Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Heat loss and internal dynamics of Venus from lithosphere strength
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 18 February 2026

Heat loss and internal dynamics of Venus from lithosphere strength

  • Javier Ruiz  ORCID: orcid.org/0000-0002-3937-83801,
  • Alberto Jiménez-Díaz  ORCID: orcid.org/0000-0001-9739-87882,
  • Isabel Egea-González  ORCID: orcid.org/0000-0003-1879-68473,
  • Ignacio Romeo  ORCID: orcid.org/0000-0002-3277-86721,
  • Jon F. Kirby  ORCID: orcid.org/0000-0003-2822-75174 &
  • …
  • Pascal Audet  ORCID: orcid.org/0000-0003-2364-94545 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 308 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Geodynamics
  • Structural geology
  • Tectonics
  • Volcanology

Abstract

The absence of plate tectonics and the young surface age (0.3-1 billion years) of Venus have led to diverse geodynamic models for Venus. The energetics of the Venusian interior drives these models; however, the lack of direct constraints on surface heat flow hampers their quantitative assessment. Here we present a global heat flow map for Venus, as well as estimates of the total heat loss, obtained from an inversion of geophysical data, including lithospheric effective elastic thickness, crustal thickness, and radioactive heat production. Heat flow on Venus is lower and less geographically structured than on Earth, with an average of 31 mW m—2, but with highs associated to rifts systems reaching values typical of active terrestrial areas. The obtained total heat loss is 11-17 TW, similar to estimates of the total radioactive heat production. Therefore, at present, Venus proportionally dissipates much less heat than Earth.

Similar content being viewed by others

Earth-like lithospheric thickness and heat flow on Venus consistent with active rifting

Article 14 November 2022

Long-lived volcanic resurfacing of Venus driven by early collisions

Article 20 July 2023

A dry Venusian interior constrained by atmospheric chemistry

Article Open access 02 December 2024

Data availability

The digital models for effective elastic thickness, crustal thickness, and heat flow are freely available from https://doi.org/10.5281/zenodo.13138656.

References

  1. Davies, J. H. & Davies, D. R. Earth’s surface heat flux. Solid Earth 1, 5–24 (2010).

    Google Scholar 

  2. Jaupart, C., Labrosse, S., Lucazeau, F. & Mareschal, J.-C. in Treatise on Geophysics Vol 7, 2nd edn. (ed. Bercovici, D.), 223–270 (Elsevier, 2015).

  3. Lucazeau, F. Analysis and mapping of an updated terrestrial heat flow data set. Geochem. Geophysics. Geosyst. 20, 4001–4024 (2019).

    Google Scholar 

  4. Rolf, T. et al. Dynamics and evolution of Venus’ mantle through time. Space Sci. Rev. 218, 70 (2022).

    Google Scholar 

  5. Noack, L., Breuer, D. & Spohn, T. Coupling the atmosphere with interior dynamics: implications for the resurfacing of Venus. Icarus 217, 484–498 (2012).

    Google Scholar 

  6. Moore, W. B., Simon, J. I. & Webb, A. A. G. Heat-pipe planets. Earth Planet. Sci. Lett. 474, 13–19 (2017).

    Google Scholar 

  7. Lourenço, D. L., Rozel, A. B., Ballmer, M. D. & Tackley, P. J. Plutonic-squishy lid: a new global tectonic regime generated by intrusive magmatism on Earth-like planets. Geochem. Geophys. Geosyst. 21, e2019GC008756 (2020).

    Google Scholar 

  8. Turcotte, D. L. An episodic hypothesis for Venusian tectonics. J. Geophys. Res. 98, 17061–17068 (1993).

    Google Scholar 

  9. Uppalapati, S., Rolf, T., Crameri, F. & Werner, S. C. Dynamics of lithospheric overturns and implications for Venus’s surface. J. Geophys. Res. Planets 125, e2019JE006258 (2020).

    Google Scholar 

  10. Lenardic, A. The diversity of tectonic modes and thoughts about transitions between them. Philos. Trans. R. Soc. A 376, 20170416 (2018).

    Google Scholar 

  11. Weller, M. B. & Kiefer, W. S. The physics of changing tectonic regimes: implications for the temporal evolution of mantle convection and the thermal history of Venus. J. Geophys. Res. Planets 125, e2019JE005960 (2020).

    Google Scholar 

  12. Tian, J., Tackley, P. J. & Lourenço, D. L. The tectonics and volcanism of Venus: New modes facilitated by realistic crustal rheology and intrusive magmatism. Icarus 399, 115539 (2023).

    Google Scholar 

  13. Weller, M. B., Evans, A. J., Ibarra, D. E. & Johnson, A. V. Venus’s atmospheric nitrogen explained by ancient plate tectonics. Nat Astron. https://doi.org/10.1038/s41550-023-02102-w (2023).

  14. Marchi, S., Rufu, R. & Korenaga, J. Long-lived volcanic resurfacing of Venus driven by early collisions. Nat. Astron 7, 1180–1187 (2023).

    Google Scholar 

  15. Phillips, R. J. et al. in Venus II (eds. Bougher, S. W., Hunten, D. M. & Phillips, R. J.) 1163–1204 (University of Arizona Press, 1997).

  16. O’Rourke, J. G. & Smrekar, S. E. Signatures of lithospheric flexure and elevated heat flow in stereo topography at coronae on Venus. J. Geophys. Res. Planets 123, 369–389 (2018).

