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Persistent vegetation greening trends
across China’s wetlands
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Vegetation is the basic component of wetland ecosystems. Monitoring changes in aboveground
biomass (AGB) ofwetland vegetation is crucial for understanding the response ofwetland ecosystems
to global climate change. China has vast wetlands experiencing diverse climate change impacts.
However, how the AGB of wetland vegetation responds to climate change and human impacts
remains unclear. This lack of understanding stems from insufficient in-situ observations, complex
interactions between wetland vegetation growth and local hydrology, and challenges in estimating
AGB using remote sensing data alone. Here, we compiled a wetland AGB dataset with 1087 sites
covering all wetland regions in China (639 sample points from field sampling and 448 sample points
from literature). Based on this dataset, we mapped the spatial distribution of wetland AGB in China
using machine learning algorithms to understand its historical and future changes. The wetland AGB
density of China in 2020 was 352.23 ± 32.67 g Cm−2 on average and the total wetland AGB stock was
57.51 ± 6.36 Tg C. During the past two decades (2000–2023), wetland AGB has gradually increased,
indicating a notable greening trend in China’s wetlands. Our results project that China’s wetlands
could continue to green-up rapidly and sustainably under various future climate change scenarios, but
with varying degrees of greening. This highlights the difference in wetland ecosystem response to
various climate conditions.

Wetland has the highest carbon sequestration capacity per unit area of all
ecosystems, which is crucial to mitigating global warming1–3. The above-
ground biomass (AGB) of wetland vegetation is a pivotal indicator of eco-
system response to climate change. Accurately assessing AGB is the
fundamental basis for estimating the carbon sequestration potential of
wetland ecosystems4,5. However, monitoring the spatial-temporal changes
in wetland vegetation AGB remains a major challenge in the carbon cycle
research6,7. Given the critical importance of wetland changes in coping with
climate change and the poor characterization of wetland AGB changes, it is
imperative to rigorouslymonitor thedynamic changesofwetlandAGBwith
precision and accuracy.

China is renowned for its vast expanse of natural and diverse wetland
types. Assessing wetland AGB has drawn particular attention in recent
decades8,9. Although many studies have evaluated wetland AGB at local to
regional scales, few studies have examined the current pattern of historical
change andprojected future trends ofwetlandAGBat a national scale under

climate change10. The study of large-scale wetlandAGB is often constrained
by factors such as the sparsity of in situ AGBobservations, the availability of
wetland types and area data, and the accuracyof predictivemodels.National
inventory surveys of wetland AGB require great input from human power
and other resources. Although inventory monitoring of AGB can be com-
pensated for by remote sensing techniques and local surveys11,12, the lack of
consistent large-scale wetland distribution data also limited the accuracy of
wetland AGB estimation. Considerable efforts have been devoted to esti-
mating large-scale wetland AGB using a robust spatiotemporal projection
model13,14. Spatial interpolation methods, such as kriging and inverse dis-
tance weighting (IDW), have provided rapid mapping techniques for wet-
landAGB based on field sampling15. However, these approaches are limited
in capturing temporal variations in wetland AGB. To address this, vegeta-
tion indices derived from surface reflectance data have emerged as essential
covariates for wetland AGB estimation16. The normalized difference vege-
tation index (NDVI) and enhanced vegetation index (EVI) positively
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correlate with AGB, making them widely used and effective for AGB
estimation17. Due to the widespread distribution and diverse vegetation
types in wetlands, spectral variations exist among different vegetation types.
In addition, the presence of water could profoundly impact the spectrum
signal. Consequently, studies relying exclusively on a single vegetation index
for AGB estimation in large-scale or highly diverse regions often produce
unsatisfactory results18. Machine learning algorithms have been proven
suitable for predicting wetland AGB, particularly for large-scale or diverse
sample datasets19,20. Machine learning algorithms can effectively integrate
remote sensing observations and other geographic data. These algorithms
are also valuable tools for establishing spatial projection models of wetland
AGB and for accurately evaluating the spatial-temporal changes of
wetland AGB.

