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Reservoirs are widely recognized as sediment sinks, but the role of silted-up reservoirs as sediment
sources remains poorly understood. This study presents quantitative assessments on episodic
erosion effects of reservoirs in the Yellow River. Here we showed that sediment erosion during the
2019 flooding was 112 and 265 million tons at the Sanmenxia and Xiaolangdi reservoirs, respectively.
Nearly all the Sanmenxia erosion was attributable to natural floods, whereas only ~40% of the
Xiaolangdi erosion resulted from natural floods with the rest from drawdown and artificial flooding.
These erosions contributed ~1/4 of decadal fluvial sediment flux. Reservoir erosion increased
downstream suspended sediment concentration by over two orders of magnitude. Threshold siltation
ratios (sedimentation volume/storage capacity) for initial erosion in the studied reservoirs ranged from
28% to 87%, averaging 60% =+ 21%. Considering many reservoirs experiencing >30% capacity loss
and intensifying floods under global warming, reservoir erosion will become more frequent worldwide.

Dams have been constructed on most of the world’s large and moderate
rivers, and the impacts of reservoirs on rivers, deltas, and adjacent seas have
been extensively studied in recent decades' ™. The retention of sediment in
reservoirs and sediment deficits in downstream channels and deltas are
among the most important environmental impacts of dam construction. In
extreme cases, such as the Nile (Egypt), Colorado (Mexico), and Kizil Irmak
(Turkey) rivers, the sediment flux to the sea has decreased to almost zero™.
Dam construction on the Yellow, Yangtze, Pearl], and Liao rivers of China;
the Narmada and Krishna rivers of India; the Mississippi and Rio Grande
rivers of the USA; and the Indus (Pakistan), Red (Vietnam), Chao Phraya
(Thailand), Orange (South Africa), Limpopo (Mozambique), Volta
(Ghana), Rhone (France), Ebro (Spain), Yenisei (Russia), and Ombrone
(Italy) rivers has led to 50-95% reductions in sediment discharge™".
Furthermore, sediment retention in reservoirs has resulted in downstream
channels and deltas being degraded'*".

In contrast to the numerous studies of reservoir-induced long-term
downstream sediment reduction and morphological degradation, less is
understood of the impact of episodic reservoir erosion on fluvial sedi-
ment loads and channel-delta stability. Scouring events in small reser-
voirs and the consequent downstream sediment pulses associated with
dam removal or breaching (partial removal) and hydraulic flushing have
been documented”, but it remains unclear whether episodic erosion
also occurs from large (storage capacity >0.1 km’) silted-up in-use

reservoirs during flooding or due to the combined effects of flooding and
drawdown, and how such episodic erosion affects downstream sediment
transport and morphodynamics. Quantitative assessment of sediment
budgets between reservoir erosion and downstream sediment delivery
and deposition is particularly lacking. Many reservoirs constructed
worldwide over the last 150 years are highly silted-up®*'***"**. Many new
reservoirs are currently under construction or in the planning stage,
particularly in developing countries™'. As more reservoirs silt up, the
increasing frequency and intensity of extreme precipitation events due to
global warming’>” necessitates investigation of whether episodic erosion
is likely in silted-up reservoirs under natural or regulated conditions and
its potential effects on downstream sediment delivery and
morphodynamics.

Here, case studies, particularly on the Yellow River (Fig. 1), were
employed to address the above questions with the aims of (1) quantitatively
assessing episodic reservoir erosion and its effects on downstream sediment
loads and channel deposition; (2) constructing a sediment budget for the
reservoir-downstream-channel systems; (3) investigating natural and
anthropogenic factors responsible for reservoir erosion events; and (4)
providing an overview of the potential of episodic erosion in silted-up
reservoirs worldwide. The results aim to enhance our understanding of the
role of silted-up reservoirs as fluvial sediment sources under extreme
hydrometeorological conditions and associated human impacts.
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Fig. 1 | Diagrams showing the upstream and downstream reservoirs and
hydrological stations in the study area. A Schematic diagram of the studied
reservoirs. Dots indicate dam locations; lines represent general directions, rather
than actual river channels. Distances in the river courses are shown. B Map of the

Yellow River basin showing the locations of major reservoirs, gauging stations, and
cities. C Multiyear average water and sediment fluxes at gauging stations along the
mainstream of the Yellow River prior to reservoir construction (1952-1959).

Results

Erosion of the Xiaolangdi and Sanmenxia reservoirs and its down-
stream sedimentary and morphological impacts in a flood season
Runoff of the Yellow River during the 2019 flood season was much higher
than normal. For example, the monthly water discharge at Sanmenxia

Station in July-September 2019 (6090 Mm®) was 2.5 times the multiyear
average (2450 Mm”®) (Supplementary Fig. S1). Based on daily water inflows
to the Sanmenxia and Xiaolangdi reservoirs, there were two major natural
flood events. The maximum water inflows to the Sanmenxia Reservoir
during the first and second flood events were 4850 and 4490 m’ s/,
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Fig. 2 | Temporal variations of water and sediment in the Sanmenxia and
Xiaolangdi reservoirs. A Time series of daily water inflow and outflow for the
Sanmenxia Reservoir. B Water inflow and outflow, C water level and storage,

D water-surface slope, E inflow and outflow SSC, F sediment inflow and outflow, and
G erosion and cumulative erosion for the Xiaolangdi Reservoir. H Sedimentation
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and cumulative sedimentation in downstream reaches between Xiaolangdi and
Huayuankou stations. Note: inflow to the Xiaolangdi Reservoir equals the outflow
from the Sanmenxia Reservoir; daily inflow SSC data for the Sanmenxia Reservoir
and daily inflow and outflow SSC data in January-June and October-December for
the Xiaolangdi Reservoir are unavailable.

respectively, almost six times the water inflow during the dry season
(averaging 780 m’ s™' from January to May). Water outflows from the
Sanmenxia Reservoir were generally consistent with water inflows (Fig. 2A).
However, there were notable differences between inflows and outflows at the
Xiaolangdi Reservoir, where outflows were markedly higher than inflows
from March to late July 2019, especially during the 20 days from 22 June to
11 July (Fig. 2B). During this period, the water level decreased by ~60 m and
water storage decreased to nearly zero from ~8 km’ (Fig. 2C), with a dou-
bling of water-surface slope (Fig. 2D).

