Abstract
The absence of plate tectonics and the young surface age (0.3-1 billion years) of Venus have led to diverse geodynamic models for Venus. The energetics of the Venusian interior drives these models; however, the lack of direct constraints on surface heat flow hampers their quantitative assessment. Here we present a global heat flow map for Venus, as well as estimates of the total heat loss, obtained from an inversion of geophysical data, including lithospheric effective elastic thickness, crustal thickness, and radioactive heat production. Heat flow on Venus is lower and less geographically structured than on Earth, with an average of 31 mW m—2, but with highs associated to rifts systems reaching values typical of active terrestrial areas. The obtained total heat loss is 11-17 TW, similar to estimates of the total radioactive heat production. Therefore, at present, Venus proportionally dissipates much less heat than Earth.
Similar content being viewed by others
Data availability
The digital models for effective elastic thickness, crustal thickness, and heat flow are freely available from https://doi.org/10.5281/zenodo.13138656.
References
Davies, J. H. & Davies, D. R. Earth’s surface heat flux. Solid Earth 1, 5–24 (2010).
Jaupart, C., Labrosse, S., Lucazeau, F. & Mareschal, J.-C. in Treatise on Geophysics Vol 7, 2nd edn. (ed. Bercovici, D.), 223–270 (Elsevier, 2015).
Lucazeau, F. Analysis and mapping of an updated terrestrial heat flow data set. Geochem. Geophysics. Geosyst. 20, 4001–4024 (2019).
Rolf, T. et al. Dynamics and evolution of Venus’ mantle through time. Space Sci. Rev. 218, 70 (2022).
Noack, L., Breuer, D. & Spohn, T. Coupling the atmosphere with interior dynamics: implications for the resurfacing of Venus. Icarus 217, 484–498 (2012).
Moore, W. B., Simon, J. I. & Webb, A. A. G. Heat-pipe planets. Earth Planet. Sci. Lett. 474, 13–19 (2017).
Lourenço, D. L., Rozel, A. B., Ballmer, M. D. & Tackley, P. J. Plutonic-squishy lid: a new global tectonic regime generated by intrusive magmatism on Earth-like planets. Geochem. Geophys. Geosyst. 21, e2019GC008756 (2020).
Turcotte, D. L. An episodic hypothesis for Venusian tectonics. J. Geophys. Res. 98, 17061–17068 (1993).
Uppalapati, S., Rolf, T., Crameri, F. & Werner, S. C. Dynamics of lithospheric overturns and implications for Venus’s surface. J. Geophys. Res. Planets 125, e2019JE006258 (2020).
Lenardic, A. The diversity of tectonic modes and thoughts about transitions between them. Philos. Trans. R. Soc. A 376, 20170416 (2018).
Weller, M. B. & Kiefer, W. S. The physics of changing tectonic regimes: implications for the temporal evolution of mantle convection and the thermal history of Venus. J. Geophys. Res. Planets 125, e2019JE005960 (2020).
Tian, J., Tackley, P. J. & Lourenço, D. L. The tectonics and volcanism of Venus: New modes facilitated by realistic crustal rheology and intrusive magmatism. Icarus 399, 115539 (2023).
Weller, M. B., Evans, A. J., Ibarra, D. E. & Johnson, A. V. Venus’s atmospheric nitrogen explained by ancient plate tectonics. Nat Astron. https://doi.org/10.1038/s41550-023-02102-w (2023).
Marchi, S., Rufu, R. & Korenaga, J. Long-lived volcanic resurfacing of Venus driven by early collisions. Nat. Astron 7, 1180–1187 (2023).
Phillips, R. J. et al. in Venus II (eds. Bougher, S. W., Hunten, D. M. & Phillips, R. J.) 1163–1204 (University of Arizona Press, 1997).
O’Rourke, J. G. & Smrekar, S. E. Signatures of lithospheric flexure and elevated heat flow in stereo topography at coronae on Venus. J. Geophys. Res. Planets 123, 369–389 (2018).