Understanding the dynamics of wetland AGB is important for
assessing ecosystem responses to climate change. Climate change and
anthropogenic disturbances have been identified as the primary
drivers for inter-annual variations in wetland AGB21. Previous studies
have well documented that higher temperatures stimulate vegetation
photosynthesis, leading to an increase in wetland AGB22,23. Con-
versely, reduced precipitation constrains vegetation growth, resulting
in a decline in AGB24,25. Previous studies have extensively explored
the spatial distribution in wetland AGB under various climatic
conditions15. These analyses about the influencing factors of vegeta-
tion AGB within a timeframe may result in overlooking the response
of AGB to long-term climate change. Moreover, variations in AGB
are also influenced by shifts in vegetation types, which can be
attributed to natural ecosystem evolution and human activities4,26.
Long-term dynamics and future trends in wetland AGB, under the
combined influence of those factors, remain unclear.

This study aimed to assess the spatial pattern of wetland AGB and its
historical and future changes on a national scale in China. In this study, we
compiled a wetland AGB database integrating AGB observations from field
surveys and data collected from the literature. Different machine learning
algorithms were applied to develop an effective wetland AGB model. The
optimal model was then used to understand the spatial distribution of
wetland AGB in China and to evaluate and project the effects of historical
and future climate change on wetland AGB.

Results
Model development and evaluation for wetland AGB
Our results of different statistical models showed that the random
forest model, incorporating vegetation indices, environmental vari-
ables, and wetland types, demonstrated the best AGB predictive
performance, with an R2 value of 0.82 and relative error (RE) of
14.65% (Fig. 1). Machine learning models that utilize multiple cov-
ariates outperformed autoregressive and single-factor models in
terms of accuracy. Linear and power function models based on
individual vegetation indices exhibited lower accuracy, with R2 values
below 0.3. Among the autoregressive models, the ordinary kriging
(OK) model achieved an R2 value of 0.39, higher than IDW and
nearest-neighbor interpolation (NeI). The machine learning models
showed varying accuracies depending on the employed covariates.
Model accuracy was improved by including environmental and
vegetation-type covariates. When considering machine learning
models with the same set of covariates, the random forest model
outperformed multivariate linear regression, extreme gradient
boosting (XGBoost), support vector machine (SVM) models, and
convolutional neural network models in accuracy. Hence, a random

Fig. 1 | Regressive results for estimating
wetland AGB.Vegetation indicators include NDVI,
EVI, MSAVI, RVI, and WDVI. Environmental
covariates included elevation, slope, temperature,
and precipitation. Weighted difference vegetation
index (WDVI), ratio vegetation index (RVI), mod-
ified soil adjusted vegetation index (MSAVI),
inverse distance weighting (IDW), nearest-neighbor
interpolation (NeI), extreme gradient boosting
(XGBoost), support vector machine (SVM), and
ordinary kriging (OK), and relative error (RE).
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forest model incorporating vegetation indices, environmental vari-
ables, and vegetation types was selected for this study to estimate
wetland AGB in China.

Spatiotemporal changes of wetland AGB in China
The spatial pattern of the wetland AGB generated using a random
forest model showed that the average wetland AGB in China was
352.23 ± 32.67 g C m−2, with over 70% of the regions having AGB
values below 400 g C m−2 (Fig. 2). We observed that the wetland AGB
decreased with increasing latitude and elevation (Fig. 3). The AGB
increased with annual precipitation. The large spatial gradient in
temperature and precipitation across wetlands in China led to inter-
regional differences in wetland AGB, with the highest value
(3442.75 ± 451.29 g C m−2) in the Southeast and South China region
and the lowest one (244.76 ± 18.52 g C m−2) on the Tibetan Plateau.