During the period of 9 July-10 August (Phase 1, Fig. 2), the water flow
through the Xiaolangdi Reservoir was unusually high (Fig. 2B) while the
water level was the lowest (Fig. 2C) and the water gradient was the largest
(Fig. 2D). As a result, the suspended sediment concentration (SSC) of the
Xiaolangdi Reservoir outflow increased markedly despite fluctuations, and
was notably higher than the inflow SSC. The highest outflow SSC of
210 kg m ™ was observed in the initial stage of Phase 1 (15 July) when inflow
and outflow were 2500 and 2,720 m® s, respectively. The second highest
outflow SSC of 170 kg m ™~ was observed at the end of Phase 1 (9 August)
when the inflow was 3,660 m® s™' and the outflow increased rapidly to its

second highest level 0f 4,350 m® s ™" after a brief reduction. During this Phase
1 period, the mean outflow SSC of 57 kg m was 3.8 times that of the mean
inflow SSC (15 kg m ), and the maximum ratio of daily outflow to inflow
SSC reached 17 (Fig. 2E).

The sediment outflow increased with a trend similar to that of the
outflow SSC and peaked at the end of Phase 1, whereas the second-highest
outflow occurred in the initial stage of Phase 1 (Fig. 2F). Considering the
difference between sediment outflow and inflow, the erosion rate peaked at
60 Mt d™' (Mt: million tons) (693 t s™') on 9 August, at up to 17 times the
sediment inflow (41 ts™"), accounting for 94% of the daily sediment outflow
of 735 ts™". The second highest erosion rate of 31 Mtd ™' (362 ts™") occurred
in the initial stage of Phase 1 (July 10), at 12 times the sediment inflow (30 t
sh, contributing 92% of the sediment outflow of 392 t s~ . The cumulative
erosion in the Xiaolangdi Reservoir during the one month of Phase 1
reached 373 Mt, or 3.4 times the cumulative sediment inflow (109 Mt),
contributing 74% of the cumulative sediment outflow of 498 Mt (Fig. 2F-G).
At Xijaolangdi Station, the annual sediment flux in 2019 was 545 Mt, and the
cumulative sediment flux for 2010-2019 was 1566 Mt. Erosion in the
Xiaolangdi Reservoir during the flood event of July 2019 thus contributed
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68% of the annual sediment flux and 24% of the decadal sediment flux in
downstream channels.

After this rapid erosion, the Xiaolangdi Reservoir experienced a period
of balanced sedimentation and erosion (10-31 August), when water outflow
decreased more rapidly than inflow, and the water slope decreased to half its
maximum value due to water impoundment (Fig. 2B-D). Another flood
occurred in the Yellow River in September 2019 (Phase 2), during which
water outflow from the Xiaolangdi Reservoir was consistent with inflow, and
the inflow SSC was markedly higher than outflow SSC. In this second flood
event, the sediment outflow from the Sanmenxia Reservoir (i.e., the sedi-
ment inflow to the Xiaolangdi Reservoir) was ~80 Mt, while the outflow
from the Xiaolangdi Reservoir was ~10 Mt, resulting in sedimentation of
~70 Mt in the Xiaolangdi Reservoir (Fig. 2).

The absence of direct SSC inflow data for the Sanmenxia Reservoir
precluded an estimation of daily sedimentation and erosion, but the three
major peaks in outflow SSC (i.e., inflow SSC to the Xiaolangdi Reservoir)
likely indicate erosion events in the Sanmenxia Reservoir (Fig. 2E). The first
outflow SSC peak of 32kgm™ (compared to <1 kgm™ under normal
conditions) occurred on 1 July (Fig. 2E) when water inflow and outflow of
the Sanmenxia Reservoir were 2660 and 2330 m® s, respectively. These
high flows were derived from the first flood event in the river basin. During
28-30 June, the water inflow increased from 735 t0 2,620 m* s, and outflow
from 589 to 2,620 m’ s~' (Fig. 2A). The outflow SSC from the Sanmenxia
Reservoir was 18.8 kg m ™ on 30 June (earlier SSC data were unavailable)
(Fig. 2E). The second outflow SSC peak of 126 kg m™ occurred on 15 July,
when Sanmenxia Reservoir inflow and outflow were 2370 and 2500 m® s,
respectively, following a temporary reduction. The third peak of 40 kgm ™
occurred on 18 September, when Sanmenxia Reservoir inflow and outflow
were 4650 and 4490 m® s/, respectively (Fig. 2A, E). Rapid erosion in the
Sanmenxia Reservoir during the 2019 flood season is corroborated by
annual sediment load data issued by the Ministry of Water Resources of
China™.

River channels downstream of the Xiaolangdi Reservoir exhibited
opposing reactions to the rapid erosion occurring in the reservoir. Prior to
the flood events, the river water in the downstream channel of the Xiao-
langdi Reservoir was clear (Fig. 3A); during the flood events, a large amount
of sediment poured down from the Xiaolangdi Reservoir, resulting in a rapid
increase in SSC in the downstream channel (Fig. 3B, C); after the flood
events, the downstream channel returned to a low SSC state (Fig. 3D).
During the flood events, cumulative sedimentation in the 126 km length of
downstream channels between Xijaolangdi and Huayuankou stations
reached ~280 Mt, which accounted for 75% of the Xiaolangdi Reservoir
erosion (373 Mt). The date of maximum daily sedimentation in the
downstream channels (9 August, 55 Mt) was consistent with that of max-
imum daily Xiaolangdi Reservoir erosion (9 August, 60 Mt) (Fig. 2H).

