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Plant functional diversity is a key biodiversity indicator of ecosystem dynamics. Several studies have
shown that spectral data from Earth observation satellites will enable us to map functional diversity
over large areas. However, most studies only consider snapshots of such data in time, and our
knowledge of the temporal variation of functional diversity across the World’s biomes remains sparse.
Here, we use hyperspectral remote sensing and deep learning to explore multi-seasonal functional
diversity patterns on a global scale. We show that functional diversity can be highly dynamic over time.
These dynamics are biome-specific, driven by seasonal cycles and wet-dry periods. Our findings
highlight that the role of functional diversity in shaping ecosystem dynamics can be unraveled only by
incorporating seasonality into functional diversity mapping. Such a multi-temporal approach will
enhance the robustness of functional diversity assessments and deepen our understanding of

ecosystem responses to environmental change.

Biodiversity of plants encompasses various facets, including species diver-
sity, structural diversity, functional diversity, and genetic diversity, all of
which are increasingly threatened by the ongoing global biodiversity crisis'.
Among these, the loss of plant functional diversity—the variety of plant
functional traits within a community or an ecosystem—poses significant
risks to ecosystem productivity’, functioning, and stability”™. In this context,
plant functional traits are valuable indicators of ecosystem processes and
reliable proxies for assessing ecosystem conditions’. Thus, monitoring of
functional diversity is crucial for a deeper understanding of ecosystem
dynamics. Ideally, such monitoring should occur continuously and extend
globally. However, measuring functional diversity requires assessing var-
iations in multidimensional trait space’ ", and obtaining such plant trait
data at the community or ecosystem level through traditional fieldwork and
laboratory assays is impractical.

This is where hyperspectral remote sensing may offer a powerful
alternative. Hyperspectral data captures spectral information across a wide
range of wavelengths and, through specific absorption features, enables the
estimation of a series of plant traits'"”". Therefore, hyperspectral satellite-
borne remote sensing can provide an avenue for continuous monitoring of
functional diversity across time and space'®. Current and upcoming space-
borne hyperspectral missions, such as EnMAP", PRISMA®, GaoFen-5",
CHIME”, and SBG”, promise to deliver unprecedented volumes of

hyperspectral data, important steps towards a global system to track changes
in plant traits and, by extension, functional diversity"****.

To harness the full potential of these hyperspectral datasets for func-
tional diversity monitoring, it is essential to develop robust models capable
of accurately predicting plant traits over time and across different ecosys-
tems and vegetation types. Data-driven approaches, particularly machine
learning, are powerful tools for retrieving trait information from hyper-
spectral imagery by learning complex relationships between spectral sig-
natures and plant traits””. Especially the combination of large data
compilations and deep learning has shown great promise in improving the
accuracy and scalability of trait prediction models'”***.

Previous studies have managed to map functional diversity locally’*".
However, so far, most of these surveys only cover a single point in time and
ignore possible changes in functional diversity due to phenology. Other
studies performed multi-temporal analyses of functional traits, but only for
small areas, and did not specifically address functional diversity’>”. A third
group of studies focused on the link between spectral signals and functional
diversity, but only through simulations™". It is well known that values for
plant functional traits change significantly throughout the vegetation
period™*’ and also that these changes critically affect the retrieval of plant
functional traits from spectral data'’. It therefore remains unclear how
representative functional diversity maps are across seasons.
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Here, we assess the seasonal variation in remotely sensed functional
diversity and examine whether these patterns differ across biomes and along
latitudinal gradients (see Fig. 1). We assembled a large global dataset of
hyperspectral satellite images acquired by the EnMAP mission”’, covering a
two-year period from 2022 to 2024. For each scene of 30 km® with a
30 m x 30 m spatial resolution, we retrieved 20 essential plant functional
traits through a deep learning model”. We calculated two functional
diversity indices for the whole scene: Rao’s Q, which measures trait dis-
similarity, and functional richness, which captures the range of trait values.
As our dataset provided broad spatial coverage rather than repeated
observations at the same coordinates, these indices were compared based on
the recording time of the scene and its geographical location to derive
variations of functional diversity for five major biomes. While interpreting
ecological drivers is beyond the scope of this study, our results demonstrate
that functional diversity varies considerably across seasons and biomes, with
metric-specific differences. These patterns suggest that single-time-point
snapshots may not fully capture ecosystem functional diversity and hence
impair assessments of ecosystem stability and functioning.

