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Global coastal water clarity has increased
due to human intervention

Check for updates

Fengqin Yan 1,2,9, Bin He1,3,4,9, Vincent Lyne 5, Rong Fan1,2, Yikun Cui6, Xinyi Wang1,2, Dongjie Fu 1,2,
Michael Meadows 3,7, JohnWilson8, Ziying Chen1,2, Chengyuan Ju1,3,4 & Fenzhen Su 1,2,3,4

Climate change and human activity are reshaping coastal systems, yet global impacts onwater clarity
remain poorly quantified. Here we leverage remote sensing big data to develop a global model of
coastal suspended particulate matter across continental coastal waters, and show that global coastal
suspended particulate matter concentrations have declined by 0.28mg L−1 annually since 2000,
driven by natural processes and human intervention. Furthermore, the spatial extent of areas
exceeding the 2000 globalmean threshold has shifted landward at an average rate of 0.014 km year−1.
Long-term sea level rise and diminished sediment delivery—driven by urbanization and expanding
impervious surfaces—were the dominant drivers of this global clarification trend. In contrast,
moderate increases in wave height and salinity enhanced resuspension, while larger shifts promoted
suspended particulate matter settling. These findings provide a basis for tracking suspended
particulate matter trends and guiding sustainable coastal management under urban and climatic
pressures.

Global climate change, linked to substantial anthropogenic forcing1,2, has
triggered cascading disruptions across Earth’s critical coastal interfaces—
where 90% of marine biodiversity converges and 40% of humanity resides.
As emphasized by the IPCC Sixth Assessment Report3, this rapid accel-
eration of climatic forcing has intensified terrestrial-oceanic couplings
beyond historical analogs. However, the underlying processes governing
these interactions remain poorly understood. Accelerated ice-sheet
meltwater4 and intensified hydro-meteorological extremes5,6 have dis-
rupted sediment delivery systems that stabilized nearshore ecosystems over
millennial timescales7–9. Concurrently, rising sea levels and altered wind
regimes10,11 are intensifying coastal erosion and wave-driven sediment
remobilization. Together with expanding coastal urbanization12,13 these
perturbations are reconfiguring sediment transport pathways and driving
emergent degraded water quality hotspots characterized by suspended
particulate matter (SPM) accumulation. Crucially, the nonlinear couplings
between climate-drivenhydrodynamic shifts14 and anthropogenic pressures
on nearshore environments15,16 generate feedbacks that may exceed bio-
geochemical thresholds for coastal water clarity—a vital indicator of eco-
system health. These synergistic forces create intricate and spatially
divergent patterns of material flux between land and sea, with some coastal

regions experiencing sediment depletion while others exhibit localized
accumulation or enhanced resuspension. Such heterogeneity underscores
the need to better understand the long-term trends and multifactorial dri-
vers shaping land–ocean exchanges.