Annual deposition and erosion in the seven reservoirs over the
past decades

The annual water and sediment supplies from the gauged and ungauged
areas all showed rapid decreasing trends over the past seven decades
(Supplementary Fig. S2). The water discharges at the Tongguan Station
(entrance of the Sanmenxia Reservoir) ranged from 14.9 to 69.9 km’ yr ',
and averaged 33.4 km® yr™%; the sediment fluxes at the Tongguan Station
ranged from 55 to 2995 Mt yr ' and averaged 911 Mt yr . The estimated
water discharges from the ungauged areas between Tongguan station and
Xiaolangdi Station (immediately downstream of the Xiaolangdi Dam)
ranged from 0.17 t0 2.70 km’ yr ', and averaged 0.72 km’ yr™'; the estimated
sediment fluxes from the ungauged areas between Tongguan station and
Xiaolangdi Station ranged from 0.05 to 44.5 Mt yr ', and averaged 5.6 Mt
yr . The total annual water inflows of the Sanmenxia and Xiaolangdi
reservoirs (defined as sum of the water discharge at the Tongguan Station
and the water supply from the ungauged areas) ranged from 15.2 to 72.6 km’
yr ', and averaged 34.1 km’ yr'; the total annual sediment inflows of the
Sanmenxia and Xiaolangdi reservoirs (defined as sum of the sediment flux at
the Tongguan Station and the sediment supply from the ungauged areas)

ranged from 55.1 to 3034 Mt yr~', and averaged 916 Mt yr~'. The con-
tribution of the ungauged water discharge to the total water inflow into the
reservoirs ranged from 0.63% to 4.67%, and averaged 2.04%; the con-
tribution of the ungauged sediment supply to the total sediment inflow into
the reservoirs ranged from 0.01% to 1.64% and averaged 0.39%. Thus, the
contribution of the ungauged water and sediment supply to the water and
sediment flows of the reservoirs were generally low. At the Xiaolangdi
Station, the water discharge ranged from 14.4 to 70.2 km® yr ' and averaged
33.6 km’ yr'; the sediment flux ranged from ~1 to 2980 Mt yr™' and
averaged 837 Mt yr'. The absolute predominance of gauged sediment flux
over ungauged sediment supply suggests that annual depositions and ero-
sions of the Sanmenxia and Xiaolangdi reservoirs based on sediment budget
are highly reliable.

Based on annual sediment inflow and outflow data, the net erosion
of the Xiaolangdi Reservoir in 2019 was 265 Mt (Fig. 4). The net erosion
in this reservoir during July-September 2019 was ~300 Mt (Fig. 2G),
indicating a cumulative sedimentation of ~35 Mt during the remaining
nine months of that year when daily sediment-load data were unavail-
able. The sediment inflow and outflow of the Sanmenxia Reservoir in
2019 were 168 and 280 Mt, respectively, indicating an annual net erosion
of ~112 Mt, with most occurring during the flood events when >85% of
the annual sediment outflow from the Sanmenxia Reservoir (i.e., sedi-
ment inflow to the Xiaolangdi Reservoir) occurred during the flood
season (July-September) (Fig. 2F).

Initial erosion in the Sanmenxia Reservoir was recorded in 1965, only
five years after inpoundment, with the initial annual erosion of 277 Mt yr™*
contributing almost 40% of the downstream annual sediment load (735 Mt
yr ). The highest annual erosion of 300 Mt was recorded in 1971 (Fig. 4),
contributing 18% of the downstream sediment load (1650 Mt). In 2020,
Sanmenxia Reservoir erosion (104 Mt) contributed 30% of the downstream
sediment load of 344 Mt. In the period 1965-2020, erosion exceeded sedi-
mentation in the Sanmenxia Reservoir, with a cumulative erosion of 1430
Mt (735 Mt yr '), with yearly alternations between erosion and deposition.
More than 40% of the total sedimentation of 1960-1964 (3480 Mt) was
eroded in the following 55 years.

For the Xiaolangdi Reservoir, prior to erosion in 2019, sedimentation
was continuous for 20 years (1999-2018), with a cumulative sedimentation
of 3260 Mt (163 Mt yr '; Fig. 4). The overall dry bulk density of the rapid
sedimentation in the Sanmenxia and Xiaolangdi reservoirs was 0.93 g cm ™
(Supplementary Fig. S3), giving sedimentation volumes in the Sanmenxia
Reservoir (1960-1964) and Xiaolangdi Reservoir (1999-2018) of 3.74 and
3.50 km’, respectively. The storage capacities of the Sanmenxia and Xiao-
langdi reservoirs were 6.0 and 12.7 km?, and their initial net annual erosion
occurred at the time when siltation-induced storage capacity losses were
62% and 28%, respectively.

Annual net erosion events have also been recorded for the Qing-
tongxia, Yanguoxia, Wanjiazhai, Naodehai, and Gongzui reservoirs (Fig. 5).
Initial erosion in these reservoirs occurred 5-26 years after impoundment,
when cumulative losses of storage capacity due to previous sedimentation
were 43-87% (Table 1). The Qingtongxia Reservoir began operation in
1967, with initial erosion occurring in 1972, when the cumulative storage
capacity loss due to rapid sedimentation was 87% (average 105 Mm’ yr ).
The highest annual erosion recorded in the Qingtongxia Reservoir was
28 Mm’ yr™" in 1981, with a maximum relative increase in annual sediment
outflow of 40% (Fig. 5A; Table 1). The Yanguoxia Reservoir began operation
in 1961, with initial erosion in 1971 when the cumulative storage capacity
loss due to sedimentation was 76% (average 18 Mm”® yr™"). The highest
annual erosion recorded in the Yanguoxia Reservoir was 6.1 Mm?® in 1971,
with a maximum relative increase in the annual sediment outflow of 52%
(Fig. 5B; Table 1). The Wanjiazhai Reservoir began operation in 1998, with
initial erosion in 2014 when the cumulative loss of storage capacity due to
sedimentation was 50% (average 28 Mm® yr™'). The highest annual erosion
recorded in the Wanjiazhai Reservoir was 7.6 Mm?® in 2014, with a max-
imum relative increase in annual sediment outflow of 49% (Fig. 5C; Table 1).
The Naodehai Reservoir began operation in 1942, with initial erosion in
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Fig. 3 | Changes in turbidity in the downstream
channel of Xiaolangdi Reservoir. River channel
conditions A Before, B, C during, and D after Flood
Period 1 (Phase 1 in Fig. 2).
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1951 when the cumulative loss of storage capacity due to sedimentation was
43% (average 8 Mm’ yr'). The highest annual erosion recorded in the
Naodehai Reservoir was 8.8 Mm’ in 1965, with a maximum relative increase
in the annual sediment outflow of 59% (Fig. 5D; Table 1). The Gongzui
Reservoir began operation in 1971, with initial erosion in 1987 when the
cumulative loss of storage capacity due to sedimentation was 71% (average
14 Mm® yr ). The highest annual erosion recorded in the Gongzui Reser-
voir was 3.1 Mm® in 2000, with a maximum relative increase in annual
sediment outflow of 11% (Fig. 5E; Table 1). After the initial erosion events,
storage capacities of the reservoirs tended to stabilize even though deposi-
tion and erosion occurred alternately (Fig. 5).

