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Snowmonitoring at strategic locations
improves water supply forecasting more
than basin-wide mapping
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In the Western United States, water supply forecasting has traditionally relied on snow water
equivalent measurements at ground-based stations due to their strong correlations with streamflow
volume during spring and summer. However, stations are sparse and sample a small area, prompting
interest in spatially complete – but costly – basin-wide mapping from airborne surveys or future
satellite missions. Here we show that adding strategic measurements at snow hotspots – localized
areas with untapped information for predicting streamflow – consistently outperforms spatially
complete surveys that provide basin-average snowpack, both in basins with and without existing
stations. While both improve forecast skill, hotspot monitoring increases correlations with streamflow
volume by 11-14% (median) across 390 basins, compared to 4% from basin-wide surveys. These
findings hold across snowpack datasets, skill metrics, and statistical models. The greatest gains in
water supply prediction come from leveragingexisting stationsandexpanding snowmeasurements to
the right places, rather than everywhere.

Snowmelt runoff is a key water source for approximately two billion people
globally and many important agricultural regions, such as the Western
United States (U.S.)1–4. In these snowmelt-dominated regions, summer
water supply is predictable weeks to months in advance5,6 based on obser-
vations of the water content of snowpack (i.e., snowwater equivalent, SWE)
in winter and spring (Fig. 1a, b). However, networks that observe SWE for
water supply prediction may not be optimized for some basins7,8, and
existing networks may become less reliable with climate change and during
hydrologic extremes like snow drought4,9. Accordingly, there is substantial
and enduring interest in how SWE observations should evolve to increase
skill in water supply predictions and to ensure resilience as the climate
changes10–12.

The predictability of summer water supply increases through a water
year as seasonal snowpack accumulates and melts, and as the forecast
interval shortens (Fig. 1c). Given unavoidable uncertainty in future weather
and attendant runoff production after the forecast date6,13–16, there is a
maximum amount of variance in water supply explainable with SWE
measurements alone (R2

potential). To support statistical water supply fore-
casting in basins across the Western U.S., SWE is measured across station
networks of hundreds of snow courses and snow pillows (Supplementary
Fig. 1). A commonly cited limitation8,11,17 of these station data is that they do
not represent average SWE at larger scales due to the high spatial variability

of snow18, the sparsity of station networks, and the small sampling area (e.g.,
each snow pillow measures <10 m2). However, station networks were not
designed for this purpose; instead, theywere designed to provide an index of
snow conditions for water supply forecasting16,19. Despite their spatial lim-
itations, station SWE data strongly correlate with water supply (R2

stations) in
most cases, providing a robust basis for statistical forecasts5,20–22. Yet, for
many basins and forecast dates, the predictive power of existing SWE data
maynot be optimized (i.e., R2

stations <R
2
potential), and there is likely additional

variance in water supply (ΔR2 = R2
potential - R

2
stations, Fig. 1c) that could be

explained with more SWE data, thereby improving forecasts.
Multiple strategies for expanded SWE monitoring could untap these

improvements in water supply prediction, ranging from (1) adding mea-
surements at one or a few strategic locations to (2)mapping everywhere in a
basin to estimate average SWE (i.e., basin SWE). These present a tradeoff, as
the first is spatially limited while the second implies substantially higher
costs. The first strategy adds observations at locations we propose calling
snow hotspots – areas with the highest available predictive information for
water supply not already captured by any existing SWE measurements.
While previously unnamed, prior research supports the existence of snow
hotspots, as the correlation between SWEand streamflowvaries spatially19,20
,23,24. This is due in part to variations in runoff source area and hydrologic
connectivity during snowmelt25–27, which depend on the complex
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interactions between snowpack (e.g., distribution and melt), basin char-
acteristics, and hydrologic processes (e.g., evapotranspiration, groundwater
recharge). From an observational perspective, the locations of snow hot-
spots are conditional – they depend not only on a basin’s hydrologic
dynamics but also on the existing SWE information (i.e., from station

networks). As a result, hotspots may emerge in different locations
depending on the number and locations of existing snow stations in or near
a basin (Supplementary Fig. 2).When no stations are available, hotspots are
the singlemost effectivemonitoring locations.Whenabasin alreadyhas one
or more stations, hotspots are the next best locations for measurements. In
either case, the value and location of a snow hotspot reflects what is already
known (R2

stations) and what new snow information can be added. Once
identified, new measurements can be strategically focused in these loca-
lized areas.

In contrast, a second strategy is spatially intensive mapping with
measurements everywhere in a basin, yielding estimates of basin-averaged
SWE as a measure of the total water volume potentially available upon
snowmelt.Mapping the spatial distribution of SWE acrossmountain basins
is considered themost important unsolvedproblem in snowhydrology7, but
progress is beingmade with advances in remote sensing (e.g., airborne lidar
surveys),modeling, data assimilation, andmachine learning28–34. Solving the
basin SWE mapping problem with remote sensing could potentially
improve water supply predictions35,36, but it is unknown whether full basin
SWE is necessarily the best strategy, especially in basins where station
networks already exist or where adverse weather complicates routine
measurements. Addressing this is important, as there is sustained interest in
major initiatives that would yield spatial SWE data in near-real time,
including prospective satellite missions37 and regional airborne surveying
programs32. Thesewould comewith substantial costs—on the order of ~10 s
to 100 s million USD37—depending on the amount of spatial snow obser-
vations collected and the number of years required to develop predictive
relationships with water supply.