Results

Temporal variability among biomes

Across biomes, we found the data to vary substantially in time
(Figs. 2 and 3). Overall, values of Rao’s Q ranged from 1.54 to 6.85 for the
entire time period, with higher values indicating higher functional diversity.
Rainforests exhibited the lowest range of values (2.69-5.35), whereas the
highest range for Rao’s Q occurred in the Mediterranean ecosystems
(2.20-6.85; Fig. 2). Savannas and Shrublands showed the most pronounced
seasonal changes, followed by Temperate Grasslands and Mediterranean
ecosystems. At the same time, Temperate Forests and Rainforests displayed
the least variation. In Temperate Forests, subtle seasonal variations were
observed for the Northern hemisphere, with Rao’s Q values peaking during
spring and autumn (Figs. 2 and 3). Temperate Grasslands also exhibited
their maximum in Rao’s Q values during spring and autumn in the Southern
hemisphere (Figs. 2 and 3). For Savannas and Shrublands, pronounced
seasonal patterns were detected, with higher Rao’s Q values occurring
between April and October in tropical zones and between March and
November South of the tropics, corresponding to the wet season
(Figs. 2 and 3). Rainforests showed a similar tendency, but exhibited no clear
seasonal patterns in Rao’s Q, which is consistent with the more stable
climatic conditions in these ecosystems (Figs. 2 and 3). The Mediterranean
ecosystems, Temperate Grasslands, as well as Savannas and Shrublands
displayed substantial overall variation in Rao’s Q throughout the vegetation
period (Supplementary Fig. 1).

Differences between metrics

Functional richness generally displayed similar seasonal trends to those
observed in Rao’s Q (Supplementary Figs. 2-6), but interquartile ranges

Hyperspectral satellite data

Fig. 1 | General workflow of the multi-seasonal functional diversity analysis™®.
Hyperspectral data of the EnMAP satellite mission" is fed into a one-dimensional
(1D) convolutional neural network'’, which predicts 20 different plant functional

1D convolutional neural network

were comparatively higher (Fig. 2, Supplementary Fig. 3). Overall functional
richness values from convex hull ranged from 89.99 to 11798.05 for the
entire time period, with higher values also indicating higher functional
diversity. Temperate Grasslands displayed the lowest value range
(89.99-6545.27), whereas the highest range of values for functional richness
was found in Mediterranean ecosystems (457.14-11798.05). Functional
richness patterns calculated by kernel density estimation hypervolume
(KDE) showed high resemblance to those derived from convex hull (Sup-
plementary Figs. 5 and 6) and exhibited a higher overall range of values
(10203.09-305246.55).

To further quantify the differences between the two metrics, we cal-
culated the means of monthly coefficients of variation (meanCVs). Rao’s Q
showed low to medium variability, with meanCVs ranging from 0.13 in
Temperate Forests to 0.31 in Temperate Grasslands (Supplementary Fig. 7).
In contrast, functional richness exhibited much higher variability, with
meanCVs ranging from 0.33 in Temperate Forests to 0.96 in Temperate
Grasslands (Supplementary Fig. 8).

Discussion

This study documents the pronounced temporal variation of remotely
sensed functional diversity across five major biomes. Our results highlight
the importance of incorporating temporal variation into functional diversity
assessments. The observed temporal dynamics in functional diversity have
implications for ecological research and biodiversity monitoring through
Earth observation, as well as through conventional field surveys. It has to be
noted, however, that the functional traits considered in our analysis are
restricted to those that can be addressed with optical remote sensing data.
This leads to a bias towards aboveground and specifically towards leaf traits
of the dominant and sun-exposed canopy layer, whereas belowground traits,
propagation or dispersal traits are not included. Also note that given the
30 m pixel size of ENAMAP, we primarily address functional diversity of plant
communities. We can therefore not make statements about all possible
aspects of functional diversity.

Temporal variation in functional diversity differs extensively across
biomes, underscoring the influence of ecological and climatic contexts.
Rainforests, for example, exhibit minimal seasonal variation in Rao’s Q and
functional richness, reflecting the more stable climatic conditions of these
ecosystems. In contrast, Savannas and Shrublands show stronger seasonal
changes that accompany the prevailing wet-dry cycles. One caveat of these
results is data scarcity in wet seasons due to fundamental limitations of
optical remote sensing concerning high cloud cover'”. At the same time,
Mediterranean ecosystems and Temperate Grasslands exhibit substantial
seasonal variation, where functional diversity peaks mainly during the
spring and autumn months. These peaks were also observed for Temperate
Forests in a less pronounced form, suggesting that the times of budburst and
leaf senescence lead to high levels of remotely sensed functional diversity. In
general, all these findings align with previous work indicating the strong
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Carbon | Carotenoids
Cellulose | Chlorophyll
Copper | Fiber
Leaf Area Index
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Plant functional traits

traits per scene. These traits are then used to calculate functional diversity indices
and analyze their changes over time.
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Fig. 2 | Scatter plots of Rao’s Q (trait dissimilarity) values for the five different
biomes. Values North of the tropics were excluded for Rainforests as well as
Savannas and Shrublands due to sparse data. Image acquisition dates are merged
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across years. A Gaussian smoothed median (GSM) with a moving window of 90 days
is shown for each latitude group of each plot, along with colored bars representing
the range from 25% to 75% quantiles.
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Fig. 3 | Polar plots of Rao’s Q (trait dissimilarity) values for the five different
biomes. Values North of the tropics are not shown for Rainforests and Savannas and
Shrublands due to sparse data. Image acquisition dates are merged across years. The
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monthly median is shown for each latitude group of each plot, along with colored
bars representing a range from 25% to 75% monthly quantiles.
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Fig. 4 | Location of the five biomes in our study using the Mollweide projection.
Dotted black lines separate the three latitude groups. Boxplots show the monthly
Rao’s Q (trait dissimilarity) medians for all biomes without differentiation by
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latitude. The boxes show the interquartile range (IQR) and the median of medians,
while the whiskers extend to the smallest and largest median values within 1.5 times
the IQR.

