable, climate.

Tracking changes in LST extremes can be achieved by monitoring the
distribution tails of LST over time, commonly using the 10th and 90th

percentiles8,9. These percentile temperatures can also be used to define cold-
spells and heatwaves, which further require aminimumduration constraint
(e.g., 5 days or more)8,10. Seasonally varying thresholds, whether daily or
monthly, are often recommended to account for seasonal variations in
extremes and to maintain consistency with atmospheric heatwave
definitions9.However, it is crucial to distinguish between internal changes in

variability and long-term externally forced temperature trends, which only
shift the center of the distribution, resulting in an overall increase in
variance10–13. This can be achieved by detrending the LST data to remove
long-term changes, thereby correcting for distribution shifts and apparent
increases in variability, and then using the detrended temperatures for
extreme event calculations10,13 (Fig. 1a). Both linear and nonlinear trends
have been utilized for detrending ocean and lake temperature data, with
recent studies advocating for nonlinear trendmethods due to clear evidence
of nonlinearity in surface temperature data8,14,15.

Among Earth’s largest inland water bodies, the North American
Laurentian Great Lakes are perhaps the most dynamic. These lakes (here-
after referred to as the Great Lakes) constitute the largest collective body of
fresh surface water on Earth16. Unlike many other large lakes, the Great
Lakes are not as well monitored or modeled in continental and global lake
systems17,18. For example, numerous large lakes worldwide have extensive
monitoring systems17,19 and can bemodeled using general lakemodels, such
as the Freshwater Lakemodel (FLake)20. However, the Great Lakes typically
require a 3Dmodeling framework due to the large size and highly dynamic
nature21,22. In situ monitoring of this massive scale water surface is also not
trivial, and the lake-wide scale observations often rely on satellite-based
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analysis such as the Great Lakes Surface Environmental Analysis (GLSEA)
system (https://coastwatch.glerl.noaa.gov).

The Great Lakes are experiencing critical changes in LST23–28, affecting
diverse ecosystems, organisms, and human activities5,29,30. Moreover, the
Great Lakes significantly influence the regional climate31,32, and rising LST
due to global warming is expected to shift regional climate patterns26,32. This
has motivated numerous studies to explore changes in Great Lakes water
temperatures in the context of climate change, with research utilizing in situ
measurements, satellite-based measurements, and/or model-based
temperatures23–25,33. However, most of these studies rely on relatively short
datasets (25 years or less) due to the limited availability of LST records and
the extensive computational resources required for obtaining simulated
data. Consequently, these studies have primarily focused on seasonal and

annual changes in mean conditions or have examined temperature
extremes, such as heatwaves, over relatively short periods25. This limitation
hampers our ability to study the long-term evolution of LST extremes or
detect shifts in the thermal structure of the Great Lakes.

In this paper, we utilized a high-resolution three-dimensional hydro-
dynamic model forced by historical reanalysis data (ERA534) to generate an
extensive record of LST for all Great Lakes from 1940 to 2022.We used this
82-year record of LST to explore the evolution of temperature extremesover
time.We started by detrending the water temperature data, removing long-
term nonlinear trends using the Seasonal and Trend decomposition with
Loess (STL)35, to isolate the globalmean temperature increase from internal
changes in variability. The detrending process was carried out using the
lake-wide average (LWA) surface temperature for each lake, incorporating a

Fig. 1 | Lake surface Temperature detrending and extremes calculation.
a Schematic showing the effect of data detrending on extremes calculations. b–eThe
steps used to calculate the distribution of the detrended lake surface temperature

(DLST). bModeled lake surface temperature (LST) for all lakes. cExample lake-wide
average surface temperature for Lake Michigan with the detected nonlinear trend.
d The resulting DLST. e The change in the DLST distribution with time.
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daily-dependent nonlinear trend. We then analyzed the distribution of the
detrended LST using a progressive approach, starting with the period from
1941 to 1970 as a reference and incrementally adding five years of data at a
time until the entire dataset from 1941 to 2022 was covered. The Kernel
Density Estimation (KDE) method was used to estimate the probability
density functions of the detrended LST samples. To track the evolution of
LST extremes and data spread, we extracted the 10th percentile, 90th per-
centile, and interquartile range (IQR) from all distributions. Furthermore,
we used the detrended daily LST to identify heatwaves and cold-spells, with
the90th and10th percentiles of the1941–1970period serving as references for
heatwaves and cold-spells, respectively. We applied breakpoint analysis to
detect periods with statistically significant increases in the number of days,
temperature anomalies, and degree days of heatwaves and cold-spells.
Finally, we used spectrumcoherence to explore the periodicities of heatwave
and cold-spells in relation to regionally important climate teleconnection
indices, including the Oceanic Niño Index (ONI), Arctic Oscillation (AO),
Southern Oscillation (SOI), and Pacific Decadal Oscillation (PDO).