In this study, we assess the existing and potential predictability of water
supply from SWE monitoring. We consider several scenarios for existing
ground-based networks (multi-station, single station, and no stations) and
then quantify and compare improvements in water supply prediction from
two strategies for expanded snowpack monitoring: (1) SWE at a single
hotspot versus (2) basin SWE. As a proxy for the data provided by these
expanded snow monitoring strategies, we sample a daily gridded ~500m
SWE reconstruction dataset based on MODIS38. This dataset has compared
well against airborne lidar30,38 and has sufficient record length to develop
relationships with summer flow volume6,22.We analyze snow and streamflow
data from 2001 to 2023 across 390 gaged basins in the Western U.S. where
human impacts on streamflow are minimal or unimpaired runoff estimates
exist (see “Methods”). As a simple metric of water supply predictability, we
focus on the R2 correlation based on linear regressions between SWE
(Fig. 1a) on the 1st of the month (March–June) and the total streamflow
volume in summer (1 April–31 July, Fig. 1b). Although this analysis of
marginal benefits (ΔR2, Fig. 1c) is retrospective, a similar approach could be
applied to forecast flow using real-timemonitoring in snow hotspots or basin
SWE (e.g., from airborne or satellite remote sensing). We address three
questions: Q1) What is the current capability of water supply prediction
from existing SWE station networks? Q2) How much improvement in flow
prediction is possible using different strategies to expand SWE observations
for different network scenarios? Q3) When and where is there the greatest
improvement in flow predictions via expanded SWE observations?We show
that both strategies for expanded snowmonitoring can enhance water supply
predictions, but snow hotspots yield consistently greater improvements than
spatially comprehensive basin-wide mapping. We replicate this result with
four additional SWE datasets, more complex machine learning models16,39,
and other skill metrics. These experiments support the results of our simpler
correlation analysis, providing further evidence that hotspots are more
effective for improving water supply prediction, even though they do not
represent the total snow volume in a basin.

Results
Flow predictability across snow networks and monitoring
strategies
We first demonstrate the analysis concept at an example basin (Colorado
River near Lake Granby) for the 1-March forecast and the single station

Fig. 1 | Snowpack can explainmuch of the interannual variability in summer flow
volume. a Daily SWE measured at a snow pillow station across the 23-year period
fromWY 2001–2023 (lines). bCumulative flow volume since April 1st at the stream
gauge in each of the 23 years. The colors of lines in (a) and (b) correspond to the same
years, where warmer colors are years with lower peak SWE and cooler colors are
years with higher peak SWE (see color bar). c Conceptual graphic of fractional
variance explained (R2) in summer (April–July) water supply by monthly snowpack
data and other factors. The solid line is the hypothetical maximum variance
(R2

potential) that can be explained by snowpack data on a given date. The dashed line is
the variance explained by the existing snow stations (R2

stations). The difference in
darker gray (ΔR2= R2

potential - R
2
stations) is the additional predictability possible from

an expansion of snowpack observations. The remaining variance (R2
remaining) is

unexplainable by snowpack data and is above the solid black line, where R2
remaining+

R2
potential = 1. Note this graphic assumes a shrinking target period after 1 April (see

“Methods”).
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scenario. SWE observed at a single existing station (Willow Park) has
R2 = 0.61 with summer flow volume (Fig. 2a). Including a snow hotspot
along with the existing station observation increases flow predictability to
R2 = 0.84 (ΔR2 = 0.23), whereas including basin SWE increases R2 to only
0.69 (ΔR2 = 0.08;Fig. 2d).There aremany locations in thebasinwhereΔR2 is
higher than the ΔR2 from basin SWE (orange and red zones in Fig. 2c);
hotspots correspond to thedarker red areaswhich are spatially coherent and
have some tendency to occur at higher elevations and/or locations with
higher SWE (Fig. 2b). Separately we show that the locations and/or pre-
dictive value of hotspots in a given basin may persist or change depending
on the network scenario (Supplementary Fig. 2).

Next, we benchmark the predictability of flow volume from existing
SWE stations. Across study basins (n = 390) over WY 2001–2023, most of
the variability in streamflow can be predicted using existing SWE records
even if only a single nearby station is available (Fig. 3a, b). For the multi-
station scenario, R2 ranges from 0.67 on 1March to 0.93 on 1 June (Fig. 3a,
station(s) only boxplot)while for the single-station scenario, R2 ranges from
0.62 on 1 March to 0.82 on 1 June (Fig. 3b, station(s) only boxplot) on a

median basis. For both types of network scenarios, water supply predict-
ability from existing SWE stations increases through the snow season, as
expected. This is the baseline performance against which the expanded
monitoring strategies can be compared.

Across all three network scenarios (multi-station, single station, and no
stations), expanding snow monitoring to include a hotspot yields statistically
greater improvements (two-sided Wilcoxon Rank Sum test, p< 0.005) in
predicted summer flow volume than expanding to monitor basin SWE
(Fig. 3, Supplementary Fig. 3). For the multi-station scenario, adding a SWE
hotspot increases R2 to 0.81 in March to 0.95 in June whereas adding basin
SWE monitoring raises R2 to 0.73 in March to 0.93 in June (Fig. 3a). For the
single-station scenario, adding SWEmonitoring at a hotspot yields R2 ranging
from 0.77 in March to 0.89 in June, while basin SWE monitoring yields R2

ranging from 0.68 in March to 0.86 in June (Fig. 3b). For the no station
scenario, monitoring only at a hotspot yields R2 ranging from 0.59 in March
to 0.80 in June, whereas for basin SWE monitoring R2 ranges from 0.39 in
March to 0.70 in June (Fig. 3c). Assuming that the multi-station plus hotspot
monitoring strategy approaches the maximum predictive power from snow