Our results indicated that the wetland AGB stock in China was
57.51 ± 6.36 Tg C. We also observed considerable variations in AGB in
terms of wetland type (Fig. 4). Quantitative analysis of the area and AGB of
different wetland types in China revealed certain discrepancies between the
proportions of area andAGB.ThehighestAGBdensitywas found in coastal
swamps (5978.98 ± 615.14 g C m−2). However, as coastal swamps accoun-
ted for only 0.2%of the totalwetland area, they contributed 3.6% (2.04TgC)
of AGB to the total China’s wetlands. Inland swamps accounted for only
5.1% of the total wetland area, but they contributed over 20% (57.51 ± 6.36
Tg C) of the wetland AGB stock in China (Fig. 4). The lowest AGB density
was found in the inlandmarsh (274.18 ± 26.86 g Cm−2). Inlandmarsh area
was the dominant wetland type in China, occupying 93% of the wetland
area, whilst it contributed to 72.3% (41.56 Tg C) of the wetland AGB stock.

History changes of wetland vegetation AGB
The average wetland AGB from 2000 to 2023 was estimated to be
approximately 345.52 ± 26.87 g C m−2 (Fig. 5a). In terms of temporal
changes in the AGB of wetlands across China, there was an overall
increasing trend of 1.29 ± 0.14 g C m−2 yr−1 in the past two decades. The
increase was more pronounced in the northern part of the northeastern
region and the southeastern coastal area. In terms of latitude, both high
latitudes (greater than 50 degrees) and low latitudes (lower than 20
degrees) exhibited a higher growth rate compared to the other regions
(Fig. 6). Among the different regions, the Southeast and South China
region exhibited a pronounced increase in wetland AGB change rate. In
contrast, the Inner Mongolia–Xinjiang Plateau and Lower and middle
reaches of Yellow River regions showed a decreasing trend. Other regions
showed a slight increase (Supplementary Fig. 1a). The change rate of

wetland AGB gradually decreased with increasing elevation, with a
change rate of 4.52 g C m−2 yr−1 in areas below 200 meters and a decrease
to −1.54 g C m−2 yr−1 in areas above 3000m (Supplementary Fig. 1b).
The change rate of wetland AGB demonstrated a positive correlation
with temperature and precipitation, suggesting that a higher temperature
and more precipitation resulted in a greater positive change rate of
wetland AGB (Supplementary Figs. 1c, d).

Projected future changes in wetland AGB across China
Different future climate scenarios led todistinct changes in thewetlandAGB
(Fig. 5b). In the Shared Socioeconomic Pathway 126 (SSP126) scenario, the
wetland AGB in China will be relatively stable, with an average value of
356.52 ± 26.38 g C m−2 for the 2024–2100 period. The wetland AGB
exhibited a slight increasing trend under the Shared Socioeconomic Path-
way 245 (SSP245) scenario, with a growth rate of 0.21 ± 0.02 g C m−2 yr−1

and an average value of 365.65 ± 34.75 g Cm−2 for the 2024–2100 period. In
contrast, the Shared Socioeconomic Pathway 585 (SSP585) scenario pro-
jected a notable increase in wetland AGB compared to the current levels,
with an even more pronounced increase after 2060, projected to exceed
400 g C m−2 by 2100. Spatial variations in wetland AGB were observed
under different climate change scenarios (Fig. 7). In the SSP126 scenario, the
AGB change rate in wetland vegetation was relatively small. The
SSP245 scenario exhibited a increase in the AGB change rate compared to
the SSP126 scenario, especially in the northern part of the Northeast China.
In contrast, the SSP585 scenario demonstrated a considerably higher and
more prominentAGBchange rate. Regionswith a positiveAGBchange rate
accounted for 80%,with over 40%of the areas exceeding 1 g Cm−2 per year.
Across different latitudes, the wetland AGB stock change rate was higher in
the SSP585 scenario than in the SSP126 and SSP245 scenarios. A higher
AGB stock change rate was observed around 30 degrees and 50 degrees.