Results
A three-dimensional, fully coupled hydrodynamic and ice model was
configured for all five Laurentian Great Lakes using the Finite Volume
Community OceanModel (FVCOM) coupled with the Los Alamos Sea Ice
Model (CICE) (see Methods). LST results from the hydrodynamic-ice
model simulations were compared to Great Lakes Surface Environmental
Analysis (GLSEA) surface temperature data available for the years 1995 to
2022. The modeled LST showed strong agreement with the GLSEA data
across all lakes, accurately capturing both seasonal and interannual varia-
bility. The rootmean square error (RMSE) for all daily lake-averaged surface
temperatures ranged between 0.89 and 1.58 °C, with Lake Superior (the
deepest and the northernmost among the five Great Lakes) exhibiting the
largest RMSE and Lake Erie (the shallowest and the southernmost among
thefiveGreat Lakes) the smallest. Bias in the simulated surface temperatures
ranged between −0.51 and 0.32 °C, with Lake Huron and Lake Superior
showing the smallest and largest absolute bias, respectively. These results
demonstrate themodel’s robustness and reliability in reproducing observed
surface temperature patterns, thereby validating its use for further
exploration of temperature extremes and their evolution over time (see
Methods for additional details on model validation).

Nonlinear Detrending and Distribution Changes
The detrending analysis (see Methods) of the LST time series resulted in
nonlinear long-terms trend and detrended LST (DLST) (Fig. 1). Overall, the
nonlinear long-term trends for all lakes demonstrate an increase in LST
alongside a low-amplitude multidecadal cycle (Supplementary Fig. 1). The
temporal evolution of the DLST distribution was calculated sequentially by
adding 5 years at a time to the base period from 1941 to 1970 and recal-
culating the distribution (see Methods), resulting in a series of DLST dis-
tributions for yearly (Fig. 2) and monthly-averaged data (Fig. 3, and
Supplementary Figs. 2, 3, 4, 5). All the yearly averaged DLST distributions
showed a substantial increase in variability, evident in the attenuation of the
distribution peaks and the widening of the tails. The increase in spread,
quantified using the interquartile range (IQR), was notable for all lakes from
1970 to 2022 compared to the base period (Fig. 4 and Table 1). The increase
in the IQR of the yearly average DLST ranged between 25% and 43%, with
Lake Huron (Ontario) showing the largest (smallest) percentage increase.

The monthly distribution analysis highlighted the seasonal variability
ofDLST for each lake (Fig. 3, and Supplementary Figs. 2, 3, 4, 5). Changes in
the monthly distributions were more diverse than the yearly changes, with
some months showing increases, decreases, or constant variability. Gen-
erally, May, June, and July exhibited the largest range of DLST (i.e., highest
variability), while December, January, and February showed the smallest
range. All lakes experienced the greatest increase in IQR from 1970 to 2022
during February,March, April, andMay, with somemonths showingmore
than a 100% increase in IQR (e.g., LakeHuron inMarch and LakeMichigan
inMay) (Supplementary Fig. 6). Conversely, minimal changes in variability

were observed during September, October, andNovember, with some lakes
showing a 10% to 15% decrease in IQR.

Water Temperature Extremes
We tracked the evolution of the 10th and 90th percentiles of the DLST
distribution to assess changes in the extremes over time. All lakes showed a
substantial increase in the annual low temperature extremes (10th percentile)
and high temperature extremes (90th percentile) from 1970 to 2022 (Fig. 4)
relative to the reference period 1941-1970. The annual low temperature
extremes increased by 22% to 45%, colder low temperatures, with Lake
Ontario and Lake Michigan experiencing the largest increases, and Lake
Superior and Lake Erie experiencing the smallest increases. Notably, there
was anabrupt increase in lowextremes after 1995,whichaccounted formost
of the overall increase in the extremes. Similarly, the annual high tem-
perature extremes increased by 20% to 60%, with Lake Ontario and Lake
Superior showing the largest and smallest increases, respectively (Table 1).