Advances in remote sensing big data have transformed themonitoring
of land–ocean interactions, providing high spatial and temporal resolution
anddeep insights into thesedynamic exchanges.While agencies like theU.S.
Environmental Protection Agency emphasize SPM as a key water quality
metric, their understanding of how these fluxes respond to the combined
pressures of human activities and climate change on a global scale remains
limited. Satellite-derived data products, such as those tracking sediment
transport, ocean currents, and land-ocean flux estimates, are indispensable
for deepening our understanding of these interconnected systems. Despite
advances in satellite-based coastal monitoring17,18, critical knowledge gaps
persist in deciphering how these multiscale drivers synergistically govern
global patterns of water clarity. The absence of a unified framework to
reconcile localized sediment dynamics with planetary-scale transport
mechanisms hinders predictive understanding of coastal ecosystem resi-
lience, particularly in quantifying the relative contributions of climate for-
cing versus anthropogenic pressures on SPM budgets.
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Wefocusedon the 100 kmmarine ecotone along continental coastlines
worldwide, leveraging 23 years (2000–2023) of consistent moderate reso-
lution imaging spectroradiometer (MODIS) observations to track decadal-
scale trends in coastal SPM, decode multiscale land–ocean coupling
mechanisms, and assess their anthropogenic and climatic drivers. A remote
sensing dataset for coastal suspended sediment concentration was devel-
oped to analyze spatiotemporal patterns of global coastal SPM levels,
derived from theNationalAeronautics andSpaceAdministration (NASA)’s
Terra and AquaMODIS satellites’ global daily land surface reflectance (SR)
products (500-m resolution). A coastal SPM retrieval algorithm, adapted
from a global reference method18, was systematically implemented. Vali-
dation against in-situ SPM measurements from 1106 coastal observatories
confirmed methodological robustness, demonstrating a median absolute
percentage error (MAPE) of 21.1% across global heterogeneous marine
environments. Our methodology quantifies coastal waters SPM transport
using impervious surface area (ISA)19 as the human pressure index, while
integrating sea surface height (SSH), wave height, and salinity as natural
drivers. The analytical framework is grounded in established sediment
transport models20–22 but innovates through global-scale big data spatio-
temporal coverage and machine learning-enhanced pattern recognition.

Global patterns of coastal waters
Regions with an annual mean SPM concentration exceeding 10mg L−1

accounted for ~28% of the global continental coastal waters. High SPM
concentrations were primarily observed in high-latitude coastal zones, with
annual means surpassing 50mg L−1 in several estuaries and their adjacent
waters (Fig. 1a). Among the top 20 countries ranked by the proportion of
coastal waters (within 100 km) with annual mean SPM concentrations
exceeding 10mg L−1,most are developing or emerging economies. Belgium,
Finland, United States, Estonia, Canada, and United Kingdom are notably
the only developed countries appearing on this list (such as Supplemen-
tary Fig. 7).

Generally, SPM concentrations exhibited a gradual decline over the
period 2000–2023. The distributions ofmodel-predicted annualmean SPM
for the years 2000, 2008, 2016, and 2023 (Fig. 1b) show a progressive shift
toward lower concentration values, indicating a consistent decrease in
sediment levels across global continental coastal waters over the past two
decades. Significant declines were observed in specific coastal regions,
including Liaodong Bay (China), Port Hedland (Australia), the northern
Amazon River plume (Brazil), and Gironde Estuary (France) (such as
Supplementary Fig. 8). The spatial extent of high SPM concentrations has

progressively retreated landward over the past two decades, indicating a
contraction of turbid zones toward the coastline.

Decline and landward retreat of coastal SPM
To better characterize regional variability, trends in SPM across global
coastal waters from 2000 to 2023were classified into five categories: Further
Clearing, Gradually Clearing, Steady, Gradually Turbidifying, and Further
Turbidifying (Fig. 2). Although the Further Clearing category comprises
~16% of total coastal pixels, it alone accounted for more than 66% of the
global declining trend in SPM concentrations. The Gradually Clearing
region contributed an additional 4.5%, and together these two categories
explain over 70% of the global SPM decline (Fig. 2c), highlighting the
dominant influence of strong clearing zones in shaping global trends.

Using the global annual mean SPM concentration in 2000 as a refer-
ence threshold, we found that areas exceeding this baseline have progres-
sively retreated landward over the past 23 years, with an average recession
rate of approximately 0.014 km year−1 (Fig. 2b). This suggests that clearer
waters are extending toward the shoreline in many regions, while turbid
zones are shrinking. Regionally, coastalwaters inmid and low latitude zones
exhibited themost pronounced SPM declines between 2000 and 2023, with
the Australian coastline alone contributing over 30 percent to the global
downward trend (Fig. 2a). Over the same period, SPM concentrations have
decreased at an average rate of 0.28mg L−1 per year. InAsia, fourmajor river
mouths and delta regions, including the Ganges Brahmaputra Delta in
Bangladesh, the Mekong Delta in Vietnam, the Yangtze Estuary in China,
and the Yellow River Estuary in China also showed substantial clearing
signals, with clearing trends exceeding turbidifying. Notably, Chinese
coastal waters exhibited one of the fastest rates of SPM decline globally,
alongside Singapore, making both regions key hotspots of rapid coastal
sediment reduction and shoreline retreat (such as Supplementary Fig. 9).