Discussion
We compiled a AGB dataset for China’s wetlands comprising 1087 samples
(Supplementary Data 1), covering various wetland ecosystems nationwide.
Multi-year field sampling efforts were conducted between 2009 and 2021 to
collect the data. Additionally, literature data was employed, incorporating
data from various sources published between January 2000 and May 2023.
This comprehensive dataset helped overcome the limitations of data
availability in previous studies27. We selected a wetland extent dataset
known for its good data consistency and high classification accuracy (China
_wetlands) to estimate wetland AGB and its variations8. Furthermore,
we performed comprehensive evaluations of the widely used models for
estimating wetland AGB, from which we selected the model with the

Fig. 2 | Spatial pattern of wetland AGB in China.
a Spatial distribution of wetland AGB. The lower left
histogram insets show the area proportions of dif-
ferent AGB levels. bWetland AGB and area at dif-
ferent latitudes.

https://doi.org/10.1038/s43247-025-02628-z Article

Communications Earth & Environment |           (2025) 6:624 3

www.nature.com/commsenv


best performance to enhance our estimation accuracy. Traditional
autocorrelation-based spatial interpolation models showed relatively poor
performance, given the weak spatial correlation between samples and the
nonzonal distribution pattern of wetlands28. Remote sensing vegetation
indices could not accurately reflect the reflectance information of wetland
vegetation due to the influence of wetland hydrology. Therefore, the accu-
racy of the simple linear regression model was extremely limited18. Careful
consideration of multiple environmental factors is critical in wetland AGB
modeling to improve model accuracy. The random forest model can ade-
quately capture the complex relationship betweenwetlandAGBand various
spectral indices and environmental factors. This result demonstrates its
ability to accommodate non-linear relationships betweenwetlandAGB and
multiple covariates while minimizing model errors. This study ensured
precise projections by meticulously considering the data and methodology.

Due to the limited availability of extensive wetland survey data, research
on the spatial distribution and dynamic change of wetland AGB in China
has been lacking11. We presented an unprecedented analysis of China’s
wetland AGB at a national scale using a machine learning approach,
employing a constructed national dataset of wetland AGB alongside wetland

distribution data. This study generated a spatial distribution map of wetland
AGB in China. Its interannual variations were evaluated, providing a sup-
plement to existing wetland AGB maps or sample measurements. We also
forecast the future change and analyzed the historical change and current
pattern of wetland AGB. This study conducted a quantitative analysis to
assess the impacts of various carbon emission scenarios on wetland AGB,
and thus enhanced our understanding of temporal changes in wetland AGB
and greening. Expanding this knowledge is crucial for understanding the
response of wetland ecosystems to global change.

Our study findings revealed an estimated wetland AGB of
352.23 ± 32.67 g C m−2, with inland marshes exhibiting slightly lower
measurements at 274.18 ± 26.86 g C m−2. These results were slightly
higher than the AGB estimation of marshes provided by Shen et al.
(227.5 g C m−2)15. This discrepancy can likely be attributed to variations
in the timing of the estimates and differences in the methods used. On
the one hand, Shen et al.’s dataset was a field survey sample from 2013 to
2017, while the data sample in this study spanned over 20 years. On the
other hand, the machine learning method was adopted in this study to
draw the spatial and temporal distribution of AGB more accurately in

Fig. 3 | The variation in averagedwetlandAGB in different geographic regions. aAverage wetlandAGB in different regions. bAverage wetlandAGB at different elevation
intervals. c Average wetland AGB in different precipitation gradients. d Average wetland AGB in different temperature gradients.
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China’s wetlands, rather than the kriging interpolation method used by
Shen et al.15. Differences in the use of wetland data may also be one of the
reasons for the variance in the estimation of wetland AGB. Various

topographic and climatic conditions have strongly influenced the spatial
distribution of wetland AGB in China. In areas such as the
Qinghai–Tibet Plateau, characterized by high elevation and low tem-
peratures, the wetland AGB was considerably lower compared to other
geographic regions in China. Conversely, the humid climate of the
southeast coastal area contributed to a higher wetland AGB compared to
different geographic regions. Variations in wetland vegetation types also
played a role in AGB differences, with swamps exhibiting notably greater
AGB than marshes. The northern part of Northeast China was parti-
cularly interesting, where wetland AGB was surprisingly high despite the
high elevation and low temperature. This result can be attributed pri-
marily to the extensive distribution of inland swamps in this area. These
findings are consistent with previous small-scale studies, which support
the idea that vegetation AGB tends to be higher in the southeast coastal
area and lower in the Qinghai–Tibet Plateau region10,29,30.