Despite the general increasing trend of annual low and high tem-
perature extremes, monthly extremes exhibited greater diversity, with dif-
ferent lakes showing varying behaviors. Lake Superior experienced some of
the most substantial increases in the relative low temperature extremes
during February, March, and April, with increases exceeding 400% in
February and March (Supplementary Fig. 7). Conversely, Lake Ontario
experienced the least increase in the relative low temperature extremes for
mostmonths.The smallest changes in the relative low temperature extremes
for all lakes were observed in September, October, and November, with
some lakes even showing fewer extremes. Additionally, there was a notable
jump in relative low temperature extremes after 1990during February,May,
June, and August.

All lakes experienced substantial increases in relative high temperature
extremes fromDecember through June, with Lake Superior showing nearly
a 300% increase in March and Lake Huron a 175% increase in March
(SupplementaryFig. 8). SeptemberandNovember showeddecreases inhigh
temperature extremes for some lakes, while July and August remained
constant across most lakes. Similarly, some lakes exhibited major jumps in
high temperature extremes after 1990, particularly in February, April, and
May. For example, Lake Superior gainedmost of its increase in relative high
temperature extremes in February, April, and May after 1995 (Supple-
mentary Fig. 8). Overall, the changes in low and high extremes showed
similar seasonal patterns for most of the Lakes.

Heatwaves and Cold-Spells
The number, mean temperature anomaly, and degree heating/cooling days
of all detected heatwaves and cold-spells from the daily DLST are presented
in Figs. 5 and 6. Breakpoint analysis was used to identify potential break-
points in the heatwaves and cold-spell intensity time series, and the t-test
was employed to assess the statistical significance of these breakpoints (see
Methods). Overall, most lakes experienced statistically significant increases
in heatwave and cold-spell intensities, based on a 95% significance level
(Fig. 7). The mean percentage change in the heatwave intensities ranged
between 85% and 258%, with Lake Superior experiencing the largest per-
centage change and Lake Ontario the smallest (Table 1). The suggested
breakpoints for heatwaves across all lakes occurred around 1991 and 1996.
The percentage increase in cold-spell intensities ranged between 100% and
168%, with Lake Superior and Lake Ontario experiencing the largest and
smallest percentage changes, respectively. Cold-spell intensities showed
breakpoints between 1991 and 1996 for Lakes Michigan, Huron, and
Superior, while Lakes Ontario and Lake Erie had a different breakpoint
around 1976.

In addition to the overarching annual breakpoint analysis, we
conducted a monthly analysis to explore the seasonal variability trends.
All lakes exhibited statistically significant shifts in degree heating days
during January and March (Fig. 5). May and June showed the largest
mean changes in degree heating days across all lakes, with Lake Superior
experiencing the largest change of 13.1 °C days in June. The period from
December to May showed the most substantial increases in the number
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of heatwave days, while August to November did not show increasing
trends for most lakes. All lakes, except Lake Michigan, exhibited
decreasing trends in heatwaves during August and September, both in
degree heating days and mean temperature anomaly. The mean tem-
perature anomaly typically increased from December to June and either
remained constant or decreased for the rest of the year across all lakes,
with Lake Superior experiencing the largest increase during June and July
when anomalies exceeded 0.8 °C.

Similarly, we detected a statistically significant increase in the absolute
mean of degree cooling days for cold-spells across most months and lakes
(Fig. 6). Winter and spring months (December to June) experienced the
most substantial increases in cold-spells, with Lake Superior having the
highest increase in the absolutemean of degree cooling days, reaching 10 °C
days in June. The mean number of days identified as cold-spells increased
formostmonths across all lakes, with February showing an increase ofmore
than 15 cold-spell days after 2000. Themean temperature anomaly of cold-
spells also increased for many months across all lakes, with the majority of
these increases being statistically significant. Overall, Lake Superior
experienced the largest increases in all cold-spell variables, with most
changes occurring after 1996. Other lakes exhibited multiple breakpoints,
with 1996, 1991, and 1975 being the most notable.