Anthropogenic and climatic drivers
To assess the influence of human activities on coastal SPM dynamics, we
incorporated global coastal ISA data to distinguish between natural, engi-
neered, and transitioning coastlines. In 2000, coastal regions adjacent to ISA
exhibited SPM concentrations that were ~9.64mg L−1 lower than those in
non-ISA regions, suggesting that urbanization and industrial development
may be directly associated with reduced SPM levels. From 2000 to 2023,
SPMconcentrations declined across all coastline types (Fig. 3a).Natural and
engineered coastlines exhibited nearly identical rates of decline, with slopes
of −0.1958mg L−1 year−1 and −0.1987mg L−1 year−1, respectively. In

Fig. 1 | Global continental coastal waters patterns 2000–2023. a Spatial dis-
tribution of the average annual SPM concentration in global continental coastal
waters, calculated as the mean of yearly values from 2000 to 2023. bDistributions of
annual mean SPM concentrations in global continental coastal waters (within
100 km of the coastline) for the years 2000, 2008, 2016, and 2023. Each violin–box

hybrid shows the full data density (shaded area) and summary statistics per year.
Boxes represent the interquartile range (25th–75th percentiles), with the horizontal
line indicating the median; whiskers extend to the 5th and 95th percentiles. Red
dashed lines indicate the annualmean SPM concentration for each year. Sample size
for each year is approximately n ≈ 856,000 valid 0.05° grid cells.
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contrast, coastlines transitioning from natural to engineered conditions
showed a less steep decline, potentially reflecting a lag in the response of
SPM dynamics to land use change.

Slopes of SSH,wave height, and salinity on coastal SPMtrends between
2000 and 2023 show nonlinear response patterns across these variables
(Fig. 3b, c). The Shapley Additive exPlanations (SHAP) dependence plots
reveal how each variable contributes to the predicted SPM trend. For the
SSH slope, SHAPvalues exhibit an enhanced decline beyond approximately
a critical level (~0.003), suggesting that rising SSH consistently suppresses
SPMlevels. In contrast, the salinity slope shows a unimodal response, SHAP
values peak between −0.05 and +0.05 and decline outside this range. For
wave height slope, SHAP values increase within the range of approximately
−0.01 to −0.002, drop near zero, and then stabilize or rise slightly, sug-
gesting thatmoderatewave energymayenhanceSPMwhile very loworhigh
wave intensities are associated with more stable or decreasing trends.

Discussion
This study provides a comprehensive analysis of global trends in coastal
waters sediment transport, focusing on the key natural and anthropogenic
factors driving changes in coastal waters over the past 24 years. Utilizing a
global-scale remote sensing dataset and an enhanced machine learning
retrieval model, we quantified the spatiotemporal patterns of SPM over
2000–2023 as a proxy for sediment dynamics in global continental coastal
waters, with selected regional examples used to illustrate key trends. Our
findings reveal sustained declines in SPM concentrations across global
continental coastal waters over the past two decades, reflecting shifts in
coastal sediment dynamics in response to both anthropogenic pressures and
climatic variability.