Deposition thickness in 1999-2018 and erosion depth in 2019 in
the Xiaolangdi Reservoir

For the Xiaolangdi Reservoir, deposition during 1999-2018 and erosion
during 2019 occurred mainly in the mainstream channel. Along the 120-km
length of thalweg, the mean thickness of deposited sediment during
1999-2018 was 49 m (2.45 m yr™'), with a maximum thickness of 77 m at
sites located 5-10 km upstream of the dam. In 2019, the mean erosion depth
along the thalweg was 7.3 m, with a maximum erosion depth of 11 m in the
middle reaches of the main river channel (Fig. 6A). In the channel cross-
section, deposition during 1999-2018 and erosion in 2019 occurred mainly
in the deep channel, with little bathymetric change near the riverbanks
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Fig. 5 | Annual deposition rate and cumulative loss of storage capacity in
reservoirs. A-C Qingtongxia, Yanguoxia, and Wanjiazhai reservoirs in the
upstream and upper middle reaches of the Yellow River (see Fig. 1A for locations).
D Naodehai Reservoir on the Liuhe River, a tributary of the upper Liaohe River.

E Gongzui Reservoir on the Daduhe River, a tributary of the upper Yangtze River.
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Note: sources of deposition/erosion data were as follows: Qingtongxia Reservoir,
changes in storage capacity reported by Li*’; Yanguoxia Reservoir, Zhang®; Wan-
jiazhai Reservoir, Ren et al.”’; Naodehai Reservoir, changes in storage capacity
reported by Han” and Jiao et al.”’; Gongzui Reservoir, Lin® for 1971-1986 and Xiong
and Ma"’ for 1994-2007.

(Fig. 6B-C). This rapid erosion occurred mainly during the flood event of
July 2019. Bathymetric surveys in the Xiaolangdi Reservoir were undertaken
each October, and erosion in 2019 was based on bathymetric survey data of
October 2018 and October 2019. Based on the data in Fig. 2G, the erosion

depth in Fig. 6 would have resulted from episodic erosion during floods
from July to early August 2019. More importantly, maximum erosion
depths during the episodic events would have been greater than those shown
in Fig. 6 due to the recovery of deposition in September 2019 (Fig. 2G).
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aThe original storage capacity of the Sanmenxia Reservoir (below an elevation of 330 m from the semi-entrance at Tongguan Station) is from Morris and Fan®. "The capacity loss is from Lin®’; erosion, sediment outflow, and dry bulk density for conversion from volume to

weight of eroded deposits are based on Li°"and Jia’. °Capacity loss and erosion are based on Zhang®®; sediment outflow was measured by the YRCC at Lanzhou Station, immediately downstream of the Yanguoxia Reservoir. “Capacity loss and erosion are based on Ren et
al.®’; sediment outflow is the sum of reservoir erosion and sediment inflow (measured at Toudaoguai Station, immediately upstream of the Wanjiazhai Reservoir). *Original data are from Han?’ and Jiao et al.*. Dry bulk density in the Qingtongxia Reservoir was used for the

Naodehai Reservoir because the natural conditions (climate, lithology, hydrology, elevation) and sedimentation history of the two reservoirs are similar. ‘Capacity loss is after Lin®. Erosion volume and sediment outflow are based on Xiong and Ma™. A frequently used dry bulk

density for the Yangtze River sediments was adopted from Yang et al.”® to calculate the weight of eroded sediments in the Gongzui Reservoir.

Impacts of annual deposition/erosion of the Sanmenxia and
Xiaolangdireservoirs on downstream sediment load and channel
morphology
Slow net erosion (6 Mt yr™') occurred in the previously highly silted-up
Sanmenxia Reservoir during 1999-2018, while rapid deposition (169 Mt
yr ) occurred in the newly formed Xiaolangdi Reservoir. Most (62%) of the
sediment from upstream reaches was retained in the Xiaolangdi Reservoir,
which led to a dramatic decrease in sediment outflow and a sharp decline in
downstream SSClevels, resulting in channel erosion in reaches downstream
of the Xiaolangdi Reservoir. The total erosion rate in the 756 km of
downstream reaches was 44 Mt yr ', offsetting ~25% of the sediment loss
due to reservoir deposition. The erosion intensity in the first 126 km reach
(0.09 Mtkm ™" yr~") was higher than that in the lower 630 km reach (0.05 Mt
km ' yr ). Downstream sediment erosion occurred at a much lower rate
than reservoir deposition, so sediment discharge to the sea was markedly
reduced relative to the fluvial sediment load above the reservoirs (Fig. 7A).
In 2019, the total erosion in the Sanmenxia and Xiaolangdi reservoirs
amounted to 377 Mt, which increased the downstream sediment load by
224%. As a result, rapid deposition occurred in channels downstream of the
Xiaolangdi Dam: deposition rates were 228 Mt yr™" in the 126 km upper
reaches (1.8 Mt km™ yr™") and 9 Mt yr ' in the 630 km middle-lower
reaches (0.01 Mt km™ yr™') (Fig. 7B), showing a rapid downstream
decreasing trend. Assuming all deposition was contributed by sediment
derived from reservoir erosion, 63% of eroded sediment from the two
reservoirs settled in downstream channels. This assumption is reasonable
considering that deposition is unlikely to occur in these channels without an
increased sediment supply from reservoir erosion (see Fig. 7A). Although
most sediment derived from reservoir erosion was deposited in the down-
stream channels, the sediment discharge from the Yellow River to the Bohai
Sea increased by 61% relative to the sediment load at the Tongguan Station
above the reservoirs (Fig. 7B).