phenological and environmental controls on plant traits™*****, which
evidently apply also to functional diversity (compare Duran et al.””). The
observed seasonal trends emphasize that temporal snapshots may not reveal
the full picture of functional diversity (see Guimaraes-Steinicke et al.*®). This
also highlights that comparing functional diversity estimated in different
seasons may be misleading. Moreover, comparing functional diversity
estimates across regions, which may not have a synchronous seasonal
behavior, may also be misleading. Uncertainties will be particularly severe in
ecosystems with high overall value ranges for diversity estimates, which in
our study were found for Temperate Grasslands, Savannas and Shrublands
and the Mediterranean (Supplementary Fig. 1). It should be noted, however,
that Supplementary Figs. 1, 2 and Fig. 4 do not show which biomes are the
most functionally diverse overall, but only provide a comparison at a
resolution of 30 m x 30 m and a spatial extent of 30 km? This means that we
do not observe functional diversity at the species level, but quantify diversity
gradients of plant communities on a landscape scale. This inevitably leads to
lower overall diversity, but it allows us to observe biodiversity patterns at the
biome level. Since plant sizes and compositional patterns differ widely
between life forms and ecosystems, more comprehensive and reliable
comparisons between biomes would have to take the effects of scale and
multiple spatial resolutions into account™”’.

The choice of metric for functional diversity also influences the
observed temporal patterns. Rao’s Q shows relatively low variation, while
functional richness exhibits higher variation, particularly during the seasons
with the highest values (Supplementary Figs. 3, 4). This can be explained by
the dependency of functional richness on species numbers (Villéger et al.,
2008), which have a less prominent influence on Rao’s Q. Functional
richness also exhibits coefficients of variation that are up to three times
higher than those of Rao’s Q (Supplementary Figs. 7, 8). In general, these
findings highlight the importance of selecting functional diversity metrics.
Rao’s Q and functional richness are different facets of functional diversity,
and while Rao’s Q is more frequently used, the choice depends on the
assessment’s focus. Thus, combining multiple metrics can provide a more
nuanced understanding of functional diversity dynamics”.

The possible extent of uncertainty in our results depends on the
accumulated uncertainties of the model’s trait predictions. Here, the
robustness of the model itself remains a possible caveat since we cannot
assess the temporal variation of the model in detail due to a general lack
of validation data. Assembling a benchmark dataset of plant trait

observations at a global scale, with sufficiently large plots and co-located
hyperspectral data, is a long-standing goal in vegetation remote sensing -
one that will require sustained, coordinated efforts across the research
community'*'*. However, we assessed the trait predictions in our study
over time (Supplementary Figs. 9-28), particularly for two of the sea-
sonally most affected traits, Chlorophyll and LAI (Supplementary
Figs. 29, 30), and found consistent seasonal patterns in line with the
expectations. We also know that the model of Cherif et al.”” was trained
and successfully evaluated on 42 datasets of different biomes with large
temporal variation. According to their results and our own assessments
of temporal variation, we therefore assume that the model predictions are
robust. Regarding uncertainty in the functional diversity metrics, we are
aware that functional richness calculated via convex hull volume can be
sensitive to outliers, as extreme trait combinations disproportionately
influence the geometry of the hull. To address this, we decided to include
KDE as an alternative method for calculating functional richness. KDE-
based methods are generally less sensitive to outliers, as they weigh the
density of trait distributions rather than relying solely on the outermost
points. KDE results show high resemblance with the ones obtained from
convex hull, which indicates the robustness of functional richness esti-
mates (Supplementary Figs. 5, 6). Rao’s Q has low sensitivity to outliers,
as it is based on pairwise trait dissimilarities across the trait space, rather
than being dependent on the outer envelope. It integrates over all dis-
tances and does not emphasize extremes. As such, Rao’s Q is often
considered a more stable metric when dealing with continuous trait
distributions"**, Both Rao’s Q and convex hull are parameter-free and
deterministic once the trait distance matrix is defined. There is no
inherent stochasticity or calibration involved in their calculation, and
uncertainty arises primarily from input variability rather than from the
metric formulation itself. Another uncertainty factor is any mis-
classification in the European Space Agency (ESA) WorldCover product
that we used to mask out anthropogenic land cover types in the EnMAP
scenes. Examples would be agricultural areas misclassified as Temperate
Grasslands or tree plantations misclassified as Rainforests. However, the
ESA WorldCover is currently the most accurate product available®. Tt
has a 10m x 10 m spatial resolution, which means that the extent of
misclassification in our scenes with 30 m x 30 m pixels was considered to
be minimal. Lastly, at current processing levels, ENMAP products do not
include Bidirectional Reflectance Distribution Function (BRDF)
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correction, i.e. the removal of effects resulting from different illumination
and observation angles. The model in our study was trained on airborne
data with varying levels of BRDF and illumination effects. BRDF effects
primarily result in changes in the magnitude of reflectance rather than
the shape. Our method (Convolutional Neural Networks) is primarily
dependent on shape-related features and was augmented during training
with systematic shifts in reflectance magnitudes'”. It should therefore be
robust to satellite-level BRDF.