The anthropogenic driver of SPM concentrations was represented by
coastal ISA and natural factors comprised: SSH, wave height, and salinity.
Both ISA and rising SSHwere positively associated with long-term declines

Fig. 2 | Trends and patterns of global continental coastal waters from 2000
to 2023. a Spatial classification of SPM trends in global continental coastal waters
based onmodel-derived annual mean concentrations from 2000 to 2023. Trends are
categorized into five classes: Further Clearing (dark blue), Gradually Clearing (light
blue), Steady (white), Gradually Turbidifying (light orange), and Further Turbidi-
fying (dark red). Pie charts indicate the proportional distribution of each trend class
by continent: NA (North America), SA (South America), EU (Europe), AF (Africa),
AS (Asia), and OC (Oceania). Insets (outlined in dark purple) highlight four
representative rivermouths anddelta systems inAsia: (1) theYellowRiver Estuary in
China, (2) the Yangtze Estuary in China, (3) the Mekong Delta in Vietnam, and (4)

the Ganges-Brahmaputra Delta in Bangladesh. b Temporal change in the average
distance between the coastline and the spatial boundary where SPM concentrations
match the 2000 global mean. Blue line shows the inland retreat of turbid waters; the
orange line shows the declining trend in global annual mean SPM concentrations.
Shaded bands represent 95% confidence intervals. Both trends are statistically sig-
nificant (P < 0.01). c Contribution of each trend class to the global change in coastal
SPM concentrations. Negative values indicate decreasing SPM (clearing), while
positive values indicate increasing SPM (turbidifying). Contributions are calculated
as the product of slope magnitude, pixel count, and mean concentration.
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in SPM concentrations, whereas wave height and salinity exhibit nonlinear
relationships, with a mid-range peak, with SPM (Fig. 3).

At the global scale, there was a clear decline in SPM levels over time,
particularly in regions where human activities, such as urbanization and
industrial development, have led to a significant increase in coastal ISA.
Coastal urbanization, particularly in rapidly developing regions such as
China, has disrupted land–sea sediment pathways and diminished SPM
concentrations in adjacent waters23–25. In areas without significant ISA
influence, observed declines in SPMmay be associated with the gradual and
potentially accelerating SSH (Fig. 3). As water depth increases, vertical
mixing and resuspension processes are altered, which typically reduces
sediment suspension in offshore waters through enhanced sediment
settling26,27. These changes suggest a transition toward sediment-starved
coastal systems, especially in urbanized or engineered shorelines.

At the regional scale, several major river mouths and delta systems
exhibited pronounced reductions in SPM export to adjacent coastal waters.
Notably, four prominent systems in Asia—the Ganges-Brahmaputra Delta
(Bangladesh), Mekong Delta (Vietnam), Yangtze Estuary (China), and
Yellow River Estuary (China)—showed substantial declines, with the most
significant reduction observed in the Yellow River Estuary (Fig. 2a). This
reduction in sediment delivery from land to sea is likely attributable to the
construction of hydraulic engineering structures such as dams and reser-
voirs, which have been shown to reduce particulate load by nearly 50%28–30.
These findings underscore the role of anthropogenic modifications to river
systems in altering coastal sediment dynamics. The complex and nonlinear
nature of these interactions highlights the need for further investigation into
localized sediment transport processes in highly regulated deltaic regions.

Monotonic declines in SHAPvalueswith increasing SSHslope indicate
that long-term sea level rise has a sustained positive contribution in
declining SPM concentrations. This pattern may reflect the physical sup-
pression of sediment transport caused by deeper water depths, reduced
land–sea gradient, diminished estuarine outflow, or weaker near-bed

turbulence and sediment resuspension as water depth increases. The lack of
nonlinearity in the SSH response implies that its influence acts as a gradual
yet persistent, and potentially accelerating, forcingmechanism on sediment
dynamics.

In contrast, nonlinear SHAP patterns for salinity and wave-height
slope point to more complex and threshold-sensitive optimal feedbacks.
Salinity changes near zero slope—indicative of stable or low-gradient
conditions—may enhance sediment resuspension or inhibit flocculation,
leading to increased SPM concentrations. However, larger positive or
negative shifts in salinity slope are likely associated with density stratifi-
cation or reduced turbulence, resulting in greater sediment settling and
lower SPM levels. A similar threshold response is evident for wave-height
slope: moderate increases tend to promote sediment resuspension, but
beyond a certain intensity, stronger wave regimes may drive offshore
transport or vertical dilution of sediments, ultimately limiting SPM
accumulation. These nonlinear dynamics highlight the dual roles of
salinity and wave forcing in bothmobilizing and redistributing sediments
within coastal waters.

