
communications earth & environment Article
A Nature Portfolio journal

https://doi.org/10.1038/s43247-025-02550-4

Benchmarking shoreline prediction
models over multi-decadal timescales

Check for updates

Yongjing Mao 1 , Giovanni Coco 2, Sean Vitousek3, Jose A. A. Antolinez 4, Georgios Azorakos 5,
Masayuki Banno 6, Clément Bouvier7, Karin R. Bryan2, Laura Cagigal8, Kit Calcraft 1,
Bruno Castelle 5, Xinyu Chen 6,9, Maurizio D’Anna2,10, Lucas de Freitas Pereira 11,
Iñaki de Santiago 12, Aditya N. Deshmukh 1, Bixuan Dong1, Ahmed Elghandour 4,13,14,
Amirmahdi Gohari 2, Eduardo Gomez-de la Peña 2, Mitchell D. Harley 1, Michael Ibrahim15,
Déborah Idier16, Camilo Jaramillo Cardona 11, Changbin Lim 11, Ivana Mingo5, Julian O’Grady17,
Daniel Pais 18,19, Oxana Repina 20, Arthur Robinet7, Dano Roelvink 4,14,21, Joshua Simmons22,
Erdinc Sogut23, Katie Wilson1 & Kristen D. Splinter 1

Robust predictions of shoreline change are critical for sustainable coastal management. Despite
advancements in shoreline models, objective benchmarking remains limited. Here we present results
from ShoreShop2.0, an international collaborative benchmarking workshop, where 34 groups
submitted shoreline changepredictions in ablind competition. Subsetsof shoreline observations at an
undisclosed site (BeachX) over short (5-year) and medium (50-year) periods were withheld from
modelers and used for model benchmarking. Using satellite-derived shoreline datasets for calibration
and evaluation, the best performing models achieved prediction accuracies on the order of 10m,
comparable to the accuracy of the satellite shoreline data, indicating that certain beaches can be
modelled nearly as well as they can be remotely observed. The outcomes from this collaborative
benchmarking competition critically review the present state-of-the-art in shoreline change prediction
aswell as revealmodel limitations, facilitate improvements, and offer insights for advancing shoreline-
prediction capabilities.

Sandy beaches provide critical protection to inland areas, support biodi-
versity, and offer substantial recreational and economic value. However,
these dynamic landscapes can evolve rapidly in response to environmental
forces that can be exacerbated by changing wave climates and rising sea
levels1,2. As such, reliable prediction of key coastal indicators, such as the
shoreline position3, across a broad range of timescales from individual
storms to multi-decadal climate patterns is essential for the sustainable
management of coastal landscapes4.

State-of-the-art shoreline prediction goes beyond fitting simple linear
regression to historical data5. Predictive models help explain dynamic
shoreline behavior and guide coastalmanagement decisions6,7. Over thepast
several decades, dozens of shoreline models have been developed, ranging
from physics-based and statistical models to machine learning methods8–18.
These models have become more complex and accurate, integrating
advanced computational techniques with increasing volumes of data to
better simulate shoreline dynamics due to processes such as wave-driven
longshore and cross-shore sediment transport and sea-level rise, which are
essential for shoreline evolution at event and engineering time scales (i.e.,

days to decades)19,20. Despite model advancements, objective inter-
comparisons ofmodel performance under standardized conditions, such as
using the same datasets, calibration methods, and evaluation metrics,
remain rare in coastal science.

Benchmarking model performance plays a constructive role in the
broader process of model selection and confidence building in
predictions21,22. By providing a standardized and transparent comparison
of predictive accuracy across models, benchmarking helps identify
strengths and limitations in model behavior under consistent testing
conditions22. While predictive performance is not the only consideration,
as factors such as model complexity relative to the modeling scale,
representation of physical processes, and data availability are also
critical23,24, benchmarking offers an objective starting point that supports
informed judgment. When used alongside complementary criteria,
benchmarking improves the ability to inform decision-making in
dynamic and uncertain environments such as the coastal zone.

Several benchmarking studies within the field of Earth and environ-
mental sciences have been reported in recent years, focusing on model and
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methodological evaluation and comparison21,22,25,26. To objectively evaluate
shoreline model performance, a model competition called Shoreshop was
first held in 201825. In this competition, 20 models were calibrated and
trained using 15 years of video-derived shoreline data from Tairua Beach,
New Zealand. Participants were then asked to submit their predictions for
an additional 3 years of withheld shoreline data to conduct a blind test of
model performance. The success of ShoreShop1.0 highlighted the value of
model benchmarking in fostering collaboration within the shoreline mod-
eling community. It was also the first initiative to provide an unbiased
assessment of the applicability of various shoreline models to a wave-
dominated beach.

The lessons learned fromShoreShop1.0 stimulated discussions around
advancements in shoreline modeling7,20,27. Probabilistic approaches, rather
than deterministic ones, became increasingly adopted28,29, the consideration
of model non-stationarity gained prominence18,30–32, and the realization
occurred that truly blind model benchmarks are the objective means of
ensuring model accuracy while avoiding overtuning. The rapid develop-
ment and availability of satellite-derived shorelines (SDS)21, since the first
ShoreShop has also addressed issues related to data scarcity. Despite their
larger uncertainties (accuracy≈8.9 m33) compared to traditional sub-meter-
scale surveys, satellite datasets have proven to be robust alternatives for
calibration and validation of shoreline models34 especially when high tem-
poral resolution is needed to capture dynamic changes. Satellite observa-
tions available over large spatio-temporal scales have also enabled the
development of data-driven shoreline models17,35 and data-assimilation in
hybrid models30,34,36–38.