Our study underscores the value of hyperspectral remote sensing for
tracking temporal dynamics in functional diversity. While remote sensing
primarily reveals the functional diversity of dominant plants and may miss
the diversity beneath the upper canopy, it remains a powerful tool due to its
standardized, repeated, and large-scale observations'*. The ability to retrieve
plant traits across time and space provides unprecedented opportunities for
ecosystem monitoring, particularly in remote or inaccessible regions.
However, we also encountered challenges, including data gaps in tropical
rainforests and savanna regions due to cloud cover and limited satellite
scene availability. It should also be noted that we excluded boreal forests and
the tundra biome after data collection due to severe data scarcity. These gaps
necessarily limit the generalizability of our findings. Nevertheless, the sea-
sonal changes observed in temperate biomes, especially since they correlate
with leaf phenology, imply that boreal forests and the tundra biome should
also exhibit pronounced seasonality effects. Additionally, sampling bias
likely plays a role in our results due to EnMAP’s snapshot-on-demand
coverage that lacks spatiotemporal continuity, particularly in the rela-
tively stable pattern of functional diversity in Temperate Forests (Fig. 2,
Supplementary Fig. 3). This biome includes both deciduous and mixed
forests, and values during winter are more likely to come from mixed
forests dominated by conifers than from deciduous ones. Addressing
these limitations through enhanced satellite coverage and improved
cloud-masking algorithms will be essential for achieving global func-
tional diversity monitoring. More frequently available Landsat or Sen-
tinel data with a few multispectral bands cannot fill the data gap since
rich hyperspectral data are crucial to retrieve the analyzed key plant
traits, including leaf water and nitrogen content'®. Therefore, future
hyperspectral missions such as CHIME” and SBG™ promise a more
comprehensive spatiotemporal picture across all biomes. Above all, there
is an urgent need for more dense temporal coverage of hyperspectral
acquisitions. Additionally, the sensitivity of trait retrieval to seasonal
changes* reinforces the need for robust, temporally adaptive models. The
opportunities provided by deep learning-based trait estimation are
especially promising in this context, as large, curated datasets’” now
enable the inference of a wider range of traits essential for describing
functional diversity. As more researchers share data, including those of
underrepresented traits and regions (see Mederer et al.”), the capacity to
monitor functional diversity will continue to grow.

Conclusion

This study underscores the importance of integrating temporal dynamics
into functional diversity assessments. Our findings provide evidence that
functional diversity exhibits substantial variation across seasons, biomes,
and diversity metrics. Seasonal trends revealed in our analysis suggest that
single temporal snapshots fail to capture the full complexity of functional
diversity, which underscores the risk of misinterpretation when comparing
estimates from different time points. Similarly, cross-regional comparisons
of functional diversity may yield misleading conclusions if they do not
account for asynchronous seasonal patterns among regions. These insights
call for a shift from static to multitemporal functional diversity monitoring,
leveraging the growing availability of hyperspectral satellite data. However,
using hyperspectral data does not automatically provide a comprehensive
solution (cf. Jetz et al."*). The choice of functional diversity metric depends
on the specific goals of a study, as different metrics emphasize different
aspects of diversity. Each has its limitations regarding trait selection, spatial
resolution and temporal coverage. At the same time, more efforts are needed
to promote data sharing across research communities, which will enable the
inclusion of underrepresented regions in global analyses. By fostering col-
laborative initiatives and leveraging multitemporal monitoring, we can
bridge critical data gaps and enhance the accuracy of functional diversity
assessments. This will make it possible to unlock the full potential of
functional diversity assessments to inform biodiversity science and sus-
tainable ecosystem management on a global scale.

Methods
Dataset collection
We acquired 4157 EnMAP scenes from the corresponding website’'. Their
global distribution is shown in Fig. 5. The data were preprocessed to Level-
2A data in GeoTIFF format with combined land and water correction and
no ozone correction. We selected all available EnMAP scenes at the time
(15.09.2024) that met the following criteria:
* located in one of the five biomes we studied (Fig. 4)
¢ covering mostly natural vegetation; national parks and protected areas
where prioritized, in doubt we cross-checked with the ESA World-
Cover dataset™
¢ cloud cover below 50%
* no dispersed cloud cover
Our study includes five biomes of the World Wildlife Fund Terrestrial
Ecoregions Of The World dataset™. These were (with abbreviations in
brackets): Tropical and subtropical moist broadleaf forests (Rainforests),
Temperate broadleaf and mixed forests (Temperate Forests), Tropical and
subtropical grasslands, savannas and shrublands (Savannas and Shrub-
lands), Temperate grasslands, savannas and shrublands (Temperate
Grasslands) and Mediterranean Forests, woodlands and scrubs
(Mediterranean).