While this studyprimarily focusedon ISAwithin5 × 5 kmcoastal grids
and a 5 km landward buffer to assess the localized impacts of shoreline
urbanization, additional factors may influence suspended sediment
dynamics. Other anthropogenic activities, such as offshore wind farms and
oil and gas platforms, can affect SPM levels in certain regions, notably in
areas like the northern Yangtze River estuary31. Natural drivers, including
wind direction and ocean currents, may also shape localized trends, parti-
cularly in enclosed bays32–34. Furthermore, broader terrestrial factors such as
deforestation, agricultural intensification, and the construction of reservoirs
can significantly alter sediment fluxes from inland watersheds, although
these factors were beyond the spatial scope of our nearshore-focused
framework35–38. Future work should integrate catchment-scale land use and
hydrological connectivity to better capture the full continuum of land and
ocean sediment interactions in coastal systems.

Fig. 3 | Influence of anthropogenic and natural factors on coastal SPM trends
from 2000 to 2023. a Temporal trends in annual mean SPM concentrations
(2000–2023) across natural coastlines, engineered coastlines, and transitioning
coastlines. Coastline types were classified using ISA data. bMean SHAP values
indicating the relative importance of physical drivers (SSH slope, salinity slope, and

wave height slope) on SPM trend predictions. c SHAPdependence plots showing the
nonlinear effects of SSH slope, salinity slope, and wave height slope on SPM slope.
Red lines indicate smoothed trends; vertical dashed lines represent SHAP turning
points or thresholds.
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By integrating remote sensing observations with systematic analysis of
physical and socioeconomic drivers, this study establishes a scalable fra-
mework for tracking sediment transport trends under global change,
highlighting the keydrivers andprocesses that influence coastalwater clarity
(Fig. 4). The observed shorelineward shift in regions of high SPM, averaging
0.014 km year−1, reflects the dynamic reorganization of coastal sediment
regimes at both global and regional scales. This study primarily focuses on
coastal drivers, including long-termsea level rise, increasing coastal ISA, and
changing salinity and wave height conditions, which collectively reshape
SPM dynamics. We also acknowledge that upstream alterations, such as
reductions in river discharge and sediment trapping by dams, may exert
substantial influence on coastal SPM trends. Although these riverine factors
were beyond the scope of our analysis, the observed patterns underscore the
combined roles of climatic and anthropogenic pressures in modulating
nearshore sediment behavior, with implications for turbidity, nutrient
cycling, and ecological stability.

These findings advance understanding of how anthropogenic pres-
sures and climate variability reshape sediment fluxes at the land–sea
interface. Recognizing the nonlinear and spatially heterogeneous nature of
these dynamics is critical for informing adaptive coastal management. As
sediment-starved conditions become more widespread, integrated mon-
itoring frameworks—combining satellite observations, in-situ data, and
land-use models—will be essential for sustaining ecosystem resilience.
Future progress will depend on the synthesis of multi-scale big datasets and
scalable analytical approaches to support locally tailored, evidence-based
responses to accelerating climate change and intensifying human impacts.

Methods
Data sources
We utilized daily surface reflectance (SR) products from MODIS Terra
(MOD09GA) and Aqua (MYD09GA), with a spatial resolution of 500m, to
estimate SPM. Atmospheric correction and cloud removal were performed
onMOD09GA andMYD09GAdata using Google Earth Engine (GEE) tools
(https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_
MOD09GA; https://developers.google.com/earth-engine/datasets/catalog/
MODIS_061_MYD09GA#description). These datasets encompass surface
spectral reflectance across MODIS bands 1–7, corrected for Rayleigh