In this paper, we summarize the outcomes of ShoreShop2.0, an
international collaborative benchmarking competition that solicited model
submissions fromexperts across the globeover a six-monthperiod.Building
on approaches established in ShoreShop1.0, ShoreShop2.0 advanced the
assessment of the state-of-the-art of shoreline models at a natural embayed
beach (Fig. 1) by evaluating model’s ability to incorporate spatio-temporal
dynamics, leverage open-source datasets, and make predictions across
short-term (5-year) to medium-term (50-year) timescales using an open-
submission system on GitHub. Unique to this second competition was a
truly ‘blind’ test, where participants were not provided with the physical
location of the target study site, which was anonymized as BeachX. This
benchmarking competition demonstrated the applicability of shoreline
models across varying time scales, offering valuable insights into future
advancements, establishing a standard for model intercomparison studies,
and promoting open science within the coastal research community.

Results
Model submissions
As a benchmarking exercise conducted at an anonymized site (BeachX),
with full details provided in the Benchmarking Setup section,
ShoreShop2.0 solicited submissions from all types of shoreline models,
including physics-based, hybrid, and data-driven models. However, only
models defined as data-driven models (DDM) and hybrid models (HM)
were submitted. DDMs, including regression, machine learning, and sta-
tistical models, rely entirely on data to establish relationships betweenwave
characteristics and shoreline positions. In contrast, HMs include physical
constraints through defined mathematical relationships and use data to
calibrate free parameters. In ShoreShop2.0, 34 models, including 12 DDMs
and 22HMs,were evaluated and compared as part of the blind competition.
Nearly all models were transect-based, with free parameters that were
independently associated with and calibrated for each transect, except for
four non-transect-basedmodels that used a single set of free parameters for
all transects. All submitted models completed the short-term (2019–2023)
prediction task, while 29 provided medium-term (1951–1998) predictions,
and 20 extended projections for the long-term period (2019-2100). Seven
additional DDMs and fiveHMswere submitted after ShoreShop2.0 and are
included here as references for potential model improvements, informed by
lessons learned during the workshop and additional insights into the
shoreline data; however, they are not considered blind tests because the

initially withheld data were made available immediately following the
workshop. For HMs, such as COCOONED39, CoSMoS-COAST34,
ShoreFor11, LX-Shore13 and ShorelineS40, different versions from various
modelers were also evaluated. While most of these models have been vali-
dated and applied across different beach types, this benchmarking tested
their ability to transfer to an unstudied site. The characteristics of each
model submission are provided in Supplementary Table S1, and a detailed
description of each model is available in the GitHub and archived
repository41 as individual README files. Previous validation and applica-
tion practices of the models are summarized in Supplementary Table S2.

Short-termmodel comparison
With agglomerative-hierarchical clustering42, blind model predictions for
the short-term period (2019–2023) can be grouped into six distinct clusters
based on the dissimilarity of temporal patterns (Fig. 2a). Details of the
clustering process are described in theModel Clustering section. Cluster 1&
2 (Fig. 2b–d) consist of HMs, most of which rely on the MD0443 or Y099

empirical shoreline models to quantify cross-shore sediment transport.
These twoclusters are characterizedby sharp shoreline retreat in response to
storms, followed by gentle recovery, which is evident in the ensemble of
Cluster 1 & 2. The main distinction between Cluster 1 and 2 is their
approach to incorporating longshore sediment transport. Most models in
Cluster 1 either do not explicitly model longshore sediment transport (e.g.,
Y09_LFP, SLRM_LIM, and EqShoreB_MB) or incorporate it using beach
rotation models (e.g., IH_MOOSE_LFP14), while models in Cluster 2 adopt
CERC-like equations44 to quantify shoreline change related to gradients in
longshore sediment transport.

Cluster 3 & 4 (Fig. 2e–g) consist of a mixture of HMs and DDMs.
Models in these clusters have relatively low-frequency variation and smooth
trends. Cluster 3 includes the three best-performing models for the short-
term period (i.e., GAT-LSTM_YM, iTransformer and CoSMoS-COAST-
CONV_SV, ranked in Supplementary Fig. S1) with coherent variability
independent ofmodel type. All theHMs in Cluster 4 incorporate longshore
sediment transportwithCERC-like equations.Although someof them (e.g.,
CoSMoS-COAST models) use MD0443 or Y099 model for cross-shore
sediment transport, the models in Cluster 4 are less responsive to storms
compared to the models in Cluster 1 & 2.

Cluster 5 & 6 (Fig. 2h–j) consist of DDMs that struggle to predict
shoreline positions (based on the results in Supplementary Fig. S1). Among
these models, SARIMAX_AG, XGBoost_AG, and Catboost_MI in Cluster 5
are characterized by high-frequency fluctuations that correspond closely to
daily wave characteristics. In contrast, models like SPADS_AG,
ConvLSTM2D_LFP and wNOISE_JAAA in Cluster 6 exhibit less noise but
struggle to accurately capture shoreline variability. As a result, the ensemble
of models in Clusters 5 and 6 exhibits the highest noise and the lowest
accuracy. Across all clusters, transects 2 and 8, which represent the ends of
the beach and experience larger shoreline variations, are predicted more
accurately,whereas transect 5,with its smaller andmore irregular variations,
presents a greater prediction challenge.