In addition to the overall increase in heatwaves and cold-spells, we
observed periodicity in their intensities. Using the Welch method36, we
calculated the power spectrum for the yearly degree heating days and degree
cooling days, assessing the statistical significance of the spectrum peaks
against the 95% red noise spectrum (see Methods). The most predominant
and statistically significant cycles for degree heating days were identified at
approximately 4 and 2.5 years for most lakes (Fig. 8). The degree cooling
days spectrum peaks were more diverse across lakes. Although statistically
significant periods were found, the most notable cycles were around 6-6.5
years for Lakes Michigan, Erie, and Superior, around 4 years for Lake
Superior, and 2-2.5 years for Lakes Erie and Ontario.

Spectrum coherence was estimated between the intensities of heat-
waves/cold-spells and various climate teleconnections (see Methods). The
AO andNAO showed dominant and statistically significant coherencewith
degree heating days around the 2.5-year period for all lakes, while the SOI
exhibited strong coherence at the 4-year period (Supplementary Fig. 9). The
PDO showed dominant and statistically significant coherence with degree
cooling days at the 6–6.5 year period for LakesMichigan, Erie, and Superior,
while the SOI exhibited strong coherence with Lake Superior at the 4-year
period, and Lake Erie at the 2–2.5-year period (Supplementary Fig. 10).
Although coherence calculations revealed statistically significant peaks at

Fig. 2 | Changes in yearly averaged detrended lake
surface temperature distribution. The change in
yearly averaged detrended lake surface temperature
(DLST) distribution with time for different Lakes.
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other frequencies, these periodsmay reflectweakor noisy signals, as they are
not accompanied by corresponding significant peaks in the spectra of either
the degree heating days or the teleconnection indices.

Discussion
This study highlights the impact of historical climate change on surface
temperature extremes across all the Great Lakes. Both low and high surface
temperature extremes were observed to be increasing after detrending the
surface temperature time series. A significant shift in the degree days of
heatwaves and cold-spells was noted for most lakes post-1990s.

Additionally, we observed clear interannual periodicity in the intensities of
heatwaves and cold-spells, with significant coherence to the Arctic Oscil-
lation (AO), the Southern Oscillation Index (SOI), and Pacific Decadal
Oscillation (PDO) climate teleconnection patterns.

Nonlinear detrending of the surface temperatures was essential to
distinguish the increase in variability due to long-term temperature changes
from internal variability. The nonlinear trends identified across all lakes
accounted for 21% to 39% of the total variance in surface temperatures,
representing multi-decadal cycles superimposed on a long-term linear
increase. The nonlinear trends show a strong correlation with Atlantic

Fig. 3 | Changes in monthly averaged detrended lake surface temperature distribution. The changes in monthly averaged detrended lake surface temperature (DLST)
distribution with time for all month for Lake Michigan.
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Multidecadal Oscillation (AMO), with Spearman correlation coefficients
ranging from 0.68 to 0.8 for all lakes. However, the AMOwas not explicitly
used to interpret the periodicity of heatwaves and cold spells in this study
because its variability was largely removed along with the long-term non-
linear trend.Additionally, given thatAMOhas a period of 60–90 years37, the
80-year record is insufficient to identify a signal with a period spanning
more thanhalf its length. The overall long-term trenddisplayed a significant

increase for all lakes,with rates from0.11 °C to0.17 °Cper decade,with Lake
Michigan and Lake Superior showing the largest and smallest increases,
respectively.

Despite the general warming trend observed in all lakes, low-
temperature extremes are still evident, and their frequency and intensities
are significantly increasing (Fig. 7 and Table 1). The most severe cold-spell
season for most lakes occurred during 2014-2015, with all lakes

Fig. 4 | Changes in the detrended lake surface
temperature statistics relative to the period of
1941–1970. Time series of the relative 10 percentile,
90 percentile, and IQR for the yearly averaged DLST
distribution with time for all lakes.