Borrelli, M. E., O’Rourke, J. G., Smrekar, S. E. & Ostberg, C. M. A global survey of lithospheric flexure at steep-sided domical volcanoes on Venus reveals intermediate elastic thicknesses. J. Geophys. Res. Planets 126, e06756 (2021).
Maia, J. S. & Wieczorek, M. A. Lithospheric structure of Venusian crustal plateaus. J. Geophys. Res. Planets 127, e2021JE007004 (2022).
Smrekar, S. E., Ostberg, C. & O’Rourke, J. G. Earth-like lithospheric thickness and heat flow on Venus consistent with active rifting. Nat. Geosci. 18, 105 (2025). Nat. Geosci. 16, 13–18 (2023).
Gilmore, M. S. et al. Style and sequence of extensional features in tessera terrain. Venus. J. Geophys. Res. 103, 16813–16840 (1998).
Ruiz, J. The heat flow during the formation of ribbon terrains on Venus. Planet. Space Sci. 55, 2063–2070 (2007).
Moruzzi, S. A., Kiefer, W. S. & Andrews-Hanna, J. C. Thrust faulting on Venus: Tectonic modeling of the Vedma Dorsa Ridge Belt. Icarus 392, 115378 (2023).
Bjonnes, E., Johnson, B. C. & Evans, A. J. Estimating Venusian thermal conditions using multiring basin morphology. Nat. Astron. 5, 498–502 (2021).
Nimmo, F. & Mackwel, S. Viscous relaxation as a probe of heat flux and crustal plateau composition on Venus. PNAS 120, e2216311120 (2023).
Solomon, S. C. & Head, J. W. Mechanics for lithospheric heat transport on Venus: implications for tectonic style and volcanism. J. Geophys. Res. 87, 9236–9246 (1982).
Turcotte, D. L. How does Venus lose heat?. J. Geophys. Res. 100, 16,931–16,940 (1995).
Brown, C. D. & Grimm, R. E. Recent tectonic and lithospheric thermal evolution of Venus. Icarus 139, 40–48 (1999).
McKinnon, W. B., Zahnle, K. J., Ivanov, B. A. & Melosh, H. J. in Venus I. I. (eds. Bougher, S. W., Hunten, D. M. & Phillips, R. J.), 1047–1086 (University of Arizona Press, 1997).
Jimenez-Diaz, A. et al. Lithospheric structure of Venus from gravity and topography. Icarus 260, 215–231 (2015).
Kirby, J. F. & Swain, C. J. Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform. Comput. Geosci. 37, 1345–1354 (2011).
Anderson, F. S. & Smrekar, S. E. Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res. Planets 111, E08006 (2006).
Audet, P. Toward mapping the effective elastic thickness of planetary lithospheres from a spherical wavelet analysis of gravity and topography. Phys. Earth Planet. Inter. 226, 48–82 (2014).
Simons, M., Solomon, S. C. & Hager, B. H. Localization of gravity and topography: Constraints on the tectonics and mantle dynamics of Venus. Geophys. J. Int. 131, 24–44 (1997).
Pérez-Gussinyé, M., Lowry, A. R., Watts, A. B. & Velicogna, L. On the recovery of effective elastic thickness using spectral methods: Examples from synthetic data and from the Fennoscandian Shield. J. Geophys. Res. 109, B10409 (2004).
Pérez-Gussinyé, M. & Watts, A. B. The long-term strength of Europe and its implications for plate-forming processes. Nature 436, 381–384 (2005).
Kirby, J. F. Estimation of the effective elastic thickness of the lithosphere using inverse spectral methods: the state of the art. Tectonophysics 631, 87–116 (2014).
Wieczorek, M. A. & Simons, F. J. Localized spectral analysis on the sphere. Geophys. J. Int. 162, 655–675 (2005).
McNutt, M. K. Lithospheric flexure and thermal anomalies. J. Geophys. Res. 89, 11180–11194 (1984).
Ruiz, J. et al. The thermal evolution of Mars as constrained by paleo-heat flows. Icarus 215, 508–517 (2011).