Discussion

In 2019, the time series of daily water outflow of the Sanmenxia Reservoir in
2019 was in good agreement with the time series of water inflow (Fig. 2A),
suggesting that few water-level management practices were conducted in
this reservoir in 2019. Thus, nearly all of the 112 Mt erosion of the San-
menxia Reservoir in 2019 could be attributed to natural floods, whereas little
erosion was attributable to drawdown and artificial floods. In contrast,
considerable water drawdown was conducted in the Xiaolangdi Reservoir in
2019. In fact, more than 95% of the water storage was released from March
to July (Fig. 2C). During this period, the water outflow of the Xiaolangdi
Reservoir was evidently higher than the water inflow, suggesting an artificial
flow in the reservoir. Most importantly, the water outflow was ~2 times
higher than the water inflow from the end of June to mid-July, resulting
from the combination of natural and artificial floods. Because water inflow
of the Xijaolangdi Reservoir was almost equal to the water inflow of the
Sanmenxia Reservoir, we roughly estimated that natural flood-induced
erosion in the Xiaolangdi Reservoir would have approximated to the erosion
in the Sanmenxia Reservoir. That is, ~40% of the erosion in the Xiaolangdi
Reservoir in 2019 (265 Mt) was attributable to natural floods, whereas ~60%
was ascribed to drawdown and artificial floods. Specifically, the mean water
inflow and outflow of the Xiaolangdi Reservoir during 22 June-12 July were
1760 and 3860 m’ s, respectively, compared with 813 m’ s ' during the half
year prior to 22 June (Fig. 2B). This suggested a moderate natural flooding
and a severe drawdown-induced artificial flooding during the period from
22 June to 12 July. Based on the sediment budget of inflow and outflow, the
cumulative erosion in the Xiaolangdi Reservoir during this 21-day period
was 113 Mt (Fig. 2F), which undoubtedly should be attributed mainly to
drawdown practices. Between 13 July and 10 August, the water level
and water storage capacity were at their lowest, and less artificial flow
was formed, which led to a high consistency between water outflow
and inflow (Fig. 2B-C). During this period, a severe natural flooding with
a highest water inflow of 4570 m® s occurred, and the cumulative
erosion amounted to 224 Mt (Fig. 2F). This rapid erosion should
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2, respectively (see Fig. 6A for locations). Bathymetric surveys in each year were
undertaken in October.
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Fig. 7 | Sediment transport processes in the study area. Sediment flow, and erosion
and deposition in the Sanmenxia (Sanmenxia R.) and Xiaolangdi (Xiaolangdi R.)
reservoirs and downstream reaches of the Yellow River in (A) the period 1999-2018

and (B) 2019. Blue, erosion; brown, deposition; positive value, gain of sediment flow;
negative value, loss of sediment flow; distance in parentheses = length of river reach.

be attributed to the combined effect of drawdown and natural flooding.
After that, water impoundment practices were conducted, and a compen-
satory deposition amounting to ~70 Mt occurred, despite a second severe
flooding. Therefore, in fully silted reservoirs, like the Sanmenxia Reservoir,
considerable erosion will most likely occur during episodic natural flooding
events”, unless erosion has already occurred during previous floods. In half
silted reservoirs (such as the Xiaolangdi Reservoir), erosion depends on the
combination of natural floods with water management practices. Draw-
down prior to natural flooding and maintaining lowest water level and
storage during the flooding are effective practices to cause erosion. On the
other hand, water impoundment during flooding will reduce erosion or
even lead to deposition. Water regulation has been applied in many

reservoirs worldwide to reduce sedimentation and maintain storage
capacity’>***.

Our results of the case study from seven reservoirs indicate that the
sedimentation ratio (sedimentation volume/storage capacity) at which
initial annual net erosion occurs ranged from 28% to 87% with an average of
60% *21% (Table 1). Therefore, we propose a critical threshold of sedi-
mentation ratio as ~30% to assist in assessing the risk of sediment erosion in
reservoirs. Generally, a higher sedimentation ratio corresponds to an
increased risk of reservoir erosion during floods. Compared to coastal
sediments, sediments deposited in reservoirs are generally low in compac-
tion and high in water content” ™, because of rapid deposition of fine-
grained particles in a short history. For example, the sedimentation histories
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prior to initial erosions in the seven reservoirs ranged from 5 to 20 years
(Table 1). As shown in Supplementary Fig. S3, the overall dry bulk density of
the sedimentation in the Sanmenxia and Xiaolangdi Reservoirs is
0.93 gcm . In the Songtao Reservoir in South China, dry bulk density is
only 0.61 g cm™*". In comparison, the dry bulk density of coastal sediments
is generally 1.2-1.5gcm . A lower critical shear stress for erosion is
often related to a lower bulk density of relatively freshly deposited muddy
sediments***". Consequently, reservoir sediments can be more susceptible to
erosion when exposed to flowing water. Water depth in reservoirs decreases
with siltation. In the Xiaolangdi Reservoir, for example, the channel bed level
increased by more than 80 m at a location near the dam and by ~50 m in the
middle reaches due to siltation from 1999 to 2018 (Fig. 6A,), corresponding
to a sedimentation ratio of 28%, prior to the initial erosion occurred in 2019
(Table 1). An increase in bed level means a decrease in cross-section of
the river. Under a specific water inflow, it is expected that current velocity
may increase in a channel where the cross-section has been reduced. In other
words, the time that water inflow stays in a reservoir is proportional to the
amount of water stored"”, so reduced water storage implies higher velocity of
flow through the reservoir. The sediment-carrying capacity of flowing water
is proportional to the cube of the flow velocity’. The water inflow of
reservoirs during flood events can be several times greater than normal
inflow (see Fig. 2A for examples). With not only much greater water inflow
but also much higher flow velocity, the total sediment-carrying capacity
would increase evidently in highly silted reservoirs during flood events.
Drawdown-induced artificial flooding and water-depth decrease would
further increase erosion in silted reservoirs. Thus, the sedimentation ratio
for initial reservoir erosion may be associated with factors such as sediment
compaction, grain-size distribution and hydrodynamic threshold, and the
difference in this sedimentation ratio among reservoirs could be influenced
by local conditions of meteorology, hydrology, sediment property, reservoir
design, and even reservoir management.