Fig. 5 | Distribution of EnMAP satellite scenes in
our dataset using the Mollweide projection. One
red dot represents one scene, while dotted black lines

separate the three latitude groups.
Northern Zone

EnMAP Scenes

Tropical Zone

Southern Zone
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Data coverage

Rainforests as well as Savannas and Shrublands North of the tropics were
excluded due to insufficient coverage, while areas South of the tropics had
limited representation, reflecting their latitude-dependent distribution.
Across the tropics, high cloud cover and relatively few requested satellite
scenes posed challenges (Figs. 4, 5). Nevertheless, the vast natural expanses
of these regions provided sufficient data, with 538 scenes available for
analysis. Savannas and Shrublands exhibited the highest data coverage
(1693 scenes), primarily due to the extensive areas in Africa and Australia
that combine high scene requests with low levels of anthropogenic dis-
turbance. Temperate Forests (806 scenes) and Temperate Grasslands
(645 scenes) were well covered despite extensive anthropogenic land cover
changes, particularly from agricultural expansion. Mediterranean ecosys-
tems, while represented by the smallest total number of scenes (475),
benefited from very high coverage relative to their limited geographic extent.

Model implementation

We employed a pre-trained one-dimensional CNN model for retrieving
plant traits from spectral data, provided by Cherif et al."” via GitHub™. The
architecture, adapted from EfficientNet-B0™ for one-dimensional input,
incorporates depthwise separable convolutions and network scaling tech-
niques. The model predicts 20 plant functional traits at once and was trained
on a global collection of 42 different datasets. This collection includes
hyperspectral data obtained from various remote sensing platforms and
sensors (e.g. AVIRIS, HyMap, HySpex, NEON Airborne Observation
Platform AOP). Despite having different spectral properties, they cover a
comparable wavelength range of the solar electromagnetic spectrum (see
Table A.1in Cherif et al.”). Measurements were unified across the full range
of 400-2500 nm in 1 nm steps by applying a forward and backward linear
interpolation'”. The model transferability was evaluated with a block cross-
validation across 42 independent datasets. Evaluation results were then
averaged for the final R-squared (R*) and normalized Root Mean Squared
Error (nRMSE) values, which ranged from 0.10 to 0.69 for R* and 19.92 to
10.65 for nRMSE. Notably, many of the most important plant traits such as
chlorophyll (0.51 R?, 16.92 nRMSE), nitrogen (0.42 R?, 14.28 nRMSE) and
leaf mass per area (0.69 R? 10.65 nRMSE) were predicted with high accu-
racy, therefore showing that the model is able to predict these traits reliably
across different biomes and ecosystems. All model settings were kept
identical to those in Cherif et al.‘s original work and were implemented in
Python.

Preprocessing

We used the five masks provided by EnMAP (cloud, cirrus, cloud-shadow,
haze, snow) to eliminate non-vegetation surface elements in the scene. To
deal with mask artifacts, a binary dilation buffer with a radius of 40 pixels
was chosen after testing different values. Topography correction using a
digital elevation model has already been applied by the EnMAP pre-
processing pipeline for L2A data. All masks were merged and then applied
on the scene. Furthermore, since EnNMAP scenes have a rhomboid shape
with padding of no-data values around them, each scene was cropped to an
axis-parallel rectangle using the outer coordinates of the scene. Next, we
masked all man-made surface elements and water (built-up area, croplands,
permanent water and snow/ice) identified in the ESA WorldCover V2 2021
dataset™.

Prediction and evaluation

We drew a random sample of n=5000 pixels from the remaining areas
comprising natural and semi-natural, sunlit, vegetated pixels. On these
pixels, we applied the trait model, predicting 20 plant functional trait values,
resulting in a total of 100,000 trait values per scene. A heatmap with mean
trait values and ranges per biome is available in the supplementary material
(Supplementary Fig. 31). The values were then standardized to a mean of 0
and a standard deviation of 1 before being subject to a Principal Component
Analysis (PCA). Standardization and PCA were first done globally for all
scenes at once, and then the component loadings were used for the

individual scenes (Supplementary Fig. 32). We created a PCA biplot to
visualize how the traits influence the main two axes (Supplementary Fig. 33).
Over 90% of the variance is explained by the first five components of the
PCA (Supplementary Fig. 34), therefore we chose these as the basis for
calculating both the Rao’s Q and functional richness value for each scene.
Both metrics were chosen because they are widely used by the community
and measure different aspects of functional diversity.

Rao’s Q measures diversity as trait dissimilarity by considering the
weighted average of all pairwise differences between values, where the
weights are based on the relative proportions of each data point following
Eq. (1).

Q= i ipipjd<xi7xj> (€]

i=1 j=1

Where p; and p; are the relative proportions associated with data points x;
and x; and d(x;, xj) is the difference between x; and x;. Functional richness
measures diversity as the range of plant functional trait values and was
calculated in two ways. First, as the volume of the convex hull in the
5-dimensional PCA-space. For this we used the convex hull function from
SciPy in python™. Second, functional richness was calculated as the kernel
density estimation hypervolume (KDE) of the 5-dimensional PCA-space, as
this method might be less prone to data outliers. Here we used the
KernelDensity function from scikit-learn in python”. Bandwidth was set to
0.5 after applying GridSearchCV from scikit-learn to ten scenes from each of
the five biomes. The threshold was set to the 95% quantile and the generated
samples to 50,000. Values below 5% and above the 95% quantiles for both
metrics were removed to prevent distortions from extreme outliers.