Surkov, Y. A. et al. (1984) New data on the composition, structure, and properties of Venus rock obtained by Venera-13 and Venera-14. J. Geophys. Res. 89, B393–B402 (1984).
Vosteen, H. D. & Schellschmidt, R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys. Chem. Earth 28, 499–509 (2003).
Miao, S. Q., Li, H. P. & Chen, G. Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks. J. Therm. Anal. Calorim. 115, 1057–1063 (2014).
Romeo, I. & Turcotte, D. L. Pulsating continents on Venus: An explanation for crustal plateaus and tessera terrains. Earth Planet. Sci. Lett. 276, 85–97 (2008).
Hashimoto, G. L. et al. Felsic highland crust on Venus suggested by galileo near-infrared mapping spectrometer data. J. Geophys. Res. 113, E00B24 (2008).
Surkov, Y. A. et al. Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega-1 and Vega-2. J. Geophys. Res. 92, B537–B540 (1987).
McKenzie, D., Jackson, J. & Priestley, K. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233, 337–349 (2005).
Tesauro, M. et al. 3D strength and gravity anomalies of the European lithosphere. Earth Planet. Sci. Lett. 263, 56–73 (2007).
Grimm, R. E. Recent deformation rates on Venus. J. Geophys. Res. 99, 23163–23171 (1994).
Crumpler, L. S., Head, J. W. & Aubele, J. C. Relation of major volcanic center concentration on Venus to global tectonic patterns. Science 261, 591–595 (1993).
McDonough, W. F. & Sun, S. -s The composition of the Earth. Chem. Geol. 120, 223–253 (1995).
Lyubetskaya, T. & Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Methods and results. J. Geophys. Res. 112, B03211 (2007).
Jackson, M. G. & Jellinek, A. M. Major and trace element composition of the high 3He/4He mantle: Implications for the composition of a nonchonditic Earth. Geochem. Geophys. Geosyst. 14, 2954–2976 (2013).
Javoy, M. & Kaminski, E. Earth’s Uranium and Thorium content and geoneutrinos fluxes based on enstatite chondrites. Earth Planet. Sci. Lett. 407, 1–8 (2014).
Korenaga, J. Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophys. 46, RG2007 (2008).
Adams, A. C., Stegman, D. R., Smrekar, S. E. & Tackley, P. J. Regional-scale lithospheric recycling on Venus via peel-back delamination. J. Geophys. Res. Planets 127, e2022JE007460 (2022).
Gülcher, A. J. P., Gerya, T. V., Montési, L. G. J. & Munch, J. Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nat. Geosci. 13, 547–554 (2020).
Kearey, P., Klepeis, K. & Vine, F. J., 2009. Global Tectonics (Wiley-Blackwell, 2009).
Pérez-Gussinyé, M. et al. Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics. Earth Planet. Sci. Lett. 287, 152–167 (2009).
Hoggard, M. J., Parnell-Turner, R. & White, N. Hotspots and mantle plumes revisited: Towards reconciling the mantle heat transfer discrepancy. Earth Planet. Sci. Lett. 542, 116317 (2020).
Hahn, R. M. & Byrne, P. K. A morphological and spatial analysis of volcanoes on Venus. J. Geophys. Res. Planets 128, e2023JE007753 (2023).
Watts, A. B. & Burov, E. B. Lithospheric strength and its relation to the elastic and seismogenetic layer thickness. Earth Planet. Sci. Lett. 213, 113–131 (2003).
McGovern, P. J. et al. Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution. J. Geophys. Res. 107, 5136 (2002).
Jellinek, A. M. & Jackson, M. G. Connections between the bulk composition, geodynamics and habitability of Earth. Nat. Geosci. 8, 587–593 (2015).
Ruiz, J. Heat flow evolution of the Earth from paleomantle temperatures: Evidence for increasing heat loss since ~2.5 Ga. Phys. Earth Planet. Inter. 269, 165–171 (2017).