Previous studies demonstrated that the global vegetation had an evi-
dent greening in recent years, and pronounced greening was observed both
in China and India due to afforestation and agricultural intensification,
respectively31,32. Our study confirmed that Chinesewetlands also exhibited a
greening trend. While the greening of cultivated and woody lands was
primarily driven by human impacts, the causes of wetland greening and
AGB increases in China were likely subject to the combined influences of
climate change and human activities. The feature importance results from
the random forest model indicated that wetland type and climate had a
strong influence on wetland AGB density (Supplementary Fig. 2). There-
fore, the greening of wetland vegetation was sensitive to changes in tem-
perature andprecipitation.Over the past twodecades, both temperature and
precipitation within Chinese wetland areas exhibited a general increasing
trend. Warming and wetting climates, in combination with enriched

Fig. 4 | Area proportion and vegetation AGB proportion in different
wetland types. Outer ring for AGB density and inner ring for AGB stock. Coastal
marsh: natural wetland with dominant herbaceous vegetation in coastal areas.
Coastal swamp: natural wetland with dominant woody vegetation in coastal areas
including forested wetland and shrub wetland. Inland marsh: natural wetland with
dominant herbaceous vegetation in inland areas. Inland swamp: natural wetland
with dominant woody vegetation in inland areas including forested wetland and
shrub wetland.

Fig. 5 | Temporal variation of wetland AGB.
a Historical changes in AGB from 2000 to 2023.
b Future trends of AGB from 2024 to 2100 under
different climate scenarios. Shaded areas represent
the 95% confidence intervals.
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atmospheric CO2, have obvious positive effects on the growth of vegetation
and promote the greening ofwetlands31,33. Similarly, the greening ofwetland
may be affected by atmospheric nitrogen deposition. The recent increase in
atmospheric nitrogen deposition has enhanced plant photosynthetic
capacity and stimulated plant growth, potentially resulting in increased
wetland AGB34,35. Similar wetland greening trends were also observed
worldwide under global warming22,36,37. On the mid-Atlantic coast,
increasing temperature and precipitation in recent years promoted the
wetland greening22. Warming has also stimulated vegetation growth in
northern peatlands, thus promoting wetland greening37.

The greening of wetland vegetation in China was not only influenced
by climate change, but may also have been positively affected by human
activities. AGB density showed marked differences among different wetland
vegetation types, and wetland type was the most important driving factor in
the random forest model. Therefore, changes in wetland types driven by
human activities had a substantial impact on the greening trend of vegeta-
tion. On one hand, the increasing emphasis on wetland protection and
progressively improved conservation systems resulted in reduced negative
disturbances from human activities such as grazing and drainage8. China’s
recent shift from wetland exploitation to restoration and protection may
have contributed substantially to wetland greening38. On the other hand,
vegetation community changes within wetlands also positively contributed
to this greening process. The Chinese government has extensively planted
mangroves and other coastal swamps in the Southeast and South China
region, with a higher AGB than coastal marshes39. The area of mangroves
has rapidly expanded in recent years, and as mangroves grow, the AGB of
the vegetation increases accordingly40. In addition to the plantation of
mangroves in the Southeast and South China region, the invasion of alien
species, such as the Spartina alterniflora in the Lower and middle reaches of
Yellow River region, also has a substantially impact41. Changes in wetland
communities, such as the expansion of high-biomass community types like
Spartina alterniflora, led to increases in wetland AGB.