Erosion depths of a few meters to >10 m during reservoir flushing
events have been reported in previous studies. For example, erosion depths
of 1.0-2.3 m along the mainstream in the Cachi Reservoir, Costa Rica, were
surveyed during a 1-month flushing in 1996*, and erosion depths of 4-14 m
were measured in lakes Aldwell and Mills, USA, within 1 year of dam
removal”. Flood-drawdown-induced episodic erosion in the Xiaolangdi
Reservoir in 2019 yielded a maximum erosion depth of 11 m along the main
channel, likely greater than that in most cases of episodic reservoir erosion,
with >10% of previously deposited sediment being eroded with an increase
in reservoir net storage capacity of 4-5%. Initial erosion in the Sanmenxia
Reservoir during 1965 constituted 8% of the prior total deposition, and the
maximum annual erosion in 1971 constituted 10% of prior net deposition
(Fig. 4), increasing reservoir net storage capacity by 13% and 11%, respec-
tively. Sediment outflow of the Xiaolangdi Reservoir during episodic erosion
in 2019 increased by more than an order of magnitude compared with
inflow (Fig. 2F). Outflow SSC levels from the Xiaolangdi Reservoir during
2019 episodic erosion events, with peak values of up to 210 kg m > and an
event-averaged value of 57 kg m ™, were higher than those recorded during
many other episodic reservoir erosion events. For example, in a flushing
operation in the Valgrosina Reservoir, Italy, the outflow SSC peaked at
80 kg m ™, with an average of 4 kg m ™. Peak SSC values of 11-17 kgm™
were recorded during dam-flushing events in the Arc-Isére River system,
France™. Peak SSC values of 21-28 kg m* were recorded during flushing of
reservoirs in the Kurobe River, Japan™. A maximum SSC of 850 kg m™ was
once recorded during breaching of the Condit Dam in the White Salmon
River, USA”', much higher than the peak SSC of 210 kg m recorded in the
Xiaolangdi Reservoir during 2019 episodic erosion events. In extreme cases,
peak SSC levels during the flushing of reservoirs may exceed 1000 kg m*",
Episodic erosion in silted-up reservoirs can thus be very intense, with
extremely turbid outflow.

Episodic reservoir erosion events may have severe ecological impacts in
downstream reaches. Such erosion usually forms fluid mud with SSC levels
exceeding 10 kg m ™ in downstream river channels (Fig. 3B, C). Episodic

erosion of the Sanmenxia and Xiaolangdi reservoirs in 2019 led to the
formation of fluid mud at Xiaolangdi Station (gauging outflow of the
Xijaolangdi Reservoir) for 27 days (10 July-11 August, excluding 1 and 3-7
August, avg. SSC 69 kgm™) (Fig. 2E). At Huayuankou Station, 126 km
downstream, fluid mud persisted for 32 days (11 July-13 August, excluding 5
and 12 August, avg. SSC 26 kgm ). Even at Lijin Station (tidal limit),
630 km farther downstream, fluid mud lasted 33 days (14 July-15 August,
avg. SSC 18 kg m ™), based on daily SSC data collected by the Yellow River
Conservancy Commission (YRCC). These findings add to our previous
understanding from other reservoirs worldwide that the initial period of
erosion, with a duration ranging from a few hours to several days depending
on the size of the reservoir, is characterized by extremely high SSC levels™
%, Due to the lack of specific ecological surveys, the environmental impact
analysis in this study has certain limitations. Nevertheless, previous research
has demonstrated related effects. High turbidity reduces photosynthesis in
phytoplankton®, thereby reducing primary productivity; and the combi-
nation of fluid mud, which smothers benthic organisms and clogs gills, and
anoxia may kill virtually all organisms in a river*>*’. Similar acute negative
effects have been described for invertebrates”. Meanwhile, rapid deposition
caused by extremely high SSC levels may destroy benthic communities
where organisms tend to reside in the uppermost 10 cm of the sediment
layer™; in many cases of episodic reservoir erosion, downstream channel
deposition may exceed this threshold thickness™****. Many natural reserves
in the lower Yellow River and Yellow River Delta®** would inevitably be
affected by fluid mud and rapid deposition. Of course, to some extent,
episodic reservoir erosion can alleviate the sediment starvation in estuarine
deltas if it is well arranged™.

Reservoir sediment erosion and its ecological impacts on downstream
environments under episodic flooding and drawdown conditions have been
reported in previous studies, either based on field measurements or
numerical simulations**. Based on the sedimentation ratio of 30% pro-
posed earlier in this study—above which reservoirs are at risk of erosion
under episodic flooding and drawdown conditions—a map showing the
global distribution of 57 large reservoirs (storage capacity > 0.1 km®) with
more than 30% loss in capacity has been generated. Many reservoirs
worldwide are fully or >30% silted-up, especially in the Northern Hemi-
sphere, such as in China, India, Japan, United States and Iran (Fig. 8;
Table 2). It indicates that episodic flooding and drawdown events may pose
a widespread threat globally, and their impacts on the ecological environ-
ment of downstream river channels should not be overlooked. The lack of
hydrological measurements and bathymetric surveys in most of the world’s
rivers* means episodic erosion in other silted-up reservoirs may remain
undocumented. Perhaps the use of advanced GIS, geostatistical methods
and remote sensing could be a good option to identify changes in topo-
graphy and terrain in river drainage basins and networks during extreme
events”’. The above examples indicate that episodic erosion events in silted-
up reservoirs during extreme floods and/or water-regulation periods may be
common, with considerable impact on river sediment transport and fluvial
environments. More reservoirs are being constructed or planned, particu-
larly in developing countries such as China and Brazil™', so it is expected that
an increasing number of reservoirs will become silted up™. Moreover,
extreme flooding will likely increase under global warming™®. It follows
that episodic erosion in reservoirs worldwide may become increasingly
common and more intense in coming decades. Strengthening coordinated
water regulation between upstream and downstream reservoirs and
increasing water discharge during flood periods can help reduce SSC. This,
in turn, can mitigate sediment deposition in downstream channels and the
ecological impacts of turbid water, allowing more sediment to reach the
estuarine delta and alleviating the ongoing erosion caused by sediment
deficiency’™”. Considering the differences in reservoir function types (e.g.,
hydropower, water supply, and sediment-regulating reservoirs), reservoir
morphology, sediment characteristics, hydrology, and geology, improve-
ment of management practices (e.g., drawdown timing, water discharges)
varies across reservoirs*’'.
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Conclusions

Episodic reservoir erosion events and their downstream sedimentary
impacts were identified on the basis of data for seven reservoirs in China.
Maximum reservoir erosion depth may exceed 10 m during a flood event,
increasing the downstream sediment load by one to two orders of magni-
tude, with peak SSC levels of up to 210 kg m™>. Sediment derived from
reservoir erosion during a flood event may contribute not only most of the
annual sediment flux, but also ~25% of the decadal sediment flux in
downstream reaches. Threshold siltation ratios at which initial erosion
occurred in the studied reservoirs were in the range of 28-87%, with such
erosion occurring 5-26 years after impoundment. Natural floods alone can
cause severe erosion in reservoirs, like the example of the Sanmenxia
Reservoir where an erosion of 112 Mt was observed in the flooding 2019.
However, regulated drawdown and artificial floods can effectively increase
reservoir erosion during natural flooding events. ~60% of the Xiaolangdi
erosion was attributed to drawdown and artificial flooding, whereas ~40%
was attributed to natural floods. Our results indicate that episodic erosion
can occur in partially silted reservoirs, with natural floods and regulation-
induced low water depths providing favorable conditions. We supposed that
the mechanisms responsible for reservoir erosion are that rapidly silted loose
fine-grained sediments are easily erodible under high sediment-carrying
capacities during flooding and drawdown. Reservoir erosion-induced
extremely high SSC levels and related rapid deposition in downstream
channels may adversely affect river ecosystems and socioeconomics. It is
anticipated that reservoir erosion will become more frequent worldwide in
the near future, as an increasing number of reservoirs will likely silt up, and
the frequency of extreme floods may increase with global warming. Our
findings aid understanding of the positive and negative effects of reservoirs
on river systems, and may promote improvements in river management.