scattering, as well as gas and aerosol signals. Residual errors were mitigated
through band subtraction, and SR values were further adjusted to the SRland
scale to minimize inaccuracies from excessive atmospheric correction in
coastal regions39. To reduce the influence of short-term extreme events and
episodic anomalies in SPM, we based our analysis on annual mean SPM
values computed from GEE-derived cloud-free surface reflectance compo-
sites. These annual averages inherently smooth over daily and seasonal
variability, including spikes caused by storms, monsoons, or tidal resus-
pension. Additionally, GEE employs standardized cloud and shadow
masking algorithms, ensuring that reflectance data used in model prediction
is largely unaffected by persistent cloud cover. Using these corrected SRland
datasets, we then developed a global SPM inversion model by matching the
remote sensing data to field-measured observations.

Weused four databases from in situfield observations: theChinaCoast
and Estuary database (including the Yellow River Estuary, Yangtze River
Estuary, Pearl River Estuary); the Sea-Viewing Wide Field-of-View Sensor
(SeaWiFS) Bio-optical Archive and Storage System (SeaBASS); and the
UnitedNationsEnvironmentProgrammeGlobal EnvironmentMonitoring
System (GEMStat) (such as Supplementary Fig. 1). These databases cover
coastal areas, estuaries, and bays, representing a wide range of turbidity and
nutrient conditions, which enabled a thorough assessment and validation of
the retrieval algorithm’s accuracy. A total of 48 observation points along the
coast and estuaries of China from 2001 to 2021 were selected, with SPM
concentrations ranging from 2 to 1890mg L−1. For SeaWiFS, SeaBASS, and
GEMStat, 15 coastal areas and 7 estuaries were chosen, with sampling
concentrations ranging from 0.0001 to 1740.45mg L−1. In total, 1106 sta-
tions globally were matched with MODIS daily products using GEE.

We utilized the 30-m time-series global ISA (Version 2.0) dataset,
whichmaps annual increases in global ISA from1972 to 201919. This dataset
serves as a crucial indicator of urbanization and is used to characterize the
scale of impact of human activities along coastlines.We defined coastal ISA
as impervious surface coverage exceeding 10% within 5 × 5 km coastal grid
cells andanalyzed their influencewithin a 5 km landwardbuffer zone.While
we focused on shoreline-adjacent areas, we acknowledge that broader ter-
restrial drivers such as land clearing and agriculture may also influence
sediment dynamics but are beyond the spatial resolution of this framework.
For detailed processing methods, please refer to the Supplementary
Materials.

As detailed in Table 1, we selected several global environmental rea-
nalysis datasets, including: Wave height, SSH, Salinity, EEZ, and Global
coastline.

For the global study area, we selected the Marine Regons’ continents
dataset based on previous research40 and defined the study area as the global
continental coastal waters, extending approximately 100 km seaward from
the shoreline to match the spatial coverage of MODIS land products and
previous coastal studies (such as Supplementary Fig. 1)40.

Global coastal waters SPM retrieval algorithm
Following methodology established previously18, the XGBoost model was
used to estimate global SPM. XCBoost incorporates regularized boosting of
gradient-based decision trees, which helps reduce model variance41. The
“XGboost” package in Python was used to train the model.

Four bands from the atmospherically corrected MODIS data
(SRland(469), SRland(555), SRland (645), SRland (859)) were selected as opti-
mal bands for estimating SPM ðPSPMÞ. Latitude and longitudewere included

Fig. 4 | Diagram illustrating the main anthropogenic and natural drivers
affecting coastal suspended sediment dynamics. Land-based influences include
sediment supply from upstream dams and coastal ISA. Oceanic factors include SSH,
wave-induced resuspension, salinity changes, and offshore industrial activities. Light
orange arrows indicate pathways associated with sediment reduction.