Table 1 | Changes in annual LST variability and extremes

Metric Michigan Huron Erie Superior Ontario

IQR % increase 31 34 42 28 24

Std % increase 46 32 31 25 38

10 percentile % increase 43 38 25 23 47

90 percentile % increase 44 39 50 19 60

Heatwaves % increase 135 142 99 258 85.3

Heatwaves breakpoint year (p-value) 1996 (0.04) 1996 (0.028) 1991 (0.038) 1996 (0.018) 1996 (0.069)

Cold-spells % increase 146 140 165 165 100

Cold-spells breakpoint year (p-value) 1991 (0.023) 1996 (0.02) 1976 (0.038) 1996 (0.025) 1976 (0.011)
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Fig. 5 | Heatwave events from 1941 to 2022. Middle panel shows detected heat-
waves for the whole record clustered by month color coded using the degree heating
days variable. The short black vertical line indicates the location of the statistically
significant breakpoints for each month. Left (Right) column shows the mean

temperature anomaly (the mean heat days or duration of heatwave) for each month
before and after the breakpoint. Black squares are used to highlight the statistically
significant change in mean temperature anomaly (the mean heat days) before and
after the breakpoint. Each row represent a different lake.
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Fig. 6 | Cold-spell events from 1941 to 2022. Middle panel shows detected cold-
spells for the whole record clustered by month color coded using the degree cooling
days variable. The short black vertical line indicates the location of the statistically
significant breakpoints for each month. Left (Right) column shows the mean

temperature anomaly (the mean cool days or duration of cold-spell) for eachmonth
before and after the breakpoint. Black squares are used to highlight the statistically
significant change in mean temperature anomaly (the mean cool days) before and
after the breakpoint. Each row represents a different lake.
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experiencing excessive ice cover38,39. Notably, this followed the season with
the highest number of heatwaves, 2012–2013, which saw one of the lowest
ice cover seasons on record across all lakes. This defines a new level of LST
variability in the Great Lakes.

The increase in both low and high detrended surface temperature
extremes for all lakes contrasts with observations in ocean surface tem-
peratures, where detrending typically results in relatively constant
variance10. This discrepancy highlights a major difference in the impact of
climate change on water surface temperature extremes between the oceans
and the Great Lakes. Several factors can explain this difference. The rela-
tively shallow depth and confined nature of the Great Lakes result in a
smaller heat capacity, leading to quicker heat absorption and release. In
contrast, the deeper, open nature of the ocean, combined with horizontal
advection andmesoscale currents, facilitates the redistribution of heat from
local heatwaves, thus dampening temperature extremes. Furthermore, the
increase in surface air temperature tends to be greater over land than over
the ocean, due to the ocean’s large thermal inertia40. Consequently, theGreat
Lakes are more directly influenced by extreme continental climate varia-
bility and episodic weather patterns, which can induce rapid and significant
temperature changes24,26,38. Seasonal ice cover also significantly impacts the
thermodynamics of theGreat Lakes, reducing absorbed shortwave radiation
at the lake surface through the ice/water albedo feedback during winter41.
This variability in ice cover alters theheat budget of the lakes, contributing to
temperature variability.

Ice cover primarily drives the seasonal variability of LST extremes.
Generally, the first half of the year has seen the most significant increase in
both low and high temperature extremes, including heatwaves and cold
spells. This trend is largely due tomore than a 70%decrease in ice cover over
the past 40 years42,43. The reduction in ice cover exposes the lakes to
increased solar radiation, raising their heat content and further accelerating
ice loss through thepositive ice/water albedo feedback41.Given that ice cover
is most extensive during the first half of the year (winter and spring), its
reduction and variability directly impact LST during these months. As a
result, these months experience a wider range of surface temperatures as
time advance, reflected in the increasedvariability observedcompared to the
latter half of the year.

Variability in ice cover trends were also linked to spatial variability in
LST extremesacross the lakes.Heatwave increaseswere less extreme in lakes
with relatively stable ice cover (e.g., Erie:+99%;Ontario:+85%),while lakes
with severe ice decline experienced associated increases in heatwaves (e.g.,
Superior:+258%) (Fig. 7). InLake Superior, this effect is particularly evident
in the emergence of a new peak in May and June in recent years (Supple-
mentary Fig. 3). This pattern likely results from an earlier end to the ice
season and an earlier onset of thermal stratification, both of which lead to
higher surface temperatures during these months compared to previous
decades, contributing to the newly emerging peak44,45.