Medium-term model comparison
With the timescale of analysis increasing from short-term (5 years) to
medium-term (50 years), the clustering of model predictions changes
(Fig. 3a). The first cluster of medium-term predictions is the same as
Cluster 6 of short-term and includes noisy DDMs. Despite their daily-
scale variations, the inter-annual variability of thesemodels is comparable
to those smoother models in Cluster 2, whichmostly overlaps with short-
term Cluster 3 and represents the best-performing models. Models in
Cluster 3 & 4 of the medium-term predictions have large overlap with
Clusters 2 & 1, respectively, of the short-term predictions. These model
predictions feature large and quick responses to storms, which became
more evident in the medium-term with more severe storm events (e.g., in
1972 and 1974) observed. Model ensembles in Cluster 3 & 4 tend to
predict larger shoreline erosion in response to these events than other
clusters.
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Fig. 1 | Study site and input data. a Location of BeachX. Inset wave rose shows the
location and distribution of offshore waves from ERA5. b The detailed map of
BeachX (Curl Curl Beach, New South Wales, Australia). The color gradient at the
seaside indicates bathymetry. Yellow lines represent transects. Red dots show the
location of nearshore waves. cNearshore (depth = 10m)wave roses for transects 2, 5
and 8. The red solid line represents the mean beach orientation. d Significant wave
heightHs (e) peak wave period (f) mean wave direction (g) annual mean sea level

and its trend. h Spatio-temporal distribution of relative (de-meaned) shore-
line position (blue/negative values indicating erosion and red/positive values indi-
cating accretion). Basemaps: CartoDB Positron (©OpenStreetMap contributors) in
panel a; Esri World Imagery (© Esri — Source: Esri, i-cubed, USDA, USGS, AEX,
GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP and the GIS User Commu-
nity) in panel b. Basemap tiles are accessed via the Contextily Python package.
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Fig. 2 | Clustering of short-term model predictions from the ensemble of blind-
test submissions. a Dendrogram resulting from Euclidean distance-based Ward’s
minimumvariance clustering91. Blue and brown colors of tick labels representDDM
and HM, respectively. b–j Short-term prediction of shoreline positions from dif-
ferent clusters of models for different transects. The deep red line is the ensemble

mean (interval mean between 5th and 95th percentiles) of models within each
cluster. Black scatters with error bars are SDS shoreline positions with 8.9 m RMSE.
The predictions by each individual model can be visualized using the online,
interactive version of this plot (https://shoreshop.github.io/ShoreModel_
Benchmark/plots.html).
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Fig. 3 | Clustering and ensemble of medium-term model predictions.
aDendrogram resulting from Euclidean distance-based Ward’s minimum variance
clustering91. Blue and brown colors of tick labels represent DDM and HM, respec-
tively. b–j clusters of medium-term prediction of shoreline positions for different
transects. Deep red line is the ensemble mean (interval mean between 5th and 95th

percentiles) of models within each cluster. Black circles and dots represent the target
shoreline position pre and post 1986 respectively for better visualization. The pre-
dictions by each individual model can be visualized using the online, interactive
version of this plot (https://shoreshop.github.io/ShoreModel_Benchmark/
plots.html).

https://doi.org/10.1038/s43247-025-02550-4 Article

Communications Earth & Environment |           (2025) 6:581 5

https://shoreshop.github.io/ShoreModel_Benchmark/plots.html
https://shoreshop.github.io/ShoreModel_Benchmark/plots.html
www.nature.com/commsenv


Cluster 5 & 6 consist of model predictions with larger medium-term
variations for different reasons. For the models in Cluster 5, shoreline change
is primarily driven by gradients in longshore sediment transport, resulting in
planform response and redistribution of sediment, contrary to the episodic
beach erosion caused by cross-shore sediment transport43,45,46. The large
variation of model performance in Cluster 6 is attributed to the extreme
sensitivity of the ShoreFor model to shifts in wave climate11,30,47. As the
hindcast wave data uses different observations for data assimilation pre and
post 197948, the wave climate changes slightly around 1979. This minor
change in the distribution of waves leads to the large long-term divergence of
the ShoreFor-basedmodels (e.g., SegShoreFor_XC and ShoreForCaCeHb_KS)
unless additional modeling techniques to address this issue are included
(ShoreForAndRotation_GA).

Long-term model comparison
Although prediction of future state is a common goal among modeling
applications, the accuracy of long-term (2019-2100) model projections
cannot be critically evaluated due to the absence of observational data.
Instead, the ensemble and variability of these projections can be used for

statistical analysis of long-term coastal erosion risks (Fig. 4). Here, the 15
models incorporating sea-level rise (Supplementary Table S1) are included
in the analysis. The ensemble projections (Fig. 4a1–c1) in both future cli-
mate scenarios exhibit strong seasonal and interannual variability driven by
the variation of wave climates (Fig. 4d). This variability ismore pronounced
than the long-term trend of shoreline retreat caused by sea-level rise
(Fig. 4d), particularly at transects 2 and 8. With the combined impacts of
changing wave climates and sea-level rise over time, the frequency of
shoreline erosion reaching the cross-shore location of the present-day dune
toe increases with time. Similar to the first five years evaluated in the short-
term comparison, the final five years of the 21st century (2095 ~ 2100,
Fig. 4a2–c2) show that most models continue to provide consistent shore-
line prediction statistics. Only a few models (one for transects 2 and 5, and
four for transect 8) project that the average shoreline position will reach the
present-day cross-shore location of the dune toe. However, when wave-
driven shoreline erosion and seasonal effects are considered (i.e., the tem-
poral variation of the predictions), the dune-erosion risk increases, parti-
cularly at transect 8, where 7 out of 15 models project maximum seasonal
shoreline erosion to reach the present-day dune toe in both RCP 4.5 and