Table 1 | List of datasets used in the study along with their source and link

Dataset Source Link

Wave height Copernicus https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download

SSH Copernicus https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_ENS_001_031/download

Salinity Copernicus https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_030/download

EEZ, World Map and Global Coastline Marine Regions https://www.marineregions.org/downloads.php
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to reduce errors from spatial heterogeneity in the estimation as follows:

PSPM ¼XGboostðSRland 469ð Þ; SRland 555ð Þ; SRland 645ð Þ;
SRland 859ð Þ; SRlandð859Þ=SRlandð645Þ;
SRlandð645Þ=SRlandð555Þ; Latitude; LongitudeÞ

ð1Þ

Here, the ratios SRland (859)/SRland (645) and SRland (645)/SRland (555)
represent two effective band ratios previously used for estimating SPM in
certain water bodies42–45. The SWIR bands were not used due to their low
signal-to-noise ratios and negligible water-leaving signal at these
wavelengths46. The model requires the adjustment of several hyperpara-
meters during training, including the type of booster, learning rate,
maximum depth, and regularization coefficients.

To accommodate the skewed distribution of SPM concentrations in
the training data, we first applied a logarithmic transformation to reduce
heteroscedasticity and improve model stability. We then constructed two
separatemodels—one for high SPMandone for lowSPMconditions. These
models are dynamically selected based on an adaptive threshold and blen-
ded through a smooth transition zone to minimize blocky artifacts during
prediction.

To evaluate model accuracy, we use the mean absolute error (MAE)
(Eq. 2) and MAPE (Eq. 3). MAE values are calculated numerically and
expressed as relative differences (i.e., as percentages). Generally, relative
differences such as MAPE within ~35% are considered satisfactory for
assessing estimation performance relative to measured values, while
MAPE> 60% indicates unsatisfactory performance. Refer to the Supple-
mentary Materials for details.

MAE ¼ 10

PN
i¼1jlog10 yi

� �� log10 xi
� �j

N
� 1

�
�
�
�
�

�
�
�
�
�
× 100% ð2Þ

MAPE ¼ 100%×median
yi � xi
xi

� �

fori ¼ 1; 2; . . . ;N ð3Þ

Global coastal waters SPM trends
To calculate trends for SPMvalues in the coastal waters of the study area for
the period 2000–2023, a linear regression model was used to estimate the
annual mean trend for each grid cell, using a spatial resolution of 0.05°
(~5 km at the equator), as shown in Eq. (4):

y tð Þ ¼ k1t þ a1 ð4Þ

where yðtÞ is the value of the SPM trend, which is a function of time, t (i.e.,
year), coefficients k1 and a1 were determined by standard least-squares
approaches.

To extract decadal SPM trends, we removed temporal autocorrelation,
computed linear slopes from annual model outputs (2000–2023), excluded
extremeoutliers, interpolatedmissing values, and aggregated results to 0.05°
resolution for global coastal analysis. To identify significant trends, we
employed the Mann–Kendall (MK) test, a widely used non-parametric
method for detecting trends and assessing randomness in time series data.
All analyses were performed using Python.

Distance from coastline
We quantified the distance of SPM concentrations from the coastline by
calculating the spatial shift of a specific concentration level relative to the
coast. First, the annual mean SPM concentration for the year 2000 was
chosen as the baseline. We then counted the number of grid cells corre-
sponding to this concentration extending from the coastline and deter-
mined the total area (SðiÞ2000mean). The length of the coastline associated
with this baseline concentration (dðiÞ2000mean) was also measured. Finally,
we calculated the relative distance of the SPM concentration, as shown in

Eq. (5):

Di ¼
SðiÞ2000mean

dðiÞ2000mean
ði ¼ 2000; 2001; . . . 2023Þ ð5Þ

In the above equation, i represents the year, andDi denotes the offshore
distance in a given coastal waters area relative to the annual mean SPM
concentration for 2000 for year i. For further details, please refer to
the Supplementary Materials.