McGregor, N. J. et al. (2025). Probing the viscosity of Venus’s mantle from dynamic topography at Baltis Vallis. J. Geophys. Res. 130, e2024JE008581 (2025).
Davaille, A., Smrekar, S. E. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017).
Rappaport, N. J., Konopliv, A. S. & Kucinskas, A. B. An improved 360 degree and order model of Venus topography. Icarus 139, 19–31 (1999).
Konopliv, A. S., Banerdt, W. B. & Sjogren, W. L. Venus gravity: 180th degree and order model. Icarus 139, 3–18 (1999).
Kirby, J. F. Spectral Methods for the Estimation of the Effective Elastic Thickness Of The Lithosphere (Springer International Publishing, 2022).
Forsyth, D. W. Subsurface loading estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res. 90, 12,623–12,632 (1985).
Simons, F. J. & Olhede, S. C. Maximum-likelihood estimation of lithospheric flexural rigidity, initial-loading fraction and load correlation, under isotropy. Geophys. J. Int. 193, 1300–1342 (2013).
Burov, E. B. & Diament, M. The effective elastic thickness (Te) of continental lithosphere: What does it really mean?. J. Geophys. Res. 100, 3905–3927 (1995).
Burov, E. B. Rheology and strength of the lithosphere. Mar. Pet. Geol. 28, 1402–1443 (2011).
Stamps, D. S., Saria, E. & Kreemer, C. A Geodetic Strain Rate Model for the East African Rift System. Sci. Rep. 8, 732 (2018).
Chopra, P. N. & Paterson, M. S. The role of water in the deformation of dunite. J. Geophys. Res. 89, 7861–7876 (1984).
Mackwell, S. J., Zimmerman, M. E. & Kohlstedt, D. L. High temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res. 103, 975–984 (1998).
Ranalli, G. Nonlinear flexure and equivalent mechanical thickness of the lithosphere. Tectonophysics 240, 107–114 (1994).
Beardsmore, G. R. & Cull, J. P. Crustal Heat Flow: A Guide to Measurement and Modelling (Cambridge University Press, 2001).
Van Schmus, W. R. in Global Earth physics: A Handbook of Physical Constants (ed. Ahrens, T. J.), 283–291 (American Geophysical Union, 1995).
Wieczorek, M. A. Gravity and Topography of the Terrestrial Planets (Elsevier, 2015).
Regorda, A. et al. Rifting Venus: Insights from numerical modeling. J. Geophys. Res. Planets 128, e2022JE007588 (2023).
Hess, P. C. & Head, J. W. Derivation of primary magmas and melting of crustal materials on Venus: some preliminary petrogenetic considerations. Earth, Moon, Planets 50/51, 57–80 (1990).
Herzog, S. G., Hess, P. C. & Parmentier, E. M. Constraints on the basalt to eclogite transition and crustal recycling on Venus. Lunar Planet. Sci. Conf. 26, 591 (1995).
Acknowledgements
This work was supported by funding from the Spanish Agencia Estatal de Investigación through the project PID2022-140686NB-I00 (MARVEN). This paper is dedicated to the memory of Blanqui L.R.
Author information
Authors and Affiliations
Contributions
J.R. designed the research, calculated heat production and global heat budget, and wrote the first draft of the main manuscript. P.A., J.F.K., A.J.-D., I.E.-G. and J.R. designed the methodology. P.A. and J.R. conceptualized the model relating heat flow and elastic thickness data. A.J.-D. and J.R.K managed crustal and elastic thickness data and performed the heat flow calculations. J.R., A.J.-D, and I.R. interpreted heat flow results. A.J.-D. and I.E.-G. analyzed temperature profiles and large-scale stability of the crust. J.R. and I.R. managed funding acquisition. All authors discussed the results and contributed to the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Joe Aslin and Carolina Ortiz Guerrero. [A peer review file is available].
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Ruiz, J., Jiménez-Díaz, A., Egea-González, I. et al. Heat loss and internal dynamics of Venus from lithosphere strength. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03278-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-026-03278-5