Fig. 4 | Long-term shoreline projections in response to waves and sea-level rise.
a1–c1 Ensemble of monthly long-term shoreline projections in RCP4.5 and
RCP8.5 scenarios, including only models that account for sea-level impacts. Solid
lines are ensemble means while the shaded areas represent the range between
minimum and maximum projections. The red dash-dot line marks the position of
the present-day dune toe. a2–c2 Model-wise statistics of shoreline projections
between 2095 and 2100. Circles represent means while caps indicate the range

between temporalminimum andmaximum. dWave and sea-level projections. Solid
lines are the 1-year running backwards mean of significant wave Hs, while dashed
lines are yearly sea-level rise with respect to mean sea-level recorded between 1995
and 2014. Projection of each individual model can be visualized in the online,
interactive version of this plot (https://shoreshop.github.io/ShoreModel_
Benchmark/plots.html).
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Fig. 5 | Model performance in Taylor diagrams. a–i Taylor diagram for different
transects and timescales. The diagrams show the normalized standard deviation
(radial - x and y-axis), correlation coefficient (curved axes along the circumference of
the circle), and normalized centered root mean square error (CRMSE, concentric
dashed arcs). Stars, circles, and squares represent HM, DDM, and ensemble mean
respectively. Solid and hollow markers distinguish models submitted before (blind)
and after (non-blind) ShoreShop2.0, respectively. The black triangle (Observed)
shows the observed data in a Taylor diagram with zero error. The model

performance is indicated by the distance of scatter points ofmodel predictions to the
observed. The red dashed arc indicates the normalized RMSE of SDS (8.9 m) with
respect to the observed shoreline standard deviation (STD) for that time period. The
legends are sorted based on the average loss �L (displayed within the bracket) for all
transects and timescales where predictions are available. The superscript * after a
model name indicates non-blind models submitted after ShoreShop2.0. The Taylor
diagrams and model ranking for each timescale can be found on (https://github.
com/ShoreShop/ShoreModel_Benchmark).
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RCP 8.5 scenarios. For transect 8, most models project similar shoreline
positions during the 2095–2100 period for both scenarios in terms of
temporal minimum, maximum, and mean. However, the difference
between the RCP scenarios is substantially larger for transects 2 and 5, with
most models projecting greater erosion in the RCP 8.5 scenario.

Model metrics
TheTaylor diagram49 and related loss function (L, refer to Eq. 2 inMethods)
are used to benchmark model performance in ShoreShop2.0. Models are
ranked based on the average loss �L across all the different transects and for
each timescale (Fig. 5).The evaluation for themedium-term task is separated
into pre-1986 (1951 ~ 1985) and post-1986 (1986 ~ 1998) periods due to
differences in the density and source of target data (i.e., photogrammetry
versus satellite). In themajority of theTaylor diagramsonFig. 5, the centered
root mean square error (CRMSE) of models reaches the intrinsic accuracy
(8.9m) of SDS as reported for the adjacent Narrabeen Beach21, suggesting
that themodel accuracy starts to be limited by the accuracy of shoreline data
used to train and validate the models. Examining Fig. 5 in more detail, the
general model performance is comparable for the two ends of the beach,
transects 2 (left column) and 8 (right column), across all periods and is
substantially better than for transect 5 representing the center of the
embayment (center column). This is because the ends of the embayed beach
oscillate with the seasonal directional wave climate, whereas the center of the
embayment may be more influenced by contrasting cross-shore and
alongshore processes or the alongshore propagation of sand waves and
sandbars through the middle of the beach. The model performance for
medium-term prediction (Fig. 5d–i) is comparable if not better than for the
short-term period, demonstrating the potential of the suite of shoreline
models available for this benchmarking competition to reliably predict up to
50 years of coastal variability and shoreline change. The better skillmetrics of
Medium (1951–1985) (Fig. 5d–f) compared to other periods can be attrib-
uted to two factors. First, there are only six data points available pre-1986 for
validation using the available photogrammetry data compared tomore than
100 data points available in other periods (refer to Fig. 3), which will
undoubtedly influence the error statistics. The aerial photogrammetry
dataset also generates a full beach profile abovemean sea level fromwhich a
specific mean sea level (MSL) shoreline contour can be extracted. Shoreline
data based on MSL contours are less susceptible to noise than SDS data
containing errors associated with tides, wave setup and runup21. The lim-
itation of SDS data is further described in the discussion section.

Comparing the average loss across all three periods, the top 3 per-
formingmodelswere theGAT-LSTM_YM, iTransformer-KC, andCoSMoS-
COAST-CONV_SV, two of which are DDM. The GAT-LSTM_YM model
was the top-performingMedium (1951-1985)model andCoSMoS-COAST-
CONV_SV was the top-performing model for both Short (2019-2023) and
Medium (1986-1998) tasks. The median �L of HMs (1.27) was marginally
better than DDMs (1.28). In contrast to Shoreshop1.0 in 2018 with the
model ensemble recognized as the top-performing prediction, several
individual models outperformed the ensemble in Shoreshop2.0. The pre-
dictions frommostmodels are highly correlated,withonly a fewmodelpairs
showing statistical non-correlation (P value > 0.01 in Pearson’s non-
correlation test; Supplementary Fig. S2). With availability of previously
hidden shoreline data and input-data pre-processingmethods learned from
the ShoreShop2.0 in-person workshop held in October 2024, all the non-
blindmodel submissions except forEqShoreB_MB improved their accuracy.
The detailed loss scores for eachmodel and for different transects and tasks
can be found in Supplementary Fig. S1.