Methods

Study area

Seven large reservoirs in China were examined as case studies, including the
Yanguoxia (0.23 km® storage capacity; 36.2°N, 103.5°E), Qingtongxia (0.61
km’; 37.9°N, 106.3°E), Wanjiazhai (0.90 km? 39.9°N, 111.5°E), Sanmenxia
(6.0 km’ 35.1°N, 111.6°E), and Xiaolangdi (12.7 km? 35.3°N, 113.2°E)
reservoirs on the Yellow River; the Naodehai Reservoir (0.17 km?; 42.6°N,
121.5°E) on the Liuhe River; and the Gongzui Reservoir (0.31 km’; 28.8°N,

102.9°E) on the Daduhe River (Fig. 1A). Those on the Yellow River are
located in downstream order along the mainstream of the Yellow River
(Fig. 1B), which originates on the Qinghai-Tibet Plateau at 4200 m above
sea level and flows 5460 km eastward to the Bohai Sea (Fig. 1B). The basin
has a catchment area of 750,000 km* and currently supports a population of
110 million people. The average annual precipitation and potential eva-
poration within the Yellow River basin are 460 mm and 1700 mm,
respectively. The water discharge and sediment flux from the Yellow River
to the sea were 47 km® yr™' and 1400 Mt yr', respectively, prior to dam
constructions, which begun in the 1960s>'** (Fig. 1C). Tongguan Hydro-
logic Station is commonly acknowledged as being the entrance to the
Sanmenxia Reservoir’®”. Sanmenxia Station lies between the Sanmenxia
Dam and the Xiaolangdi Reservoir, and Xiaolangdi Station is located
immediately downstream of the Xiaolangdi Dam. Sanmenxia and Xiao-
langdi stations are thus ideal for respectively gauging inflow and outflow of
the Xiaolangdi Reservoir. Huayuankou Station is ~200 km downstream of
Xiaolangdi Station, and Lijin Station (the tidal limit) a farther ~600 km
downstream (Fig. 1A). The Liuhe River is a tributary of the Liache River”*,
which is a major river in Northeast China with a length of 1345 km and a
catchment area of 229,000 km”, supporting a population of 35 million. Its
water discharge and sediment flux to the sea were ~5 km® yr " and 40 Mt
yr ', respectively, before declining in the 1960s™*. The Daduhe River, SW
China, is a secondary tributary of the Yangtze River*, which is one of the
world’s largest rivers, with a length of 6400 km, a drainage area of 1.8 million
km?, 900 km® yr ' of water discharge, and 500 Mt yr " of sediment discharge

prior to dam construction, supporting a population of 450 million®.

Data source

Bathymetric data from the Sanmenxia and Xiaolangdi Reservoirs and water
and sediment fluxes at the gauging stations along the Yellow River were
compiled by the Yellow River Conservancy Commission (YRCC) of the
Ministry of Water Resources of China (MWRC) (http://www.mwr.gov.cn).
Sources of deposition/erosion data for other reservoirs were as follows:
Qingtongxia Reservoir, changes in storage capacity reported by Li”’; Yan-
guoxia Reservoir, Zhang®; Wanjiazhai Reservoir, Ren et al.”’; Naodehai
Reservoir, changes in storage capacity reported by Han” and Jiao et al.”;
Gongzui Reservoir, Lin® for 1971-1986 and Xiong and Ma” for 1994-2007.
All the available Sentinel-2 Level-2A and Landsat-8 Collection 2 Level-2
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Table 2 | Examples of severely silted-up reservoirs worldwide

Reservoirs Country River (Tributary) Operation period Storage capacity (Mm®) Capacity loss (%) Sources

10% of reservoirs USA - 1920s-1970s 50,000 Nearly 100 Han?’

Moore Creek Australia Moore Creek 1898-1924 0.22 Nearly 100 Chanson & James™
Gap Australia WerrisCreek 1902-1924 - Nearly 100 Chanson & James’™
5 reservoirs Japan - 1912-1972 - Nearly 100 Han?’

43 reservoirs Shaanxi, China - 1950s-1973 340 Nearly 100 Han?’

Yuexijinshan China Hai 1961-1994 0.43 Nearly 100 Tian et al.”

20% of reservoirs China Yellow -2015 Each > 0.5 Nearly 100 Wang et al.”®

87% of reservoirs China Yellow -2015 Each <0.5 Nearly 100 Wang et al.”
Qingtongxia China Yellow 1967-1998 606 96 Chen’”
Zhangjiawan China Yellow (Qingshui) 1959-1964 119 85 Jiang & Fu’®
Shuicaozi China Yili 1958-1981 9.6 85 Huang™

Yanguoxia China Yellow 1961-1998 232 82 Zhang et al.®°
Zhenziliang China Yellow (Hun) 1959-1973 0.36 80 Jiang & Fu’®
Xingiao China Hongliu 1960-1973 200 75 Lin®

14% of reservoirs USA - 1920s-1970s 70,000 50-75 Han?’