Code availability
The complete code for the model can be found here: https://github.com/
echerif18/multiTraitPredictions.

Data availability

All predictions and auxiliary data for the global PCA can be downloaded
here: https://doi.org/10.5281/zenodo.15089926. EnMAP scenes are freely
available on this website: https://geoservice.dlr.de/eoc/ogc/stac/v1/
collections/ENMAP_HSI_L2A.

Received: 24 April 2025; Accepted: 30 July 2025;
Published online: 06 October 2025

References

1. Diaz, S. et al. The IPBES Conceptual Framework—connecting nature
and people. Curr. Opin. Environ. Sustain. 14, 1-16 (2015).

2. Bongers, F. J. et al. Functional diversity effects on productivity
increase with age in aforest biodiversity experiment. Nat. Ecol. Evol. 5,
1594-1603 (2021).

3. Tilman, D. et al. The influence of functional diversity and composition
on ecosystem processes. Science 277, 1300-1302 (1997).

4. Van Der Plas, F. Biodiversity and ecosystem functioning in naturally
assembled communities. Biol. Rev. 94, 1220-1245 (2019).

5. Jochum, M. et al. The results of biodiversity—ecosystem functioning
experiments are realistic. Nat. Ecol. Evol. 4, 1485-1494 (2020).

6. de Bello, F. et al. Functional trait effects on ecosystem stability:
assembling the jigsaw puzzle. Trends Ecol. Evol. 36, 822-836 (2021).

7. Funk, J. L. et al. Revisiting the H oly G rail: using plant functional traits
to understand ecological processes. Biol. Rev. 92, 1156-1173 (2017).

8. Lavorel, S. & Garnier, E. Predicting changes in community
composition and ecosystem functioning from plant traits: revisiting
the Holy Grail: Plant response and effect groups. Funct. Ecol. 16,
545-556 (2002).

9. Mason, N. W., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional
richness, functional evenness and functional divergence: the primary
components of functional diversity. Oikos 111, 112-118 (2005).

Communications Earth & Environment| (2025)6:790


https://github.com/echerif18/multiTraitPredictions
https://github.com/echerif18/multiTraitPredictions
https://doi.org/10.5281/zenodo.15089926
https://geoservice.dlr.de/eoc/ogc/stac/v1/collections/ENMAP_HSI_L2A
https://geoservice.dlr.de/eoc/ogc/stac/v1/collections/ENMAP_HSI_L2A
www.nature.com/commsenv

https://doi.org/10.1038/s43247-025-02646-x

Article

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

20.

30.

31.

32.

33.

Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional
functional diversity indices for a multifaceted framework in functional
ecology. Ecology 89, 2290-2301 (2008).

Laliberté, E. & Legendre, P. A distance-based framework for
measuring functional diversity from multiple traits. Ecology 91,
299-305 (2010).

Maire, V. et al. Global effects of soil and climate on leaf photosynthetic
traits and rates. Glob. Ecol. Biogeogr. 24, 706-717 (2015).

Joswig, J. S. et al. Climatic and soil factors explain the two-
dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6,
36-50 (2022).

Jetz, W. et al. Monitoring plant functional diversity from space. Nat.
Plants 2, 1-5 (2016).

Asner, G. P. & Martin, R. E. Airborne spectranomics: mapping canopy
chemical and taxonomic diversity in tropical forests. Front. Ecol.
Environ. 7, 269-276 (2009).

Wang, Z. et al. Foliar functional traits from imaging spectroscopy across
biomes in eastern North America. N. Phytol. 228, 494-511 (2020).
Cherif, E. et al. From spectra to plant functional traits: Transferable
multi-trait models from heterogeneous and sparse data. Remote
Sens. Environ. 292, 113580 (2023).

Remote Sensing of Plant Biodiversity (Springer International
Publishing, 2020). https://doi.org/10.1007/978-3-030-33157-3.
Guanter, L. et al. The ENMAP spaceborne imaging spectroscopy
mission for earth observation. Remote Sens 7, 8830-8857 (2015).
Loizzo, R. et al. PRISMA: the Italian hyperspectral mission. InIGARSS
2018 - 2018 IEEE International Geoscience and Remote Sensing
Symposium, 175-178 (IEEE, 2018).

Liu, Y.-N. et al. The advanced hyperspectral imager: aboard China’s
gaoFen-5 satellite. [IEEE Geosci. Remote Sens. Mag. 7, 23-32 (2019).
Nieke, J. et al. The copernicus hyperspectral imaging mission for the
environment (CHIME): an overview of its mission, system and
planning status. Sens. Syst. Gener. Satell. XXVII 12729, 21-40 (2023).
Cawse-Nicholson, K. et al. NASA’s surface biology and geology
designated observable: a perspective on surface imaging algorithms.
Remote Sens. Environ. 257, 112349 (2021).

Sciences, N. A. et al. Thriving on Our Changing Planet: A Decadal
Strategy for Earth Observation from Space (National Academies
Press, 2019).

Proenca, V. et al. Global biodiversity monitoring: from data sources to
essential biodiversity variables. Biol. Conserv. 213, 256-263 (2017).
Verrelst, J. et al. Optical remote sensing and the retrieval of terrestrial
vegetation bio-geophysical properties — A review. ISPRS J.
Photogramm. Remote Sens. 108, 273-290 (2015).