Themodel performance was further evaluated using quantile-quantile
plots and metrics used in ShoreShop1.0 for the short-term and medium-
term (1986-1998) tasks with abundant target data (Fig. 6a–f). Although
most models have high quantile-quantile correlations with the target data,
biases are evident in several models (Fig. 6a–f). Notably, the under-
estimation of extreme shoreline positions is a recurring issue for many
models, particularly for transects 2 and5, a limitation thatwas also identified
in ShoreShop1.025.

Following ShoreShop1.0, the Mielke’s modification index λ50 that
accounts for both bias and dispersion is also used to evaluate model perfor-
mance.λ values range from0to1,withλ ¼ 1 representingperfect agreement,
and λ ¼ 0 representing no agreement between observation and prediction.
Compared toShoreShop1.0 that benchmarkedmodels over a3-yearperiodat
TairuaBeach,NZ, the λ value in ShoreShop2.0 shows slight improvements in
some instances (Fig. 6g) despite the use of less accurate and less frequent
shoreline data available for training.However,model performance is also not
necessarily consistent across all transects and timescales as indicated by the
range of λ for each model. Some of the best short-term models are also the
worst medium term performers (e.g., IH_MOOSE_LFP and SegShor-
eFor_XC) whereas some other models exhibit more consistent metrics (e.g.,
CoSMoS-COAST-CONV_SV, and GAT-LSTM_YM) across different time-
scales for transects 2 and 8. This is attributed to the different governing
physics and architectures of the models used here in ShoreShop2.0. Most
non-blind models substantially improve their score for individual transects
and tasks; however, the consistency of performance shows less improvement
in the non-blind models submitted after the workshop.

Discussion
ShoreShop2.0 highlighted substantial advances in shoreline modeling over
the past 6 years since ShoreShop1.0, owing to advancements in data avail-
ability fromsatellite derived shorelines aswell as algorithmic improvements,
particularly in data-driven modeling. Competition participants were pro-
videdwith information for an unnamed embayed beach, BeachX, including
timeseries of observed shorelines, representative bathymetry, water level
timeseries, and inshore directional wave climate. While the individual
shoreline models that were submitted to ShoreShop2.0 include a variety of
different processes, including onshore/offshore sediment transport, gra-
dients in longshore transport, and shoreline change induced by sea-level
rise, they all exhibit strong predictive capability across a range of different
timescales relevant to decisionmaking and planning. In general, themodels
successfully capture both the overall temporal variability and trends as well
as the response to storms in not only short-term (e.g., 5-year) but also
medium-term (e.g., 50-year) predictions. The top-performing models as
part of the blind competition, such as CoSMoS-COAST-CONV_SV, GAT-
LSTM_YM, and iTransformer-KC, outperform the ensemble and deliver
accurate and similar shorelinepredictions (Supplementary Fig. S2) across all
timescales. Among these models, CoSMoS-COAST-CONV_SV is a hybrid
model that explicitly integrates longshore and cross-shore sediment trans-
port, sea-level rise, and long-term residual trends with discrete convolution
operations to generate predictions.GAT-LSTM_YM is a data-drivenmodel
using Graph Attention Network (GAT)51, and Long Short-Term Memory
(LSTM)17,52, network to model spatial and temporal variation of shorelines,
respectively. iTransformer is a different data-driven model leveraging the
transformer architecture and the self-attention mechanism to model mul-
tivariate time series of shoreline positions across transects. These models,
despite their substantially different model architectures, can capture the
observed shoreline evolution accurately. In addition, many models now
demonstrate performance approaching the internal error of SDS (8.9m21,
Fig. 5). This suggests that the accuracy of shoreline data used for calibration
and validation has likely become one of the primary constraints limiting
further improvement in shoreline model performance.

With advances in machine-learning methods over the past 10 years,
competitors hypothesized prior to Shoreshop2.0 that data-driven models
(DDMs) would likely outperform more constrained hybrid models that
were the focus of ShoreShop1.0. This, however, was not necessarily the case.
Both the best-performing and median models from the DDM and HM
groups achieved similar accuracy. This couldbedue to several factors related
to the shoreline data, including the plateauing accuracy, as noted above, as
well as the low and irregular (~weekly) temporal resolution that can further
complicate the development of accurate DDMs. It is anticipated that as
more andbetter satellite data becomeavailablewith the ever-increasing suite
of CubeSats53, DDMs may continue to improve and eventually outpace
performance of traditional models.
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ShoreShop2.0 highlights several opportunities for future advance-
ments. In general, coastal monitoring is data poor in many regions with
limited in-situ long-term datasets available54–57. The availability of satellite-
derived products has vastly increased the number of coastal observations
available to develop and test models against. However, when compared to
other remote sensingmethods, such as fixed cameras58, the satellite-derived
shoreline data has relatively low temporal frequency (weekly to monthly)
and moderate accuracy (RMSE ffi 8:9 m) arising from geo-referencing
issues, satellite pixel footprint, as well as the temporal variability of the
instantaneouswater line, includingwave setup and runup21. This noise has a
particularly pronounced impact on Transect 5, where the RMSE of the
satellite-derived shorelines is comparable to the standard deviation of
the observed shoreline positions. As a result, it becomes challenging for
models to distinguish genuine shoreline variability from noise in the
training data, leading to substantially poorer model performance at this
transect compared to the other two. A key lesson learned during the

workshop discussions was that data preprocessing became a critical factor
influencing shoreline prediction skill beyond the models themselves. For
instance, two of the best-performing models, CoSMoS-COAST-CONV_SV
and iTransformer-KC, applied spatio-temporal smoothing and interpola-
tion techniques on the shoreline data used for calibration, practices not
widely adopted bymost othermodelers in this blind competition. Given the
same smoothed data (provided using the robust 2D smoothing method59,60

as used by CoSMoS-COAST-CONV_SV) the modelers who chose to
resubmit post-workshop also achieved improved model skill compared to
their original submissions (Fig. 5).