The historical changes observed in wetland AGB suggest that climate
change will likely drive alterations in wetland AGB. The effect of future
climate change onwetlandAGBwas substantial in this study (Figs. 5 and 7).
This study quantitatively analyzed the impact of different SSP scenarios on
wetland AGB. The changes in wetland AGB remained relatively stable over
time under the SSP126 scenario. The SSP245 scenario, characterized by
increased carbon emissions, showed a slight upward trend in vegetation
AGB. In contrast, the SSP585 scenario exhibited a substantial increase in
vegetation AGB, with a more pronounced trend after 2060 and a projected
10% increase by 2100. This result indicated that, under the SSP245 and
SSP585 scenarios, China’s wetlands are continuously and rapidly greening.

Different trends in temperature and precipitation in the future are
expected to result in diverse trends in wetland AGB variation. Wetland
plants can absorb and sequester a substantial amount of carbon dioxide,
trapping it within the vegetation and soil. This process aids in mitigating
CO2 released into the atmosphere, contributing to climate mitigation
efforts42,43. The increase in wetland AGB under the SSP585 scenario may
enhance the carbon sequestration capacity of the wetland ecosystems.
However, it is noteworthy that this context may also result in the loss of
stored organic carbon in wetland soils, impacting ecosystem stability11. A
deeper understanding of wetland AGB and greening changes can enhance
our comprehension of ecosystem responses to climate change. In the face of
climate change, we advocate for strengthened wetland management, with
close attention to the variations in wetland AGB and greening, to better
address future climate change challenges.

The results of this study showed that AGB density increased by 3.88%
from 2000 to 2020 in the unchanged wetland. However, based on the mean
value of wetland AGB density in these two years and considering wetland
area changes between2000 and2020, the totalwetlandAGBstockdecreased
by 8.57% from 2000 to 2020. To enhance wetland protection, the Chinese
government implemented a series of wetland conservation and restoration
measures in recent years39.As a result, the decrease inwetlandareas inChina
has slowed notably, and wetland areas in many areas are rebounding8. The
expectation is that wetland area and wetland AGB stock in China will
increase further.

While visual assessments and statistical testing of the models indi-
cated that the estimates were reasonable, the inherent uncertainties and
limitations of this study must be acknowledged. Firstly, we acknowledge
several limitations in our current analysis regarding the impact of
wetland area changes on AGB dynamics. Our assessment of historical
AGB changes was exclusively based on unchanged wetlands from 2000
to 2020, thereby excluding the effects of wetland reclamation and
restoration activities. Secondly, our projections of future AGB changes
were based on the 2020 wetlands spatial distribution. Although China’s
wetland areas have remained relatively stable in recent years, the
potential influence of future wetland area changes on AGB dynamics
introduces additional uncertainty to our predictions. Furthermore,
our environmental data framework, apart from climatic data, is anchored
to 2020 baseline. This includes various vegetation indices that may
undergo alterations in response to climate change. Finally, comprehen-
sive quantitative assessment of human impacts was lacking. Future stu-
dies should prioritize establishing reliable datasets for these analyses and
exploring anthropogenic influences on wetland AGB dynamics across
broader geographical scales, extending to the global level.

Fig. 6 | Spatial patterns of temporal changes in
wetland AGB across China from 2000 to 2023.
a Spatial distribution of wetland AGB change. The
lower left histogram insets show the area propor-
tions of different AGB change levels. bWetland
AGB changes and area at different latitudes.
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Date and methods
Wetland extent distribution
This study focused on vegetated natural wetlands, encompassing both
inland and coastal types. To map wetland extent, we utilized the China_-
Wetlands dataset8. This dataset offers robust wetland classification (overall
accuracy: 95.1%), making it a valuable resource for such investigations. In
2020, the total wetland area across China was 162.8 × 103km2. Most of the
wetlands are distributed in Northeast China and Qinghai–Tibet Plateau
(Supplementary Fig. 3a). About 20% (33.79 × 103km2) of wetlands in China
experienced changes in terms of gains or losses during the past two decades,
from 2000 to 2020. We investigated wetland AGB changes for seven
geographic regions in China, specifically in this study8, including
Northeast China, Qinghai–Tibet Plateau, Yunnan–Guizhou Plateau, Inner

Mongolia–Xinjiang Plateau, Lower and middle reaches of Yellow River,
Lower andmiddle reaches of YangtzeRiver, and Southeast and SouthChina
(Supplementary Fig. 3a).