Results reveal that the periodicity of heatwaves and cold spells is
strongly connected to different climate teleconnections, with shifts detected

Fig. 7 | Breakpoint analysis for heatwaves and cold-spells for all lakes based on annual degree days.Heatwaves are shown in the left columnwhile cold-spells are shown in
the right column. Each row represents a different lake.
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through breakpoint analysis underscoring these relationships. Previous
studies find strong connection between AO, NAO, and ONI and ice cover
changes in the Great Lakes42,46. Negative (positive) AO/NAO events are
often associated with more (less) ice cover, while strong El Niño events are
often associated with the least ice cover on the Great Lakes, which support
the significance coherence between them. A statistically significant shift in
heatwaves was observed around 1996 for most months and lakes, with
notable increases in variability across the Great Lakes after the 1990s. This
finding is consistent with previous studies reporting similar shifts in water
temperature and ice cover in the region26,47. The 1997–1998 El Niño, the
strongest winter event on record, likely played a pivotal role, contributing to
unusually warm temperatures in the Great Lakes region48,49. This event
triggered substantial changes in lake heat content33,50, ice cover47, water

levels51,52, and regional climate patterns53. These changes are likely to be
attributed to shifts in large-scale atmosphere-ocean patterns. For example47,
conducted a process-based analysis to show that warm blobs over the
northeast Pacific Ocean in recent decades led to eastward shift of the ridge-
trough system and resulting increased variability over Great Lakes winter
severity and ice cover. Our findings also show a significant rise in tem-
perature extremes and variability since this event, suggesting the occurrence
of a regional climate tipping point. These results highlight the highly non-
linear response of the Great Lakes system to extreme events and the
potential for long-lasting impacts on both lake dynamics and regional
climate.

Additionally, the breakpoint analysis identified a shift in cold spells
around 1976 for Lake Erie and Lake Ontario (Fig. 7), as well as for select

Fig. 8 | Power spectrum of annual degree days
of heatwave and cold-spell for all lakes. Annual
degree heating days and degree cooling days are used
to calculate heatwaves and cold-spells spectrums,
respectively.Heatwaves are shown in the left column
while cold-spells are shown in the right column.
Each row represents a different lake.
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months in other lakes (Fig. 6). This shift coincides with the transition of the
PDO from a negative to positive phase, corresponding to a shift from a
warm to cold phase in the Great Lakes region38,54. Notably, the PDO also
shows strong spectral coherence with cold-spell intensities for most of the
lakes at a periodicity of 6–6.5 years. These observations emphasize the
interconnectedness between large-scale climate teleconnections and the
variability of extreme events in the Great Lakes, reinforcing that abrupt
climatic shifts can have profound and enduring effects on lake dynamics
and, by extension, on regional climate patterns and ecosystems.

Thesefindings reinforce the critical necessityof accounting for changes
in temperature extremes, in addition to long-termwarming, when assessing
the impact of climate changeon inlandwater bodies.Our approachprovides
a clear path for expanding this analysis to other systems, aiding in climate
adaptation efforts. Understanding these changes is crucial for developing
effectivemanagement strategies, particularly infisheries, habitat restoration,
and water quality, where extreme temperature events can influence species
distributions, breeding cycles, and harmful algal bloom (HAB) occurrences.
Further research is needed to explore how these temperature extremes affect
ecosystemdynamics in theGreat Lakes, including acute stress on freshwater
species and shifts in food web structure. Given the Great Lakes’ role in
regional climate regulation, freshwater supply, and biodiversity, the impli-
cations of our findings highlight how significant changes in these lake sys-
tems can cascade through broader ecological and climatic systems.

Methods
Hydrodynamic Model Setup and Validation
Lake physics and thermodynamics were modeled using the Finite Volume
Community Ocean Model (FVCOM, version 4.4.2), which employs an
unstructured-grid finite volume approach to solve hydrostatic equations21.
The model domain encompassed all five Laurentian Great Lakes (Superior,
Michigan-Huron, Erie, and Ontario) and Lake St. Clair, with an average
horizontal spatial resolution of 4.75 km and 21 sigma levels to capture
boundary layer processes. The model did not include connecting channels,
tributary flows, or groundwater fluxes. A 3D model was chosen over a 1D
model because 1Dmodels have been shown to be less accurate for theGreat
Lakes, given their large spatial extent and depth, often leading to less reliable
results than a spatially averaged 3Dmodel55–57. Themodel was initialized in
January 1940 with a uniform temperature of 4 °C and no initial velocity for
all cells and sigma layers, running continuously until 2023 with a one-year
spin-upperiod, 1940.The rest of the data from1941 to 2023was used for the
analysis.