High-quality inshore local wave data is also very hard to achieve due to
inaccuracies in offshore wave hindcasts, as well as complex wave transfor-
mation processes across partially unresolved bathymetry. Moreover, using
daily mean wave conditions instead of peak values can underestimate wave
energy and shoreline retreat driven by extreme events. A further source of
uncertainty arises from extracting wave data at the 10m depth contour

Fig. 6 | Blindmodel performance for short andmedium-termmodel predictions.
a–f Quantile-Quantile plots for the three target transects across short-term (2019-
2023) and medium-term (1986–1998) timescales. gMielke’s modification (λ).
Squares, stars, and circles correspond to transects 2, 5, and 8, respectively, while
hollow and solid markers distinguish short-term (2019–2023) and medium-term
(1986-1998) results. The horizontal dashed red line indicates the ensemble model

metrics reported in ShoreShop1.0. Models are arranged based on the average loss
function �L across target transects for the short-term prediction. The superscript *

after a model name indicates non-blind models submitted after ShoreShop2.0. The
Quantile-Quantile correlation of each individual model can be found in the online,
interactive version of this plot (https://shoreshop.github.io/ShoreModel_
Benchmark/plots.html).
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rather than at the breaking point. Not accurately refracting the waves into
the coast has been shown to induce spurious alongshore transport gradients
in models that simulate these processes61, and may partly explain the
underperformance of longshore-only models in the medium-term predic-
tions. To account for errors in the modeled wave direction, some models
(e.g., CoSMoS-COAST) in ShoreShop2.0 applied a directional bias correc-
tion to the inshore wave data, aligning mean wave directions to shore-
normal to reduce spurious alongshore transport gradients and improve
long-term model stability, an approach that followed from similar lessons
learned at the nearby Narrabeen Beach61,62.

Beyond data quality, data requirements also impactmodels differently.
While most DDMs andHMs perform well with only wave, water level, and
shoreline datasets to train on, models such as LX-Shore13 and ShorelineS40,
which are not transect-based, require detailed information on headland
contours and accurate bathymetry in order to be skillful. Both datasets were
provided during the competition at the request of ShorelineS and LX-Shore
modelers and were found to be critical for improving these models’ per-
formance. While headlands can be retrieved from satellite imagery,
obtaining a reliable nearshorebathymetry is oftennot feasible alongmuchof
the world’s coastline. Bathymetry estimation using remote sensing techni-
ques is a promising area of active research63–68.

For long-term predictions, HMs in ShoreShop2.0 heavily rely on the
60-year-old Bruun rule69 to simulate sea-level-driven shoreline retreat. The
limitations of this simple model have led to questions over the reliability of
its use for long-term predictions70. Developing alternative approaches that
better account for complex shoreline responses to sea-level rise15,71,72 will be
crucial for improving these models. The benchmarking of these alternative
methods to model the shoreline retreat due to sea level rise will likely be
possible in the near future with the availability of global-scale long-term
datasets of SDS21,73.

Notably absent from the submissions ofmodels were commercial (e.g.,
GENESIS8) andphysics-basedmodels (e.g., Delft3D,MIKE21). The authors
acknowledge that the absence of physics-based models may be due to their
complexity and reliance on extensive data, which were not available under
the data-poor conditions of this study. Similarly, to the authors’ knowledge,
there was no model that explicitly attempted to model the cross-shelf
exchange of sediment (e.g., ShoreTrans15) and very few models (e.g., LX-
Shore74) incorporated non-erodible features and sediment budgets. While
most shoreline models assumed unlimited sediment supply and relied on
wave and shoreline data for model training and validation, as these are the
most readily available data over large spatial and temporal scales15, other
coastal processes such as cross-shelf movement of sediment and subsurface
sediment availability can play an important role in longer-term sediment
budgets75. Many of the models submitted to the ShoreShop2.0 competition
implicitly accounted for these processes through the calibration of model
free parameters that relate observed shoreline variability to the combined
effects of waves, water levels, and unresolved processes12,47. Inclusion of
models that explicitly account formore coastal processes, such as cross-shelf
exchange of sediment and the impact of human interference (i.e., structures
or nourishment) in future comparative studies would enhance the com-
prehensiveness of the evaluation framework.

Building on the results of ShoreShop2.0, future shoreline bench-
marking efforts can be improved in several key areas. Both ShoreShop1.0
and ShoreShop2.0 focused on natural embayed beaches, but with different
data availability. The relatively regular shoreline time series, along with the
absence of sediment sources, sinks, and engineering activities, make these
beaches suitable for modeling by most approaches (Supplementary
Table S2)—particularly data-driven models (DDMs) and transect-based
hybrid models (HMs) that rely predominantly on relationships between
wave forcing and shoreline position to predict daily to multi-decadal
shoreline change. However, the benchmarking results from these beach
types may not be directly transferable to other coastal settings. To better
evaluate model capabilities in other environments of interest, future
benchmarking might focus on more challenging sites, including those with
complex geomorphology, human interventions, and changing sediment

budgets.More accurate shoreline andwave data, alongwith awider range of
supporting datasets—such as sediment budgets and engineering histories—
might be provided to support more comprehensive modeling approaches.
This would also enable the inclusion of physics-basedmodels. Finally, while
ShoreShop1.0 and 2.0 used metrics that tended to reward models with
smooth and stable predictions, future benchmarking efforts may benefit
from exploring additional metrics, including those that evaluate perfor-
mance at event scales or under extreme conditions, which are particularly
relevant in the context of coastal management and planning.