Verrelst, J. et al. Quantifying vegetation biophysical variables from
imaging spectroscopy data: a review on retrieval methods. Surv.
Geophys. 40, 589-629 (2019).

Yuan, Q. et al. Deep learning in environmental remote sensing:
achievements and challenges. Remote Sens. Environ. 241,111716
(2020).

Kattenborn, T., Leitloff, J., Schiefer, F. & Hinz, S. Review on
Convolutional Neural Networks (CNN) in vegetation remote sensing.
ISPRS J. Photogramm. Remote Sens. 173, 24-49 (2021).

Schneider, F. D. et al. Mapping functional diversity from remotely
sensed morphological and physiological forest traits. Nat. Commun.
8, 1441 (2017).

Schweiger, A. K. et al. Plant spectral diversity integrates functional
and phylogenetic components of biodiversity and predicts ecosystem
function. Nat. Ecol. Evol. 2, 976-982 (2018).

Zheng, Z. et al. Mapping functional diversity using individual tree-
based morphological and physiological traits in a subtropical forest.
Remote Sens. Environ. 252, 112170 (2021).

Cavender-Bares, J. et al. Remotely detected aboveground plant
function predicts belowground processes in two prairie diversity
experiments. Ecol. Monogr. 92, e01488 (2022).

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.
52.

53.

54,

Feilhauer, H., Somers, B. & Van Der Linden, S. Optical trait indicators
for remote sensing of plant species composition: Predictive power
and seasonal variability. Ecol. Indic. 73, 825-833 (2017).

Chlus, A. & Townsend, P. A. Characterizing seasonal variation in foliar
biochemistry with airborne imaging spectroscopy. Remote Sens.
Environ. 275, 113023 (2022).

Ludwig, A., Doktor, D. & Feilhauer, H. Is spectral pixel-to-pixel
variation a reliable indicator of grassland biodiversity? A systematic
assessment of the spectral variation hypothesis using spatial
simulation experiments. Remote Sens. Environ. 302, 113988

(2024).

Pacheco-Labrador, J. et al. Challenging the link between functional
and spectral diversity with radiative transfer modeling and data.
Remote Sens. Environ. 280, 113170 (2022).

Pacheco-Labrador, J. et al. A generalizable normalization for
assessing plant functional diversity metrics across scales from
remote sensing. Methods Ecol. Evol. 14, 2123-2136 (2023).
McKown, A. D., Guy, R. D., Azam, M. S., Drewes, E. C. & Quamme, L.
K. Seasonality and phenology alter functional leaf traits. Oecologia
172, 653-665 (2013).

Fajardo, A. & Siefert, A. Phenological variation of leaf functional traits
within species. Oecologia 180, 951-959 (2016).

Schiefer, F., Schmidtlein, S. & Kattenborn, T. The retrieval of plant
functional traits from canopy spectra through RTM-inversions and
statistical models are both critically affected by plant phenology. Ecol.
Indic. 121, 107062 (2021).

Chabrillat, S. et al. The EnMAP spaceborne imaging spectroscopy
mission: initial scientific results two years after launch. Remote Sens.
Environ. 315, 114379 (2024).

Noda, H. M. et al. Phenology of leaf morphological, photosynthetic,
and nitrogen use characteristics of canopy trees in a cool-temperate
deciduous broadleaf forest at Takayama, central Japan. Ecol. Res. 30,
247-266 (2015).

Yang, X. et al. Seasonal variability of multiple leaf traits captured by
leaf spectroscopy at two temperate deciduous forests. Remote Sens.
Environ. 179, 1-12 (2016).

Durén, S. M. et al. Informing trait-based ecology by assessing
remotely sensed functional diversity across a broad tropical
temperature gradient. Sci. Adv. 5, eaaw8114 (2019).
Guimaraes-Steinicke, C. et al. Terrestrial laser scanning reveals
temporal changes in biodiversity mechanisms driving grassland
productivity. In Advances in Ecological Research vol. 61 133-161
(Elsevier, 2019).

Botta-Dukat, Z. Rao’s quadratic entropy as a measure of functional
diversity based on multiple traits. J. Vegetation Sci. 16, 533-540 (2005).
Ricotta, C. & Moretti, M. CWM and Rao’s quadratic diversity: a
unified framework for functional ecology. Oecologia 167, 181-188
(2011).

Xu, P. et al. Comparative validation of recent 10 m-resolution global
land cover maps. Remote Sens. Environ. 311, 114316 (2024).
Mederer, D. et al. Plant trait retrieval from hyperspectral data:
collective efforts in scientific data curation outperform simulated data
derived from the PROSAIL model. ISPRS Open J. Photogramm.
Remote Sens. 15, 100080 (2025).

EnMAP Instrument Planning. https://planning.enmap.org/ (2021).
WorldCover Viewer. https://viewer.esa-worldcover.org/worldcover/?
language=en&bbox=—351.56249999999994,—70.55417853776078,
180.00000000000003,84.28470439392032&overlay=false&bglLayer=
OSM&date=2025-03-17&layer=WORLDCOVER_2021_MAP (2021).
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life
on Earth: a new global map of terrestrial ecoregions provides an
innovative tool for conserving biodiversity. BioScience 51, 933-938
(2001).