Fig. 2 | Temporal and spatial relationships between summer flow volume and
strategies for expanded snowpack monitoring beyond a single station. Example
data are from theColorado River near Granby on 1March.ANormalized time series
of summer flow volume, SWE from a single existing station (station SWE), flow
predicted from hotspot SWE and the single station SWE (+ hotspot), and flow
predicted from basin SWE and the single station SWE (+ basin). B Spatial map of 1
March SWE averaged over WY 2001–2023 at ~500 m resolution, with the circle
showing the existing snow station with the highest correlation to flow volume, the

diamond showing the stream gauge, and the black line showing the basin boundary
upstream of the gauge. C Spatial map showing improvements in flow predictability
(ΔR2) if the existing SWE station was combined with new SWE monitoring at that
location. Darker red zones are snow hotspots.D CDF of all pixels in panel (C), with
the improvements in flow prediction shown for all pixels (black line), adding a snow
hotspot (red dashed line), and adding basin average SWE (blue solid line). Here,
ΔR2

hotspot = 0.23 and ΔR2
basin = 0.08.
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data (i.e., R2
potential, red line in Fig. 1c), the remaining fractional variance due

to future weather, runoff processes, andmodel error (i.e., R2
remaining in Fig. 1c)

ranges from 0.19 in March to 0.05 in June, on a median basis across basins.
Separately, we assess dependencies of the results on the approach used

to characterize hotspots, the selected SWE dataset, the statistical approach
for predicting water supply, and the skill metric. First, we comparemethods
for identifying hotspots, including our simple approach versus a more
sophisticated approachwith hybrid PCR. The two hotspot approaches yield
consistent estimates of R2 for the single-station andmulti-station scenarios,
but higher R2 values are produced with the hybrid PCR in the no station
scenario (Supplementary Fig. 4). Second, we repeat the simple linear

regression analysis with four other SWE datasets gridded at 1 km or finer.
This yields the same result: all SWE datasets yield higher ΔR2 when adding
monitoring at a hotspot versus adding basin SWE, even though the corre-
lation magnitudes vary between datasets (Supplementary Fig. 5). Using our
selected SWE dataset with the single station scenario only, we then replace
the simple statistical model with the M4 operational system that trains and
applies an ensemble of six models and machine learning approaches for
predicting water supply from SWE data. When using M4, again we find
higher R2 from hotspot SWE versus basin SWE (Supplementary Fig. 6a).
Furthermore, M4 achieves the lowest relative root mean squared error
(RMSE)when informedbyhotspot SWE(SupplementaryFig. 6b).ThisM4-

Fig. 3 | Variance explained in flow volume by existing and expanded snowpack
monitoring strategies across station network scenarios. Network scenarios
include: amulti-station, b single-station, and c no stations. As conceptually depicted
(left side), strategies for expanded snowpack monitoring beyond the existing sta-
tion(s) (if any) include adding monitoring at a snow hotspot or adding basin SWE
mapping. The hotspot was selected at a pixel with a 99th percentile value of ΔR2

between all pixels in and near a study basin. Basin SWEwas calculated as the average
of all pixels in a basin boundary. On the right side, each boxplot summarizes the
fraction of variance in flow volume explained by each strategy across the study basins
(n = 390). The boxes span the 25th–75th percentile and the median is shown as the
bold horizontal line.
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RMSE experiment serves as a separate test of the predictive nature of hot-
spots because it uses a distinct skill metric that was not used to identify
hotspot locations in a basin. Both expansion strategies yield similar max-
imum relative errors (Supplementary Fig. 6c), meaning that the forecast
error in the worst year is similar for both strategies.

Where hotspots can improve flow prediction
Across the study domain, the hotspot strategy yields greater improvements
in water supply predictability compared to the basin SWE strategy in the
vastmajority of basins for all three network scenarios (93% of basins for no-
station, 98% for single-station, and 99% for multi-station) (Fig. 4, Supple-
mentary Fig. 3c, f, i). Hotspot and basin SWE monitoring show similar
regional patterns. For example, southern basins such as in the California
Sierra Nevada have higher baseline predictability than more northern and

interior basins like in the Cascades and RockyMountains (Fig. 4a, b). In the
Sierra Nevada there are limited opportunities for improving water supply
prediction from either monitoring strategy, as the existing station data are
often highly effective for water supply prediction (Fig. 4c). In the more
northern and interior basins, the hotspot strategy yielded greater
improvements than the basin strategy, with the hotspot strategy often
yielding R2 that was at least 0.05 to 0.10 higher (Fig. 4c). Opportunities for
improved water predictability vary both with forecast month and network
scenario, with greater opportunities earlier in the forecast period (e.g.,
March) and for basins with no stations (Supplementary Figs. 7–9).

For a given network scenario, we can explore the spatial characteristics
of locations within the study basins that yield the greatest improvements to
water supply predictability; here we contrast the no station and multi-station
scenarios (Fig. 5). In the no station scenario, there is an increasing but

Fig. 4 | Maps of water supply predictability and gains on 1 April when adding a
hotspot versus basin snowpack monitoring to multi-station networks. a The
variance explained (R2) in summer water supply when predicted with SWE data
combined from multiple existing stations and at a snow hotspot. b The variance
explained in summer water supply when predicted with SWE data combined from
multiple existing stations and basin SWE monitoring. c The difference in water
supply predictability between the snow hotspot and basin SWE strategies (hotspot

minus basin), where warm colors (positive values) indicate hotspots yield greater
improvements, white indicates similar improvements (R2 within ±0.025), and cool
colors (negative values) indicate basin SWE yields greater improvements. Basins
plotted as filled black dots are cases where neither strategy improves R2 bymore than
0.05, relative to the case of using existing stations only. Other months and network
scenarios are shown in Supplementary Figs. 7–9.