Tiangiao China Yellow 1973-1991 0.84 70 Liu et al.®’

Sanba China Yangtze (Yuanshui) 1958-1998 0.11 68 Lu et al.”
Caizhuang China Yellow (Baima) 1960-1989 0.21 62 Tian et al.”; Liu et al.”'
Bajiazui China Yellow (Pu) 1960-1972 257 61 Lin®%

Toutunhe China Toutunhe 1971-1993 20 60 Chen et al.®
Manshan China Songhua 1978-1994 1.1 56 Tian et al.”
Dongxia China Yellow (Nan) 1959-1983 77 54 Tian et al.”; Jiang & Fu’™®
Miaogong China Hai 1960-1986 183 53 Tian et al.”
Tongjiezi China Yangtze (Daduhe) 1991-1998 210 52 Linghu®

Fenhe China Yellow (Fenhe) 1960-2005 721 52 Lin®%; Liu®

Bikou China Yangtze (Bailong) 1975-1996 521 52 Yu®

Quipolly Australia Quipolly Creek 1932-1952 0.86 >50 Chanson & James™
Yumin China Yangtze (Jinshajiang) 1960-2000 8.0 50 Tian et al.”; Liu®®
33% of reservoirs USA - 1920s-1970s 165,000 25-50 Han?’

Sefid-Rud Iran Sefid-Rud 1963-1980 1,760 36 Morris & Fan®®
Wonogiri Indonesia Bengawan Solo 1982-2011 730 33 Wulandari®’

images with cloud cover <20% were acquired from the Google Earth Engine
(GEE) platform for the period of 1 June to 31 August, 2019. Both datasets
were spatially clipped to the study area boundary and exported as GeoTIFFs
in WGS84 (EPSG:4326) at native resolution (10 m for Sentinel-2; 30 m for
Landsat-8)”'. Most data of global reservoir capacity and their losses in
capacity were obtained from Minocha and Hossain™.

Estimating water and sediment supply from ungauged areas
There is no gauging station in the 12,000 km® of tributaries between
Tongguan and Xiaolangdi stations. To better understand erosion and
deposition in this mainstem reach, we estimated water and sediment
inflows that originated from the ungauged tributaries using an analogy
method. There are three gauging stations, namely Hejin (catchment
area of 38,700 km?), Heishiguan (catchment area of 18,600 km?), and
Wuzhi (catchment area of 12,900 km?), on the tributaries, either higher
than Tongguan Station or lower than Xiaolangdi Station (Fig. 1B). The
ratio of the ungauged area (12,000 km®) to the total gauged area of
these three stations (70,200 km?) is 0.171. Thus, we calculated water
and sediment inflows from the ungauged tributaries as follows:

qungauged(Tongguanfxiaolungdi) = 0'171(Q(Hejin) + Q(Heishiguan) + Q(Wuzhi))

¢y

where Q_ungauged (Tongguan-Xiaolangdiy represents the water inflow from the area
of ungauged tributaries between Tongguan and Xiaolangdi Stations, and
Qriejiny Q(reishiguan) and Qqwuzni) are the water flows at Hejin, Heishiguan,
and Wuzhi Stations, respectively, and

stungauged(Tungguaaniaolungdi) = 0'171(Q5(Hejin) + Qs(Heishiguan) + Qs(Wuzhi))

@

where Qs ungauged (Tongguan-Xiaolangdi) i the sediment inflow from the area of
ungauged tributaries, and Qs (tgjiny Qs (Heishiguany and Qs (wuzhi) are the
sediment flows at Hejin, Heishiguan, and Wuzhi Stations, respectively.

Quantifying deposition and erosion in reservoirs

The Sanmenxia and Xiaolangdi reservoirs began operating in September
1960 and October 1999, respectively’®”. For the period of 1960-1998, the
sediment outflow that was subtracted from the sediment inflow for the
reach between Tongguan and Xiaolangdi stations may have reflected
mainly deposition (negative value indicates erosion) in the Sanmenxia
Reservoir, assuming that deposition or erosion in the non-reservoir reach
between the Sanmenxia Dam and Xiaolangdi Station was negligible.
Thus, we calculated the annual weight of deposited sediment in the
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Sanmenxia Reservoir as follows:

D(Weight in Sanmenxia Reservoir) — Qs(Tangguan) + Qs— d(To

Xiaolangdi)

- Qs(Xiaolangdi)

(€)

where Dweight in Sanmenxia Reservoir) T€PTesents the annual weight of deposited
sediment in the Sanmenxia Reservoir.

For the period of 1999-2020, the sediment outflow subtracted
from the sediment inflow for the reach between Tongguan and
Xiaolangdi stations reflects the net weight of deposited sediment in
the Sanmenxia and Xiaolangdi reservoirs. Since 1999, annual volume
of deposited sediments has been surveyed in the two reservoirs, using
a bathymetric approach™. We calculated the total volume of depos-
ited sediment as follows:

D(Total volume) = D(Valume in Sanmenxia Reservoir) + D(Valume in Xiaolangdi Reservoir)
4
where D(1otal volume) Tepresents the total volume of deposited sediment,
D (Volume in Sanmenxia Reservoir) T€PTesents the volume of deposited sediment in
the Sanmenxia Reservoir, and Dvilume in Xiaolangdi Reservoir) i the volume of
deposited sediment in the Xiaolangdi Reservoir.
Then, we calculated the total weight of deposited sediment in the two
reservoirs as follows:

)

D (Total weight) — Qs(Tongguan) + Qs(Tanguaaniaolangdi) - Qs(Xiaolangdi)

Next, we made a double-mass plot of the cumulative volume of
deposited sediment and cumulative weight of deposited sediment (Sup-
plementary Fig. S3). This plot shows a strong correlation (R’ = 0.99), sug-
gesting that the annual deposition data obtained using the two approaches
are highly credible. The plot also suggests an overall dry bulk density of
0.93 g cm°. Using this value, we converted the annual volume of deposited
sediment to an annual weight of deposited sediment.

Finally, we adjusted the converted annual weight of deposited sedi-
ments based on the ratio OfD(Weight in Sanmenxia Reservoir) to D(Weight in Xiaolangdi
Reservoir) and the ratio OfD(Total weight) tothe sum OfD(Weighf in Sanmenxia Reservoir)
and D(Wcight in Xiaolangdi Reservoir)> where D(Weight in Sanmenxia Reservoir) is the
weight of deposited sediment in the Sanmenxia Reservoir, Diweight in Xiao-
langdi Reservoir) 1S the weight of deposited sediment in the Xiaolangdi Reservoir,
and D7otar weight) 18 the total weight of deposited sediment in the two
reservoirs calculated using the sediment-budget approach, following the
principle that the sum of the adjusted Dweight in Sanmensia Reservoir) and
D(Weight in Xiaolangdi Reservoir) is equal to D(Total weight)-

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data used in this study are in Microsoft Excel format, which can be
accessed at https://doi.org/10.6084/m9.figshare.28711874.v6".
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