Wetland AGB dataset
The AGB of different wetland types in this study refers to the total AGB of
wetland vegetation per unit area. The term “marsh” refers to herbaceous
wetlands dominated by grasses and reeds, while “swamp” denotes woody
wetlands characterizedby trees and shrubs.Their respectiveAGBrepresents
the total vegetation biomass within these ecosystems’ aboveground com-
ponents, excluding belowground structures. We compiled AGB observa-
tions from two sources to generate the AGB dataset for China’s wetlands,
including in-situ observations from field surveys and data from the

Fig. 7 | Spatial patterns ofwetlandAGB change inChina from2024 to 2100 under
different future scenarios. a Spatial distribution of wetland AGB change under the
SSP126 scenario. b Spatial distribution of wetland AGB change under the
SSP245 scenario. c Spatial distribution of wetland AGB change under the
SSP585 scenario. The lower left histogram insets in (a–c) show the area proportions

of different AGB change levels. dWetland AGB stock changes at different latitudes
under different scenarios. Shared Socioeconomic Pathway 126 (SSP126), Shared
Socioeconomic Pathway 245 (SSP245), and Shared Socioeconomic Pathway 585
(SSP585).
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literature. The in-situ observations include 639 sites collected from seven
field surveys conducted from 2009 to 2021. These field surveys were con-
ducted during August, with consistent and well-designed field sampling
protocols that balance site uniformity, site accessibility, and costs. All the
sample plots were surveyed with three replicates (0.5m × 0.5m) to obtain
themean value (1m × 1m) of the biomass18. The in-situAGB samples were
taken into the laboratory, oven-dried at 65 °C and then weighed with a
precision of 0.01 g. Consistent with previous studies, a factor of 0.45 was
adopted to convert vegetation biomass to carbon density in this study44,45.
We also compiled wetland AGB records from peer-reviewed publications
concerningwetlands inChina. Publications between January 2000 andMay
2023 were searched through the Web of Science, Google Scholar, and the
ChinaNationalKnowledge Infrastructure for Studies. The keywords used to
search the studies included vegetation AGB, marsh, swamp, wetland, and
China. If available, the main texts and supplementary files of these manu-
scripts were checked to identify the dataset with vegetation AGB mea-
surements. Primary data were sourced either directly from published tables
or, where tabular data were unavailable, derived by digitizing figures. This
digitization utilized GetData Graph Digitizer (version 2021b; OriginLab
Corporation) and (version 2.24; http://www.getdata-graph-digitizer.com/).
These tools have demonstrated high digitization accuracy (>99%) and are
widely used46–48. The literature dataset comprised 77 studies published from
2000 to 2023, with 448 sample points (Supplementary Fig. 3b). The final
dataset obtained by the twomethods included 1087 samples across China49,
covered all wetland types in China.

Covariate variables
Wetland AGB is influenced by climate, terrain, hydrology, and vegetation
type50. Certain vegetation indices can effectively characterize vegetation
wetland AGB13,51. Therefore, this research incorporates various geographic
spatial data as covariates in the model for wetland AGB (Supplementary
Table 1).

This study used MODIS surface reflectance products (MOD09A1,
MOD11A2, and MOD113A1) from June 1st, 2000, to October 1st, 2023,
archived in the Google Earth Engine cloud platform. The annual NDVI,
EVI, weighted difference vegetation index (WDVI), ratio vegetation index
(RVI), and modified soil adjusted vegetation index (MSAVI) were calcu-
lated from 2000 to 202352,53.

Elevation data at a spatial resolution of 250meters were acquired from
the Global Digital Elevation Model (US Geological Survey, http://glovis.
usgs.gov/). Climatic data (temperature and precipitation) were sourced
from the National Meteorological Information Center of China (NMICC,
http://data.cma.cn/). To ensure spatial consistency with the other envir-
onmental variables, the original 1000m resolution climate data were
resampled to 250m using the NEI method. Subsequently, the environ-
mental attribute values (elevation, temperature, precipitationandvegetation
index, etc.) corresponding to each raster cell were extracted to all sampling
point locations. These spatially aligned values then served as inputs for the
subsequent spatial analysis algorithms.