Fig. 5 | Relationships between SWE and potential improvements to water
supply prediction when expanding measurements in different station net-
works. These 2-d histograms summarize the relative frequency of pixels from all
study basins (n = 390) and forecast dates (n = 4) by percentile values forΔR2 versus
SWE for two scenarios for expanded SWE monitoring: a no existing stations, and

bmultiple existing stations. For each axis, percentile values are computed relative
to the spatial distribution for each basin and forecast date. The histograms are
normalized by basin size to avoid placing greater weight on larger basins. We
define hotspots as having ΔR2 in the 99th percentile; these generally have higher
SWE values relative to other locations in a basin for both network scenarios.
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heteroscedastic relationship between SWE percentile and ΔR2 percentile,
with the greatest ΔR2 found at the highest SWE percentiles (Fig. 5a). After
accounting for the known information from existing stations in the multi-
station scenario, the relationship becomes less coherent, though the highest
improvements are still found at higher SWE percentiles (Fig. 5b). This
suggests that the existing stations explain more of the low-to-middle SWE
accumulation dynamics, whereas hotspots tend to fall in higher accumula-
tion zones. For both network scenarios, these high SWE accumulation
locations are not representative of basin SWE but nevertheless are optimal
for water supply prediction, yet they are currently unmonitored. On a
median basis, we find that the locations where local ΔR2 exceeds the ΔR2

from basin SWE monitoring range from 28 to 37% of the basin area,
depending on the month. We attempted to explain the relationship between
ΔR2 and physiographic factors associated with snowpack dynamics. For the
analyzed SWE dataset, we were only able to find a close relationship between
SWE accumulation and elevation, where the highest elevation zones in a
basin were associated with greater ΔR2 (compare Fig. 5 and Supplementary
Fig. 10). We also examined other terrain factors that relate to snowmelt (i.e.,
aspect and slope) and wind redistribution (i.e., northness, and eastness) but
found that ΔR2 generally followed the prevailing distributions (Supplemen-
tary Figs. 11, 12), and therefore these terrain factors did not explain how ΔR2

varies across the basins.

Discussion
Water supply predictions in the Western U.S. have long been made with
SWE records from stations thatmeasure snowpack over a very small area at
one or a few locations in or near a basin. For perspective, the 590 snow
pillows and 758 snow courses analyzedhere collectivelymeasure a total area
approximately the size of a footballfield, and are separated by long distances
(median = 13 km, mean = 28 km between neighboring stations). These
stations do not always represent SWE at larger scales17, as they are often
located in flat, forest clearings at mid-elevations40. In spite of these com-
monly cited spatial and physiographic limitations7,11, our analysis (Q1)
confirms that SWE stations have high information content for water pre-
diction and explain the vast majority of variance (67–93% on a median
basis) in summer water supply. This explanatory power still remains high
(62–82%) even if only a single station is used (Fig. 3b). This underscores the
substantial value and societal benefit of the existing snow station networks
that have been long maintained and operated by government agencies.
What has been less certain is how much water supply forecasts could be
improved if SWE monitoring were expanded, such as to SWE hotspots or
over larger spatial scales with basin SWE mapping.

This study compares potential improvements in water supply predic-
tions from two strategies for expanded SWEmonitoring in 390 basins across
theWestern U.S. (Q2), and assesses when and where potential improvement
are greatest (Q3). On a median basis, hotspot SWE monitoring increases
flow predictability by as much as ΔR2 of 11% for the multi-station scenario
and ΔR2 of 14% for the single station scenario. In contrast, basin SWE
monitoring offers ΔR2 on the order of 4% or less for the different station
scenarios. This magnitude of improved streamflow prediction (beyond what
is provided by existing stations) is consistent with expert opinions from
operational water forecasters6, experimental hindcasts22, and independent
model analyses23,41. Improvements beyond these levels may be difficult to
achieve, given constraints imposed by sources of variability that cannot be
mitigated withmore snowpack information13 (e.g., future weather and runoff
processes, Fig. 1c). For the scenario with no existing stations, monitoring at
hotspots yields 10–20% higher R2 values than basin SWE mapping. While
this study supports that basin SWE can improve water supply forecasts35 for
a variety of networks, it uniquely suggests this is not the most optimal or
efficient way to do so. Across network scenarios and expansion strategies, the
greatest potential improvements are earlier in the forecast period (Fig. 3) and
in more northern and interior locations (Fig. 4, Supplementary Figs. 7–9).