EyaCherif. https://github.com/echerif18/multiTraitPredictions (2024).

Communications Earth & Environment| (2025)6:790


https://doi.org/10.1007/978-3-030-33157-3
https://doi.org/10.1007/978-3-030-33157-3
https://planning.enmap.org/
https://planning.enmap.org/
https://viewer.esa-worldcover.org/worldcover/?language=en&bbox=-351.56249999999994,-70.55417853776078,180.00000000000003,84.28470439392032&overlay=false&bgLayer=OSM&date=2025-03-17&layer=WORLDCOVER_2021_MAP
https://viewer.esa-worldcover.org/worldcover/?language=en&bbox=-351.56249999999994,-70.55417853776078,180.00000000000003,84.28470439392032&overlay=false&bgLayer=OSM&date=2025-03-17&layer=WORLDCOVER_2021_MAP
https://viewer.esa-worldcover.org/worldcover/?language=en&bbox=-351.56249999999994,-70.55417853776078,180.00000000000003,84.28470439392032&overlay=false&bgLayer=OSM&date=2025-03-17&layer=WORLDCOVER_2021_MAP
https://viewer.esa-worldcover.org/worldcover/?language=en&bbox=-351.56249999999994,-70.55417853776078,180.00000000000003,84.28470439392032&overlay=false&bgLayer=OSM&date=2025-03-17&layer=WORLDCOVER_2021_MAP
https://viewer.esa-worldcover.org/worldcover/?language=en&bbox=-351.56249999999994,-70.55417853776078,180.00000000000003,84.28470439392032&overlay=false&bgLayer=OSM&date=2025-03-17&layer=WORLDCOVER_2021_MAP
https://github.com/echerif18/multiTraitPredictions
https://github.com/echerif18/multiTraitPredictions
www.nature.com/commsenv

https://doi.org/10.1038/s43247-025-02646-x

Article

55. Tan, M. & Le, Q. Efficientnet: rethinking model scaling for
convolutional neural networks. In International conference on
machine learning 6105-6114 (PMLR, 2019).

56. SciPy. GitHub https://github.com/scipy (2025).

57. scikit-learn. GitHub https://github.com/scikit-learn/scikit-learn (2025).

58. Mederer, D. Created in BioRender https://BioRender.com/ckixtsz
(2025).

Acknowledgements

We thank Marvin Miller for his help in preprocessing the ENMAP scenes and
all data owners for sharing the data either by request (in particular the
consortium of the EU BiodivERSsA project DIARS) or through the public
Ecological Spectral Information System (EcoSIS), Data Publisher for Earth &
Environmental Science (PANGEA) and DRYAD platforms. DM and HF
acknowledge support for this work from the Federal Ministry for Economic
Affairs and Climate Action (BMWK) and the German Aerospace Center (DLR)
through the project AlResVeg (grant 50EE2203A). H.F. and E.C.
acknowledge the financial support by the Federal Ministry of Education and
Research of Germany (BMBF) and by the Sachsische Staatsministerium flir
Wissenschaft, Kultur und Tourismus in the program Center of Excellence for
Al-research “Center for Scalable Data Analytics and Artificial Intelligence
Dresden/Leipzig”, project identification number: ScaDS.Al. T.K. acknowl-
edges funding by the German Research Foundation (DFG) for the project
PANOPS (grant-no. 504978936). FDS acknowledges funding by the Pioneer
Center for Landscape Research in Sustainable Agricultural Futures (Land-
CRAFT), DNRF grant number P2.

Author contributions

Daniel Mederer: Writing — original draft, Visualization, Methodology, Formal
analysis, Data curation, Conceptualization. Teja Kattenborn: Writing —
original draft, Supervision, Conceptualization. Eya Cherif: Writing — review &
editing, Data curation. Claudia Guimaraes-Steinicke: Writing — review &
editing. Julia S. Joswig: Writing — review & editing. Fabian D. Schneider:
Writing — review & editing. Hannes Feilhauer: Writing — original draft,
Supervision, Data curation, Conceptualization.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43247-025-02646-x.

Correspondence and requests for materials should be addressed to
Daniel Mederer.

Peer review information Communications Earth and Environment thanks
Anning Zhang, Baodong Xu and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Peer review was single-
anonymous OR Peer review was double-anonymous. Primary Handling
Editors: Guiyao Zhou and Mengjie Wang. [A peer review file is available].

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

Communications Earth & Environment| (2025)6:790


https://github.com/scipy
https://github.com/scipy
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://BioRender.com/ckixtsz
https://BioRender.com/ckixtsz
https://doi.org/10.1038/s43247-025-02646-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsenv

	Unraveling the seasonality of functional diversity through remote sensing
	Results
	Temporal variability among biomes
	Differences between metrics

	Discussion
	Conclusion
	Methods
	Dataset collection
	Data coverage
	Model implementation
	Preprocessing
	Prediction and evaluation

	Code availability
	Data availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