Horizontal turbulence was parameterized using the Smagorinsky
scheme, while vertical diffusion utilized the modified Mellor-Yamada level
2.5 turbulent closure scheme. Air-water drag coefficients and heat fluxes
were computed using established methods from58 and the Coupled Ocean-
AtmosphereResponseExperiment (COARE)59,60, respectively. Icedynamics
were incorporated using a coupled ice model based on the Los Alamos Sea
Ice Model (CICE), which accounted for ice thickness distributions and
surface albedo variations61.

The model was driven by meteorological forcing from the ERA5 rea-
nalysis product, which provides hourly data at about 31 km horizontal
resolution for the region34. Surface temperature validation was conducted
using data from the Great Lakes Surface Environment Analysis (GLSEA),
which offers daily temperature fields with a spatial resolution of approxi-
mately 1.3 km, derived fromNOAAAdvancedVeryHighResolutionRadar
(AVHRR), Visible Infrared Imaging Radiometer Suite onboard the Suomi
National Polar-Orbiting Partnership spacecraft (VIIRS S-NPP), and
NOAA-20 Visible Infrared Imaging Radiometer Suite (VIIRS NOAA-20).

The model has undergone extensive validation in previous studies.
Initially21, validated the model by examining circulation patterns and lake
surface temperatures.More recently24, further validated themodel, focusing
on lake surface temperatures and ice cover using remote sensing data from
NOAACoastWatch and reprocessed ice concentration data from62. In these
assessments, the temperature of the uppermost sigma layer was compared
against GLSEA data. Since the model inherently accounts for ice cover,

typically yielding surface temperatures near zero when ice is present, these
values were directly used in our calculations of the LST. Additionally24,
evaluated the model’s performance by comparing simulated and in situ
temperature measurements at various depths and locations across the
Laurentian Great Lakes. A range of validation metrics, including RMSE,
MAE, MBE, CC, and FB, were employed to demonstrate the model’s
accuracy in replicating observed surface and subsurface conditions. For lake
surface temperature, RMSE ranged from 0.89 to 1.58 °C, with a mean bias
between -0.51 and 0.32 °C. Ice cover comparisons showed a goodmatch for
both seasonal trends and interannual variability with MAE ranges between
4.2% and13.9%.Vertical profile validation indicatedRMSEvalues generally
below 2 °C at most depths, reflecting strong agreement with in situ tem-
perature profiles. For detailed validation results and model limitations,
please refer to21,22,24.

Nonlinear Detrending Using STL
To decompose the surface temperature time series and detect the slowly
varying nonlinear trends, we employed the non-parametric Seasonal-Trend
decomposition procedure based on Loess (STL). STL is a robust and
computationally efficientmethod, commonly used for identifyingnonlinear
patterns in environmental and climate data63–66. This approach utilizes
locally weighted smoothing (Loess) to separate a time series into compo-
nents representing the long-term trend, seasonal cycle, and residuals35,67.We
used the STL function available in the statsmodels library in Python67. The
inputs for the STL model were yearly time series, which included either
yearly average surface temperatures or day-of-year (DOY)/monthly tem-
peratures for each year.We used the STLmethod to calculate the long-term
nonlinear trend and subtracted it from the LST data to obtain the detrended
LST (DLST) data.

We applied the STLmethod separately to the DOY data rather than to
the entire time series at once. Specifically, we performed the decomposition
independently for each calendar day across all years (i.e., 365 separate
decompositions) to better capture seasonal variability. This approach
mitigates one of the primary challenges of STL in managing nonlinear
changes in annual cycles66. By doing so, we were able to more accurately
distinguish between the seasonally varying long-term nonlinear trend from
the internal variability of the time series, leading for better quantification of
change in the extremes.

Probability Density Function Estimation
We applied kernel density estimation (KDE) to the DLST to obtain a
smooth estimate of the probability density function. We used the gaus-
sian_kde function available in the scipy. stats library in Python68. Since a
minimum of 30 years is recommended for studying water temperature
extremes9, we started with a 30-year baseline period from 1941 to 1970 for
calculating KDE. We then appended 5 years at a time to the data and
recalculated the KDE to track the evolution of the DLST distribution over
time. The analysis was carried out for both yearly averaged data and each
month separately to detect the overall changes as well as the seasonal
variability.We quantified the increase in the spread of the distribution using
the interquartile range (IQR),while the 10th and 90th percentileswere used to
track the changes in the extremes.