Both the hotspot and basin SWE monitoring strategies yield improved
flow predictability. However, the hotspot approach consistently provides
greater improvements than basin SWE, despite the fact that a hotspot covers

a much smaller area.We repeated the analysis using four other gridded SWE
datasets and with an ensemble of six models and machine learning
approaches, all of which replicated this result (Supplementary Figs. 5, 6). Our
explanation for this result and the existence of hotspots centers on the spatial
variability in runoff generation rather than weather variability, as we assume
future weather uncertainty is similar at hotspots versus the basin. Myriad
physical processes (e.g., evapotranspiration, soil infiltration, groundwater
recharge) and heterogeneous physiographic features (soil depth, vegetation,
bedrock) influence what portion of the snowpack contributes most to
streamflow production, and the temporal lag between snowmelt and flow at
a stream gauge3,27,42,43. While basin SWE reflects the total volume of water
potentially available for runoff, the fraction of that snowpack contributing to
streamflow during the forecast interval varies spatially and annually. Basin
SWE includes extensive areas of shallow snow (e.g., Fig. 2b) that have lower
efficiency in runoff generation25,26,35,44. In contrast, snow hotspots skew
toward higher elevations and areas with higher relative SWE accumulation
(Fig. 5, Supplementary Fig. 10), which may be associated with higher
snowmelt rates45 and enhanced subsurface and/or overland flow production2

7.We are unable to find any associations between snow hotspots and slope or
aspect (Supplementary Figs. 11-12), which are known to be important for
heterogenousmelt patterns and snow redistribution. This may be due in part
to the spatial resolution of the snow dataset; for instance, wind scouring and
redistribution processes may be prominent at scales of 100m or less18. A
complicating factor is that a hotspot is the next best measurement location
relative to the information already known (i.e., from existing stations), which
make it challenging to generalize across basins with diverse monitoring
network configurations, snowpack distributions, physiography, and climate.
More work is needed to better understand what controls the spatial dis-
tribution of hotspots in basins (e.g., Fig. 2c; Supplementary Fig. 2).

We recognize this study has limitations that merit future attention.
First, the study period (23 years) was constrained based on availability of the
gridded SWE data. However, we assert that it is still possible to develop
statistical relationships with this record length6,22. Second, we did not con-
sider the use of ancillary climate or hydrologic predictors6,16,20. While
commonly used in forecasting, we omitted them to isolate the forecast gains
afforded by the two contrasting strategies for expanded snow monitoring.
Finally, we focused on statistical forecasting techniques for operational
relevance, but recognize that alternatives exist with distributed process-
based models which can integrate gridded SWE data in more direct ways35.
However, as inmany fields in the geosciences,more complexmodels do not
guarantee more accurate predictions.

Regardless of these limitations, our results demonstrate that sampling
of snowhotspots –which typically cover only a small portion of a basin (e.g.,
1% by area) – provides a more efficient pathway than basin SWE for
improvingwater supply forecasts. In otherwords, the greatest gains inwater
prediction come from measuring snow at the right place(s), rather than
measuring it everywhere. Our framework could be used by operational
agencies to provide quantitative guidance for identifying optimal new
measurement locations, which has not been previously possible. This also
prompts questions about the best monitoring approach for optimizing
water supply forecasts. One possibility is adding a new ground station in the
mapped hotspots, but this creates many potential pitfalls: (1) measurement
challenges in high SWEand high elevation areas; (2) constraints around site
access, suitability, and ownership6,46; (3) assumptions about the stationarity
of snow patterns10,47; (4) uncertainty and scale issues in identifying hotspots;
(5) the need to establish and maintain long-term records (15–30 years) to
support forecasting6. Thus, adding ground-based stations in hotspots may
not always be feasible. An alternative option is targeted remote sensing. For
instance, snowdepth inhotspots couldbemonitoredwith a lidar sensor on a
drone48,49 or with airborne surveys along one or two flight lines50 at a sub-
stantially lower cost than more conventional wall-to-wall basin coverage.

Finally, while there has been emphasis on acquiring new data through
airborne programs or proposed satellite missions, an alternative approach is to
make better use of existing snowpack datasets for water supply forecasts22,51,52.
The gridded SWE dataset used here required no new expansion in snow
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stations or investments in remote sensing missions, but yielded better flow
predictability compared to using the current stations alone (Fig. 3). This type of
retrospective SWE dataset would need to be adapted for near real-time pro-
duction to support operational decision making, a capability that has already
been demonstratedwith similar datasets34,53.More generally, new gridded SWE
datasets have been developed and produced in select locations (Supplementary
Fig. 1), but these are not yet widely used in water supply forecasting. Many
snowpack datasets have issues with accuracy and latency, and in virtually all
cases their development does not leverage historic remote sensing surveys like
airborne lidar to the full extent possible. If these datasets can be improved and
adapted for operational use (e.g., via machine learning or hydrologic model-
ing), they may help optimize snow water supply forecasting without incurring
new measurement costs.

Methods
Terminology
Snow water equivalent (SWE) is the total amount of water (mm) stored as
snowpack in a given location. SWE can bemeasured at a snow stationwhich is
either a snow pillow or a snow course in a monitoring network. We consider
multiple hypothetical network scenarios, which specify the maximum number
of existing snow stations assumed to be available for water supply predictions.
These scenarios include no stations, single-station, andmulti-station networks.
For each network scenario, we test two expanded monitoring strategies which
are approaches for adding new SWE measurements, specifically at snow
hotspots or across a full basin. We define snow hotspots as locations within or
near a basin boundary where SWE data yields the greatest increases (99th
percentile) in water supply prediction relative to other locations in a basin after
accounting for existing SWE data (if any). We define basin SWE as SWE
averaged across all pixels within an entire drainage basin, which requires
spatially completemapping. Basin SWE is the average SWEper unit basin area
and is thus proportional to the total SWE volume in a basin.

The analysis is conducted by water year (WY), each of which spans 1
October (prior calendar year) to 30 September (current calendar year) in
North America. To represent water supply, we analyze seasonal flow
volume, the total volume of water passing through a river gage from 1April
to 31 July. In operational settings, the forecast period may vary with basin,
but we only use the April–July period here for consistency and simplicity.
We define predictability as the linear fit based on in-sample correlations;
out-of-sample correlations and prediction skill are assessed through tests
with the M4 model (described below).