Trend contribution analysis
To quantify the contribution of different regions or trend classes to the
overall global change in SPM, we calculated a trend contribution score by
weighting the slopeof eachgrid cell by its spatial extent andSPMmagnitude.
This approach considers both the direction and magnitude of change, as
well as the ecological significance of the SPMbaseline. For a given grid cell i,
its contribution to the global SPM trend is defined as shown in Eq. (6):

Ci ¼ Si ×Ai × SPMi ð6Þ

where Ci is the weighted contribution of grid cell i to the global trend. Si is
the annual SPMtrend (slope) at grid cell i, in units ofmg L−1 year−1.Ai is the
area of the grid cell (pixel count). �SPMi is themean SPMconcentration over
the study period at grid cell i, in mg L−1.

The total contribution of a given class or region (e.g., Class 1: further
clearing) is calculated as shown in Eq. (7):

Cclass ¼
X

i2class
Ci ð7Þ

To estimate the relative contribution (%) of each class or region to the
total global trend, we use the method shown in Eq. (8):

Contribution ¼ Cclass

�
�

�
�

P
k Ck

�
�

�
� × 100% ð8Þ

where k is the summation over all classes or regions. The absolute value is
taken to reflect the relative weight of trend magnitude, regardless of direc-
tion. This formulation allows the identification of regions that dis-
proportionately drive global trends due to their strong SPM gradients or
high baseline concentrations, even if their spatial extent is limited.

XGBoost and interpretability
We employed the robust and widely used XGBoost Regression model to
relate variations in SPM concentrations to the primary drivers of these
changes. This machine-learning approach is well-suited for handling long-
term, multi-scale datasets with complex structures and multiple predictors.

The model identified strong relationships between coastal SPM con-
centrations and key environmental drivers, includingwave height, SSH, and
salinity. To improve the interpretability of each variable’s contribution, we
employed Shapley Additive exPlanations (SHAP)47, a game-theoretic
method that assigns optimal contribution scores to individual predictors
based on classical Shapley values. To minimize the influence of extreme
outliers while preserving dominant trend patterns, we restricted the SHAP
analysis to the 5th–95th percentile range of SPM slope values. This filtering
step excluded rare and potentially noisy extremes, enabling a more robust
focus on core transition regimes—particularly those corresponding to
Further Clearing and Further Turbidifying trends.

To interpret model outputs, we used SHAP bar plots to quantify the
relative contributions of wave height, sea level, and salinity to annual mean
SPMconcentrations.Trend lineswere overlaid to illustrate thedirectionand
form of each relationship, indicating whether variables exerted positive or
negative effects on SPM.Allmodeling and interpretationwere performed in
Python, using the XGBoost package for training and the SHAP package for
post hoc variable attribution.
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Data availability
All observations and data supporting the findings of this study were
retrieved as follows: Publicly available data on coastal waters sediment
measurements were obtained from the SeaWiFS (https://eospso.nasa.
gov/content/nasa-earth-science-data), SeaBASS (https://seabass.gsfc.
nasa.gov/), and GEMStat (https://gemstat.bafg.de/applications/public.
html?publicuser=PublicUser#gemstat/Stations) databases. MODIS data
were obtained from the GEE platform (https://developers.google.com/
earth-engine/datasets/catalog/MODIS_061_MOD09GA; https://
developers.google.com/earth-engine/datasets/catalog/MODIS_061_
MYD09GA#description). Global environmental reanalysis datasets,
including wave data (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels?tab=form), SSH data (https://data.marine.
copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_ENS_001_031/
download) and salinity data (https://data.marine.copernicus.eu/product/
GLOBAL_MULTIYEAR_PHY_001_030/download). EEZ, World Map
and Global Coastlines data from Marine Regions Agency (https://www.
marineregions.org/downloads.php). The continents dataset was from
previous research40. Global datasets, including annual mean suspended
particulate matter (SPM) concentration, shoreline recession distance,
and category-wise contributions to SPM trends, are available and can be
accessed at: https://doi.org/10.6084/m9.figshare.29581982.v148.

Code availability
All analysis code used in this study is available in a public repository at
Figshare: https://doi.org/10.6084/m9.figshare.29589383.v1.
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