It is important to clarify that this research does not aim to serve as a
prescriptive guide for selecting shoreline models in operational decision-
making contexts. While our benchmarking exercise provides insight into
the relative predictive skill of different modeling approaches, model
selection in practice should also consider a range of other factors,
including model complexity, physical process representation, alignment
with stakeholder needs, etc.23,24. To support informed application, we
provide supplementary Table S1 and README files describing each
model’s structure and process representation. These details, when com-
bined with performance benchmarking, allow practitioners to assess
which models may be suitable for their specific management or research
objectives.

Methods
Benchmarking setup
The ShoreShop2.0 benchmarking exercise was conducted at Curl Curl
Beach, New South Wales, Australia (Fig. 1a, b). To ensure a blind testing
environment, the site was anonymized and referred to as BeachXduring the
competition. While the planform shape and beach orientation were pre-
served, all geospatial references were removed to prevent participants from
identifying the actual location. Participantswere informed only that BeachX
was an embayed sandy beach.

The dataset provided for the competition included several open-source
inputs used for model calibration and prediction. Daily mean directional
wave characteristics at the 10m depth contour were supplied from 1940 to
2100 (Fig. 1d–f), with hindcast and forecast data derived from global wave
models76,77 and downscaled using the BinWaves approach78. Shoreline
positions were derived from satellite imagery using the CoastSat toolkit33

and were available at approximately fortnightly intervals from 1999 to 2018
(Fig. 1h) for model calibration. Shorelines for validation were primarily
sourced from the same dataset as calibration, with additional data derived
from open-source photogrammetry79 to extend coverage into the pre-
satellite era (1951–1985). Validation shoreline positions were unavailable to
participants. In addition to wave and shoreline data, tidal data from the
FES2014 global model80, as well as historical and projected sea-level data
based on buoy measurements81 and regional projections82, were also
provided.

To capture site-specific coastal characteristics, participants were also
given geomorphic parameters including mean grain size, depth of closure
estimated following Hallermeier equation83, and beach face slope84. Shore-
line data were extracted along nine shore-normal transects spaced 100m
apart; however, model evaluation focused only on transects 2, 5, and 8,
representing the northern, central, and southern sections of the beach,
respectively. To support non-transect-based area models, such as LX-
Shore13 and ShorelineS40, representative bathymetry and headland contours
were also provided as essential inputs. Detailed information about the
characteristics of the target site and theprocessingof inputdata canbe found
in the Site description and Data collection and preprocessing sections.

Unlike ShoreShop1.025, which focused on short-term prediction (up to
3 years), ShoreShop2.0 required participants to provide daily predictions of
shoreline position for two periods: the short-term (2019–2023) and the
medium-term (1951–1998). Only the model predictions for these two
periods were used to evaluate model performance. Although future wave
and sea-level projections were also provided to facilitate long-term forecasts
extending to 2100, these were not included in the evaluation due to the lack
of observed shoreline data.

https://doi.org/10.1038/s43247-025-02550-4 Article

Communications Earth & Environment |           (2025) 6:581 10

www.nature.com/commsenv


Site description
Curl Curl Beach is a 1-km long embayed beach, situated within Sydney’s
Northern Beaches region in southeast Australia (Fig. 1a). The beach is
characterizedbyfine tomediumquartz sandwith grain sizeD50 ffi 0:3mm,
estimated based on the adjacent Narrabeen Beach54. The depth of closure is
~11mwith the slope of the active beach profile being 0.022, estimated with
Hallermeier equation83, whereas the inter-tidal beach face slope is about
0.0785. The northern end of the beach is backed by an intermittent open and
closed lagoon (ICOL). To minimize interference from the lagoon, shore-
normal transects were defined starting 100m south of the inlet. (Fig. 1b).

The deepwater wave climate in the Sydney region is characterized by
moderate to high wave energy (Hs ffi 1:6 m and Tp ffi 10 s) with distinct
seasonal and inter-annual variations. It is dominated by persistent, long-
period swell waves from the SSE direction, as well as high-energy wind
waves from the south (Fig. 1a)54. As waves propagate toward the nearshore,
processes such as shoaling and refraction alter their direction and magni-
tude (Fig. 1c). At the 10-m depth contour near Curl Curl Beach, the average
Hs reduces to 1.2 m(Fig. 1d).Aswaves refract and shoal, the dominantwave
directions shift to SE and ESE, with an average direction of 114° (Fig. 1e),
~85° relative to the shoreline. Curl Curl Beach is located in a micro-tidal
environment with a mean spring tidal range about 1.3m54.

In addition to shoreline oscillations related to cross-shore beach pro-
cesses, Curl Curl Beach also has a prominent rotational signal (Fig. 1g) as
evidenced in many other embayed beaches in New SouthWales, Australia,
due to the trapped longshore sediment transport within individual
embayment and the alongshore variability in cross-shore processes86,87.

Data collection and preprocessing
The shoreline data used in ShoreShop2.0 were derived from freely available
satellite images of Landsat 5, 7, 8, and 9 extracted with the open-source
CoastSat toolbox33. Shoreline position was defined as the distance from the
landward endof a transect to the point of intersectionwith the shoreline.All
shoreline positions were corrected for tidal effects to represent instanta-
neouspositions atMSL33.Validation against limitedphotogrammetry data79

for Curl Curl Beach demonstrated high accuracy of SDS, with RMSE values
below 7m for transects 1–8 and up to 15m for transect 9 near the headland
(Supplementary Fig. S3). These metrics are generally better than the 8.9m
RMSE reported for the nearby Narrabeen Beach site when compared to
ground-truth data21.