Existing snow station observations
We obtained time series of daily SWE (snow pillows) and 1st-of-the-month
SWE (snow courses) from all stations from the NRCS, CDWR, and the
Province of British Columbia (Supplementary Fig. 1) betweenWY1980–2023.
We excluded stations based onmultiple criteria: stationswith less than 25 years
of complete and usable SWE data, stations outside of the geographic study
domain (north of 54° N latitude or east of 104°W longitude), and snow pillow
stations that have been burned in wildfire and replaced54,55.

We then quality-controlled and attempted to estimate missing SWE
data. We first removed SWE values exceeding upper (4000mm) or lower
thresholds (0mm). For snow pillows, we removed values that were more
than three standard deviations away from the long-term mean SWE at a
station for a given day of year. From the daily snow pillow data, we retained
SWEon the 1st of themonth fromMarch through June to coincidewith the
monthly sampling frequencyof the snowcourses.When the 1st of themonth
SWE values were missing, we estimated these using a two-stage approach.
For snowpillows, if peak (i.e.,maximum)SWEwas available in the yearwith
a missing monthly value (e.g., 1 March SWE), we developed a linear
regression between peak SWE and 1st of the month SWE for all the years
when both were available. We then applied the regression to estimate the
missing 1st of the month SWE value based on peak SWE. For any 1st of
month SWEvalues thatwere stillmissing at any type of station (snowpillow
or snow course), we developed and applied quantile regressions with the
single neighboring station with the highest correlation to the target station.

After applying these processing steps, 590 snow pillows and 758 snow
courses were retained for analysis, for a total of 1348 candidate snow sta-
tions.We did not require a snow station to have data for all analysis months
(e.g., we included snow courses with complete 1-April SWE data but not
SWE on 1-March, 1-May, and 1-June). The final snow station dataset was
then subset to the 23-year analysis period spanning WY 2001–2023.

Gridded SWE reconstructed fromMODIS snow remote sensing
Weobtaineddaily gridded SWEacross theWesternU.S. at a ~500m spatial
resolution over WY 2001–2023 from the ParBal-SPIReS dataset30,38,56.
ParBal-SPIReS is a snowmelt energy balance reconstruction of SWE
(Supplementary Fig. 1) that is based on snow depletion from daily MODIS
fractional snow covered area and snow albedo retrieved with the SPIReS
algorithm57, alongwithdownscaled reanalysis data56.Weemphasize that it is
completely independent of the snow station data, which is necessary for the
study design, a characteristic that is not true of other widely-used SWE
datasets (e.g., Univ. Arizona SWEand SNODAS, see Supplementary Fig. 5).
Whereas traditional SWE reconstruction methods do not produce valid
estimates of SWE prior to peak SWE58, ParBal-SPIReS produces SWE
estimates during the accumulation season (e.g., on 1-March) by scaling
MERRA-2 reanalysis to match peak SWE38. Evaluations against airborne
lidar data show high accuracy in SPIReS snow cover59 and ParBal SWE30,60,
justifying its usage in this study as a proxy for airborne lidar. While SWE
reconstruction data are inherently retrospective, we select this type of data
because it has been effectively used to investigate and optimize snow
monitoring network design for basin SWE8. Additionally, it can be com-
bined with station data to produce near-real-time SWE estimates for
operational applications34,53. Tests with two near-real-time SWE datasets
(Univ. Arizona SWE and SNODAS) replicated the results of the main
analysis (higher correlations with hotspots than basin or station SWE), but
with smaller gains in correlations (Supplementary Fig. 5). Thus, there are
readily available SWE data that could be used with the hotspot approach
described here to support real-time forecasts of water supply.

While there are other readily available gridded datasets that could have
served as a proxy for the expanded SWE monitoring strategies, we selected
ParBal-SPIReS because it met all of our criteria: (1) independent of station
SWE data, (2) daily data, (3) sufficient record length to meet operational
forecasting conventions (which seek 15–30 year records6), and (4) spatial
resolution of 102m or finer to resolve mountain SWE distributions. Of the
datasets considered (Supplementary Fig. 1), only twomet these criteria: ParBal
and the UCLA Western U.S. snow reanalysis29. We selected ParBal-SPIReS
over the UCLA dataset, as it had similar or better performance (e.g., bias,
RMSE, MAE) when compared to lidar-based SWE data29,60. Additionally, we
found that ParBal-SPIReS SWE data had similar or improved correlations
with flow, relative to four other gridded SWE datasets (Supplementary Fig. 5).
Notably, the correlations were slightly higher with a version of ParBal forced
with a different fractional snow cover and albedo dataset (STC-MODSCAG/
MODDRFS61–64), but that SWE dataset was not used in the main analysis
because the SWE data are not adjusted in the snow accumulation season (i.e.,
1-March). The high correspondence between reconstructed SWE and
streamflow volume aligns with other studies7,36,65, further supporting our use of
ParBal-SPIReS. The trade-off was that ParBal-SPIReS had a shorter record (23
years) versus other datasets (e.g., UCLA SWE reanalysis has 37 years of data),
and this was the main constraint on the length of our study period.