Future climate data were used to predict changes in wetlandAGB. The
future climate scenarios used in this study were obtained from the near-
surface atmospheric drive datasets (https://cstr.cn/18406.11.Meteoro.tpdc.
270998). The dataset includes projections from three different models,
EC-Earth3, GFDL-ESM4, andMRI-esm2-0, covering the period from 2024
to 2100 under three different scenarios: SSP126 (low-carbon emissions),
SSP245 (medium-carbon emissions), and SSP585 (high-carbon
emissions)54. The average precipitation and temperature of the threemodels
were computed usingMatlab software (Matlab R2019a), and future climate
data were resampled using the NeI method, with a spatial resolution
of 250m.

Data analysis process
Four main steps were performed to estimate wetland AGB in China. First,
the in-situ wetland AGB dataset was established by combining field
sampling and literature data. Second,multiple covariates, such as vegetation

indices, climate variables, and topography, were preprocessed and inte-
grated with the in-situ wetland AGB dataset. Third, different wetland AGB
models were established, and the optimal model was selected to estimate
wetland AGB based on the accuracy of the evaluations. Fourth, the current
pattern, historical change, and projected future trends of wetlandAGBwere
conducted based on historical environmental covariates and future climate
data. Geospatial data downloading and processing were accomplished on
the Google Earth Engine cloud platform, and models were established in R
(version 4.0.2; https://www.r-project.org/). The flowchart of general data
processing and analysis is shown in Supplementary Fig. 4.

Spatial extrapolation of wetland AGB
We compared the performance of the three types of models in estimating
wetlandAGB and selected an optimalmodel based on their accuracy in this
study. The three types of models were (1) autocorrelation models. These
models use the geographic locations of sample sites as explaining variables
and extrapolate the in-situ AGB observations according to the distance of a
target pixel to the data samples. IDW, NeI, andOKmodel were used in this
study. (2) Regression models based on single vegetation indices and linear
and power models. (3) Machine learning models. These models consider
multiple covariates. We compared generalized linear, random forest,
XGBoost, SVMmodels, and deep learning models. A total of 1087 samples
were collected.Among these, 70% (761 samples)were randomly selected for
model construction, while the remaining 30% (326 samples) were used for
accuracy validation. The following metrics were employed to assess the
accuracy of the projectionmodels: R² and RE. Finally, the current pattern of
wetland AGB in 2020 was reconstructed based on the selected
optimal model.

Projectionsofhistoricalchangeand future trends inwetlandAGB
In our analysis of historicalwetlandAGBchanges,we focused exclusively on
wetland areas that remained unchanged from 2000 to 2020. Therefore, this
study excludedAGBchanges inducedbywetland area changes. Thewetland
AGB in different years was reconstructed using the optimalmodel based on
topographic data, vegetation type and historical covariate data (vegetation
index and climate data from 2000 to 2023). In the future trends of wetland
AGB, we only consider the impacts of climate changes on wetland AGB,
with the wetland area fixed in 2020. Future climate data under different
carbon emission scenarios were also used to predict future wetland AGB
based on an optimal model. The annual mean value and change rate of
wetland AGB were determined by analyzing the annual projection results.
Similar to vegetation primary productivity and vegetation indices such as
NDVI and EVI, we defined changes in AGB density as wetland greening
dynamics.

Data availability
All data used to support the findings of this study are publicly available. The
vegetation index data are available from National Aeronautics and Space
Administration (https://modis.ornl.gov/). The Topography data is available
from US Geological Survey Global Digital Elevation Model (http://glovis.
usgs.gov/). The climatic data are available from National Meteorological
Information Center of China (http://data.cma.cn/). The wetland vegetation
aboveground biomass data used to complete the analyses for the paper are
available via figshare at https://doi.org/10.6084/m9.figshare.29352908
(ref. 49).
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