The hindcast (1940 ~ 2023) wave data used in ShoreShop2.0 was
obtained by downscaling offshore directional wave spectra to nearshore
areas. The offshore wave hindcast was from the ECMWF Reanalysis v5
(ERA5)76. The hourly wave data were resampled to daily averages, using the
mean value for significant wave height (Hs), peak wave period (Tp), and
mean wave direction (Dir). The BinWaves approach78 was applied to
transform the offshore wave data to the nearshore. TheHs,Tp andDirwere
extracted along each shore-normal transect at the 10mbathymetry contour
with a daily interval from 1940 through 2023. The projectedwave data were
made using a nested WAVEWATCH III wave model with surface wind
projections from the Australian Community Climate and Earth System
Simulator (ACCESS)77 as inputs.Wave projections have beenperformed for
Representative Concentration Pathway (RCP)withmedium (RCP 4.5) and
high (RCP 8.5) range carbon emission scenarios throughout 2006–2100.
The offshore wave forecast was transformed to nearshore following the
same approach applied to hindcast wave data78. For each transect, to ensure
the consistency between the hindcast and forecast wave data, the forecast
wave climates were calibrated based on the joint distribution ofHs, Tp and
Dir over the overlapping time period of 2006 ~ 2023 with the multivariate
bias correction algorithm (MBCn)88.

The observational annual sea-level data for 1950–2023 were obtained
from the tidal gauge at Sydney, Fort Denison81,89. Sea-level projections for
2019–2100 were sourced from the regional projections included in the
Intergovernmental Panel on Climate Change (IPCC) 6th Assessment
Report (AR6)82. Both observational and projection datasets were calibrated
relative to the baseline average sea-level recorded between 1995 and 2014. A

uniform sea-level dataset was applied consistently across all transects. Tidal
data were extracted from the FES2014 global tidalmodel80 and resampled to
daily mean values.

The representative bathymetry was obtained from the New South
Wales Marine LiDAR Topo-Bathy dataset90, which has a spatial resolution
of 5meters. The headland contour was extracted from the Topo-Bathy data
at the 0-meter depth contour.

Evaluation methodology
As a graphical summary of model performance, Taylor diagrams49 have
been used to benchmark shoreline models16. Typically, a Taylor diagram
evaluates and visualizes model performance using three metrics: the cor-
relation coefficient (Corr), the standard deviation (STD), and the CRMSE.
However, recognizing that these metrics do not account for bias in model
predictions, we modified the loss function by replacing CRMSE with the
root mean square error (RMSE). While CRMSE remains a component of
the Taylor diagram for visualizing model performance, RMSE was specifi-
cally employed in the loss function to better capture prediction bias during
model evaluation. To ensure comparability across transects with different
shoreline variations, bothRMSE andpredicted STDwere normalizedby the
STD of the observed (obs) shoreline data:

RMSEnorm ¼ RMSEmodel

STDobs
; STDnorm ¼ STDmodel

STDobs
ð1Þ

The loss function L is defined to reflect the distance between the model
predictions and the observed data (RMSEnorm = 0, Corr=1, and
STDnorm ¼ 1) in a Taylor diagram by incorporating multiple metrics:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0� RMSEnorm

� �2 þ 1� Corrð Þ2 þ 1� STDnorm

� �2
q

ð2Þ

Due to the difference between CRMSE and RMSE, the loss L is indi-
cative of, but not identical to, the distance between themodel points and the
observation point in the Taylor diagram shown above in Fig. 5.

In addition to the metrics derived from the Taylor diagram, Mielke’s
modification λ50 used in ShoreShop1.0 was also included for comparison
purposes25:

λ ¼ 1� N�1PN
i¼1 Xi � Yi

� �2

σ2X þ σ2Y þ �X � �Y
� �2 ð3Þ

where X and Y denote the target and predicted shoreline positions
respectively, and N is the number of records in X and Y .

Model clustering
For model clustering, the shoreline predictions were standardized per
transect by removing themean and scaling to unit variance, whichwas then
concatenated into a single time series of size N. The predictions from M
models were stacked to construct an M ×N array X. Pairwise Euclidean
distances (Di;j) among M models in the N-dimensional space were calcu-
lated. Agglomerative-hierarchical clustering42 was then performed onDi;j to
cluster M models into 6 classes, with the similarity criterion defined by
Ward’s variance minimization algorithm91.

Data availability
All the data that support the findings of this study are available at (https://
github.com/ShoreShop/ShoreModel_Benchmark/tree/main) and archived
at (https://doi.org/10.5281/zenodo.1525939141). This repository includes
input datasets as well as the shoreline predictions generated by each of the
shoreline models.
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Code availability
The code used to perform the model comparisons and generate the figures
in this paper is publicly available at (https://github.com/ShoreShop/
ShoreModel_Benchmark/tree/main) and archived at (https://doi.org/10.
5281/zenodo.1525939141). The repository also includes README files that
briefly describe each modeling approach. Participants were encouraged to
submit their model code alongside their blind shoreline predictions. Codes
for ShoreFor, CoSMoS-COAST-CONVandShorEOF-ML_JOare available
under the /algorithms directory. However, as this was an open competition
involving both open-source and proprietary models, codes were only made
available at the discretion of the modelers providing submissions. Never-
theless, many of the model codes used for the ShoreShop2.0 submissions,
described here, are publicly available in separate, model-specific reposi-
tories, as noted in the corresponding README files.
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