Heatwaves and cold-spells calculation
Heatwaves are defined as periods when the daily DLST exceeded the
seasonally varying 90 percentile threshold for at least five consecutive
days, following established criteria by ref. 8. Similarly, cold-spells are
defined as periods when the detrended daily mean lake surface tem-
peratures fell below the seasonally varying 10 percentile threshold for at
least five consecutive days. Following9, a 30-year reference period from
1941 to 1970 was used to calculate the 10 and 90 percentile threshold
used for the detection of heatwaves and cold-spells, and these threshold
were then applied to the full data from 1941 to 2021. Metrics used to
quantify the changes in the detected heatwaves and cold-spells with time
are number of days, mean temperature anomaly, and degree heating/
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cooling days. In this study, the degree heating/cooling days are used to
represent the intensity of heatwaves/cold-spells.

Breakpoint analysis
To identify significant change points in the heatwaves and cold-spells
monthly and yearly time series for each lake, we employed a breakpoint
analysis using theBinary Segmentation (Binseg) approach from the ruptures
library in Python. The breakpoint detection process was initiated by
applying the Binseg algorithm with an L2 loss model, which minimizes the
sum of squared errors. The algorithm was configured with a minimum
segment size of 20 years to avoid detecting spurious change points, and it
was allowed to predict only one primary breakpoint.

We tested the statistical significance of the detected breakpoints using
the Student’s t-test for independent samples. Based on the detected break-
points, the serieswas divided into pre- andpost-change segments. The t-test
was performed using the ttest_ind function from the scipy. stats library in
Python. The p-value derived from this test indicated the likelihood that the
difference inmeansbetween thepre- andpost-change segments occurredby
chance, with 5% used as the threshold for the statistical significance.

Spectrum and Coherence Analysis
We conducted the spectral analysis using the Welch method implementa-
tion in the scipy. signal library in Python68. This method segments the time
series into overlappingwindows, applies aHannwindow function to reduce
spectral leakage, and averages the resulting periodograms to improve the
robustness of spectral estimates69. To assess the statistical significance of
spectral peaks, we compared them against a theoretical red noise spectrum,
which accounts for the inherent autocorrelation in climate time series
data70,71. Red noise, often modeled as a first-order autoregressive (AR(1))
process, is characterized by higher power at lower frequencies, reflecting the
persistence commonly observed in geophysical processes72,73. We estimated
the expected red noise spectrum using a lag-one autocorrelation coefficient
(α = 0.5), which represents the degree of persistence in the time series. The
95% confidence levels for spectral peaks were determined using the F-
statistic, which follows an F(2, 2) distribution due to the two degrees of
freedom associated with the spectral estimates70. A spectral peak exceeding
this threshold indicates a statistically significant departure from red noise
behavior, whereas peaks below this level cannot be distinguished from
background noise, meaning we fail to reject the null hypothesis that they
arise from red noise variability.

We performed spectral coherence analysis between degree heating
days and degree cooling days, and several annually averaged teleconnection
indices: the Oceanic Niño Index (ONI), North Atlantic Oscillation (NAO),
Arctic Oscillation (AO), Southern Oscillation Index (SOI), and Pacific
Decadal Oscillation (PDO). Spectral coherence quantifies the strength and
phase consistency of shared periodic signals between two time series as a
function of frequency. We calculated the spectral coherence using the the
multitapermethod, implemented via theMTCross class from themultitaper
package in Python74. The multitaper method provides high spectral reso-
lution and reduces leakage by averaging multiple orthogonal taper
functions75. Statistical significance at the 95% confidence level was assessed
using the F-test76, with degrees of freedom estimated from the multitaper
function. This analysis allowed us to identify significant frequency-
dependent relationships between heatwave/cold spell variability and
large-scale climate patterns.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data used to run and validate the hydrodynamic model is publicly
available. The ERA5 reanalysis climate data used to force the FVCOM
model can be downloaded from the Copernicus Climate Data Store (CDS)
at https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-levels?

tab=download. The Great Lakes Surface Environmental Analysis (GLSEA)
satellite surface temperature dataset can be accessed from the NOAA
CoastWatch Great Lakes Node at https://coastwatch.glerl.noaa.gov. The
modeled lake surface temperature data are available at https://doi.org/10.
5281/zenodo.15103629.
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