Basin selection and unimpaired flow volume data
We selected gauged basins that had either minimal human impacts (e.g.,
dams, diversions) on seasonal streamflow or that had estimates of unim-
paired runoff volume. Candidate gages came from (1) USDA Natural
Resources Conservation Service (NRCS) forecast points, (2) California
Department of Water Resources (CDWR) forecast points, and (3) the
CAMELS network66,67. For the NRCS and CDWR basins, we utilized
monthly unimpaired runoff (also known as adjusted stream volume or full
natural flow)where available. TheCAMELS basins are long-term, reference
gages from the USGS GAGES-II dataset and the Hydro-Climatic Data
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Network, whichhave low impervious area ( < 5%) upstreamof the gage.We
downloaded all available flow volume at these gages and extracted their
basin boundaries. We filtered candidate basins based on record complete-
ness, geography, and winter climate. We required gages to have complete
records of flow volume over the study period (WY 2001–2023). To restrict
our analysis to basins in theWestern U.S., we only considered basins where
the gage was west of 104° W longitude and south of 49° N latitude, and
where the northern basin boundary was south of 50° N latitude (i.e., some
gaged basins have headwaters in southern British Columbia). We also
restricted our analysis to basins with a drainage area of 4000 km2 or less to
only include small to moderate sized watersheds. This constraint was
employed for two reasons: (1) to ensure the basin size was not too large for a
single station to represent, and (2) to include only basins that might rea-
sonably bemeasured with an airborne survey. Finally, to ensure only snow-
influenced basins were included, we required a minimum basin-average
annual snowfall fraction of 15% based on daily DayMet data and a 0 °C air
temperature threshold67. These constraints left 390 basins for analysis,
which spanned a range of hydroclimates, geology, land covers, and basin
drainage areas (Supplementary Fig. 1). For eachWYand basin, we summed
the total flow volume over three target periods: April–July, May–July, and
June–July (see below).

Correlation analyses of snow and flow data
Our central metric of seasonal flow volume predictability from snow data
was the in-sample linear fit, as expressed with the Pearson correlation
coefficient (R2, Fig. 1c).We selectedR2 as a simple andobjectiveway toassess
the strength of the temporal relationship between SWE data and observed
flow volume (i.e., fraction of variance explained in the annual flow data
explained by the snow data). Additionally, it is a commonly used metric in
other snow and water supply studies10,16,22. We tested the results using the
rank-based SpearmancorrelationR2 and found the resultswere qualitatively
similar to the Pearson correlation R2.

We separately calculated the variance explained (R2) in flow volume
from each of three network scenarios and two strategies for expanded SWE
monitoring (described below) from WY 2001–2023 at four SWE observa-
tion dates. These dates correspond to key water supply forecast dates: 1-
March, 1-April, 1-May, and 1-June. The 1st of the month is when official
forecasts are commonly made or updated by agencies in the western U.S20.
We did not examine other forecast dates (e.g., 1-January or 1-July) for
simplicity. For the 1-March and 1-April analyses, the predictand was flow
volume over April–July. For 1-May and 1-June, we used a shrinking target
period20: the 1-MaySWEanalysis predictedMay-Julyflowvolumewhile the
1-June SWE analysis predicted June-July flow volume.

For all basins, we tested three network scenarios: no stations, single-
station, and multi-station. In the no station scenario, we neglected the
existence of all snow stations across the study domain (Supplementary
Fig. 1c) and proceeded to the two alternative expansion scenarios (SWE
monitoring at hotspots versus basin SWE), representing the case of intro-
ducing new measurements to a basin that lacks SWE stations. The single-
station scenario represents a minimal network while the multi-station
scenario approximates the baseline capability of the existing network. For
the single-station and multi-station scenarios, we selected the 30 snow
stations closest to the centroid of each study basin (regardless of whether
inside or outside the basin, following operational practice46) and used SWE
at those stations as candidate predictors in a linear regression equation.We
normalized each SWE and flow time series using the z-score. For the single-
station scenario, we calculated an R2 value between the flow volume and the
1st of month SWE time series (n = 23 years) for each of the 30 nearest snow
stations individually.We then found the single snow stationwith thehighest
R2 for each basin and forecast month. For the multi-station scenario, we
used stepwise multiple linear regression to systematically add candidate
stationsout of the30nearest basedonwhether they significantly reduced the
sum of squared errors of the regressionmodel (if the p value < 0.05 of the F-
statistic). The multi-station scenario included cases where a single station
was most predictive and adding more stations did not improve the

regressionmodel. ForMarch andApril, a single stationwasmost commonly
used in the multi-station scenario, while in May and June two to four
stations were typically used (Supplementary Fig. 13).

For each of the three network scenarios, we implemented the two SWE
measurement expansion strategies, namely monitoring at SWE hotspots
versus basin SWE. We developed multi-linear regression models that pre-
dicted flow volume based on multiple predictors: the existing station SWE
(from zero, one, ormultiple stations; see previous paragraph) and newSWE
information (SWE at each i,j grid pixel or total basin SWE). Hence, for the
hotspot analysis, we developed pixel-specific regression models between
flow volume (Q) and SWE:

Q ¼ β0;M þ
XnSta

k¼1

βk;MStationk;M þ βG;MGridi;j;M þ ϵM ð1Þ

where β0,M is the intercept, βk,M is/are the coefficient(s) for the snow sta-
tion(s) used in the regression for the existing Station SWE,M is the month,
βG,M is the coefficient andGridi,j,M is SWEat the i,jpixel locationof the SWE
Grid, respectively, and ϵ is the residual. The number of stations (nSta) varies
with network scenario: nSta=0 for the no station scenario, 1 for single-
station, andN formulti-station. The gridwas constrained to the rectangular
area that encompassed the basin boundary, and thus included some areas
just outside the basin boundary, similar to conventions for station
selection46. We applied the regression at each pixel (i,j) and computed
and recorded the R2. We then calculated the change in water supply
predictability (ΔR2

i,j) at each grid pixel as:

ΔR2
i;j ¼ R2

grid i;j& station � R2
station ð2Þ

For each basin and forecast date, wemappedΔR2 to identify predictive
locations, and created a cumulative distribution function (CDF), with an
example shown inFig. 2d.We identified a hotspot as the 99th percentileΔR2

correlation in the CDF.
For the basin SWE expansion strategy, we followed a similar approach

but using average basin SWE rather than grid-specific SWE values. For each
forecast date (e.g., 1-April) and basin, we took the average of all SWE pixels
within the basin boundary from the ParBal-SPIReS gridded data for each
year, applied the z-score to get a normalized time series of basin average
SWE (n = 23 years), and we then used those data to develop a single
regression model:

Q ¼ β0;M þ
XnSta

k¼1

βk;MStationk;M þ βb;MBasinM þ ϵM ð3Þ

where βb,M is the regression coefficient andBasinM is the average basin SWE
in month M. We then calculated the potential change in water supply
predictability with basin SWE as:

ΔR2
basin ¼ R2

basin& station � R2
station ð4Þ

In either expansion strategy (Eq. (1) or Eq. (3)), the beta coefficients
were zero when the additional predictor (grid SWE or basin average SWE)
did not improve the regression, in which case ΔR2 = 0. For the no station
scenario,R2

station is undefined in Eqs. (2) and (4), and henceΔR
2
i,j= R2

grid i,j

and ΔR2
basin = R2

basin.
For all analyses,we didnot consider non-snowpredictors that are often

used in operational forecasts (e.g., precipitation, antecedent streamflow), so
that our analysis is focused on the information content in the snowpack
data. Additionally, we acknowledge that collinearity is likely between the
paired predictors (e.g., station SWE and basin SWE). Given that the goal of
the analysis is prediction rather than inference (e.g., the importance of each
predictor), we deemed collinearity to be less critical to the predictive accu-
racy and did not attempt to interpret the beta coefficients.
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Alternative approach for identifying snow hotspots
Our approach for selecting a snow hotspot (described above) was based on
finding a pixel with high (99th percentile) improvement to R2, relative to
otherpixels in thebasin.Weseparately tested amore sophisticatedapproach
for hotspot extraction using a hybrid version of principal components
regression (PCR). This entailed conducting a principal components analysis
(PCA) on the gridded SWE dataset, which reduces the dimensionality and
results in orthogonal (i.e., uncorrelated) principal components.We retained
the first N principal components which collectively explained 95% of the
variance in the original gridded SWE dataset. We then applied stepwise
linear regression topredictflow, using ahybrid suite of predictors: thefirstN
principal components alongwithSWEfromexisting stations (dependingon
the network scenario).We found that this approach typically utilized 1–2 of
the principal components, effectively utilizing information extracted from
multiple locations in a basin (whereas ourmain hotspot analysis introduced
monitoring at a single location). Despite this difference, the two approaches
yielded very similar results in terms of R2 (see Supplementary Fig. 4) in both
the single station and multi-station scenarios, suggesting that much of the
predictive power comes from the first one or two new measurement loca-
tions, which likely represent the dominant SWE signal. For the no station
scenario, the hybrid PCR approach yielded higher R2 than our simple
approach, likely because it extracted information from more than one
location in the basin.

Repeat analysis with an operations-relevant water supply
forecast system
We repeated the main regression analysis comparing the SWEmonitoring
strategies for the single-station scenario only using the multi-model
machine learningmetasystem (M4)16,22,39, which was recently developed for
operational water supply forecasts at theNRCS.M4 includes an ensemble of
six models and machine learning approaches for water supply prediction,
including: standard linear regression (similar to main analysis), linear
quantile regression, random forests, support vector regression, monotone
artificial neural networks, and monotone composite quantile regression
neural networks. All six approaches are trained and applied, with the
ensemble estimate being used for evaluation with a leave-one-year out cross
validation technique. For consistency, we utilized the same predictors as in
the main analysis for the single-station scenario and the same predictand
(summer flow volume). Given that only two predictors were used at most,
we disabled the principal components regression step, but we note that in
operational practice there may be dozens of candidate predictors6,22. We
assessed threemetrics of water supply forecast skill: (1) R2, (2) the rootmean
squared error (RMSE) normalized to mean summer flow (i.e., relative
RMSE), and (3) the maximum relative error (i.e., the largest error found in
the cross validation, expressed relative to mean summer flow). The results
(Supplementary Fig. 6) show the same relative patterns as themain analysis.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data used in this study are publicly and freely available. The NRCS SWE
data (SNOTEL stations and snow courses) and Canadian SWE data are
available via the NRCS report generator (https://wcc.sc.egov.usda.gov/
reportGenerator/). Snow pillow data in California are available at the
California Department of Water Resources (CDWR) California Data
Exchange Center (http://cdec.water.ca.gov/). Streamflow observations are
available via the USGS National Water Dashboard (https://dashboard.
waterdata.usgs.gov/), with monthly adjusted streamflow (i.e., full natural
flow estimates) available via the NRCS report generator and the CDWR
(https://cdec.water.ca.gov/snow/current/flow/). The gridded ParBal-
SPIReS SWE dataset68 is available in a Dryad Repository (https://doi.org/
10.25349/D9TK7H) and at theUCSB / JeffDozier SnowStudy Sitewebpage
(https://snow.ucsb.edu/index.php/remotely-sensed-products/).

Code availability
MATLAB code69 developed to produce the analyses and data used in the
visualizations are available at Zenodo (https://doi.org/10.5281/zenodo.
15832002). Matlab version R2024b was used to develop this code.
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