    Google Scholar 

  17. Borrelli, M. E., O’Rourke, J. G., Smrekar, S. E. & Ostberg, C. M. A global survey of lithospheric flexure at steep-sided domical volcanoes on Venus reveals intermediate elastic thicknesses. J. Geophys. Res. Planets 126, e06756 (2021).

    Google Scholar 

  18. Maia, J. S. & Wieczorek, M. A. Lithospheric structure of Venusian crustal plateaus. J. Geophys. Res. Planets 127, e2021JE007004 (2022).

    Google Scholar 

  19. Smrekar, S. E., Ostberg, C. & O’Rourke, J. G. Earth-like lithospheric thickness and heat flow on Venus consistent with active rifting. Nat. Geosci. 18, 105 (2025). Nat. Geosci. 16, 13–18 (2023).

    Google Scholar 

  20. Gilmore, M. S. et al. Style and sequence of extensional features in tessera terrain. Venus. J. Geophys. Res. 103, 16813–16840 (1998).

    Google Scholar 

  21. Ruiz, J. The heat flow during the formation of ribbon terrains on Venus. Planet. Space Sci. 55, 2063–2070 (2007).

    Google Scholar 

  22. Moruzzi, S. A., Kiefer, W. S. & Andrews-Hanna, J. C. Thrust faulting on Venus: Tectonic modeling of the Vedma Dorsa Ridge Belt. Icarus 392, 115378 (2023).

    Google Scholar 

  23. Bjonnes, E., Johnson, B. C. & Evans, A. J. Estimating Venusian thermal conditions using multiring basin morphology. Nat. Astron. 5, 498–502 (2021).

    Google Scholar 

  24. Nimmo, F. & Mackwel, S. Viscous relaxation as a probe of heat flux and crustal plateau composition on Venus. PNAS 120, e2216311120 (2023).

    Google Scholar 

  25. Solomon, S. C. & Head, J. W. Mechanics for lithospheric heat transport on Venus: implications for tectonic style and volcanism. J. Geophys. Res. 87, 9236–9246 (1982).

    Google Scholar 

  26. Turcotte, D. L. How does Venus lose heat?. J. Geophys. Res. 100, 16,931–16,940 (1995).

    Google Scholar 

  27. Brown, C. D. & Grimm, R. E. Recent tectonic and lithospheric thermal evolution of Venus. Icarus 139, 40–48 (1999).

    Google Scholar 

  28. McKinnon, W. B., Zahnle, K. J., Ivanov, B. A. & Melosh, H. J. in Venus I. I. (eds. Bougher, S. W., Hunten, D. M. & Phillips, R. J.), 1047–1086 (University of Arizona Press, 1997).

  29. Jimenez-Diaz, A. et al. Lithospheric structure of Venus from gravity and topography. Icarus 260, 215–231 (2015).

    Google Scholar 

  30. Kirby, J. F. & Swain, C. J. Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform. Comput. Geosci. 37, 1345–1354 (2011).

    Google Scholar 

  31. Anderson, F. S. & Smrekar, S. E. Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res. Planets 111, E08006 (2006).

    Google Scholar 

  32. Audet, P. Toward mapping the effective elastic thickness of planetary lithospheres from a spherical wavelet analysis of gravity and topography. Phys. Earth Planet. Inter. 226, 48–82 (2014).

    Google Scholar 

  33. Simons, M., Solomon, S. C. & Hager, B. H. Localization of gravity and topography: Constraints on the tectonics and mantle dynamics of Venus. Geophys. J. Int. 131, 24–44 (1997).

    Google Scholar 

  34. Pérez-Gussinyé, M., Lowry, A. R., Watts, A. B. & Velicogna, L. On the recovery of effective elastic thickness using spectral methods: Examples from synthetic data and from the Fennoscandian Shield. J. Geophys. Res. 109, B10409 (2004).

    Google Scholar 

  35. Pérez-Gussinyé, M. & Watts, A. B. The long-term strength of Europe and its implications for plate-forming processes. Nature 436, 381–384 (2005).

    Google Scholar 

  36. Kirby, J. F. Estimation of the effective elastic thickness of the lithosphere using inverse spectral methods: the state of the art. Tectonophysics 631, 87–116 (2014).

    Google Scholar 

  37. Wieczorek, M. A. & Simons, F. J. Localized spectral analysis on the sphere. Geophys. J. Int. 162, 655–675 (2005).

    Google Scholar 

  38. McNutt, M. K. Lithospheric flexure and thermal anomalies. J. Geophys. Res. 89, 11180–11194 (1984).

    Google Scholar 

  39. Ruiz, J. et al. The thermal evolution of Mars as constrained by paleo-heat flows. Icarus 215, 508–517 (2011).

    Google Scholar 

  40. Surkov, Y. A. et al. (1984) New data on the composition, structure, and properties of Venus rock obtained by Venera-13 and Venera-14. J. Geophys. Res. 89, B393–B402 (1984).

    Google Scholar 

  41. Vosteen, H. D. & Schellschmidt, R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys. Chem. Earth 28, 499–509 (2003).

    Google Scholar 

  42. Miao, S. Q., Li, H. P. & Chen, G. Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks. J. Therm. Anal. Calorim. 115, 1057–1063 (2014).

    Google Scholar 

  43. Romeo, I. & Turcotte, D. L. Pulsating continents on Venus: An explanation for crustal plateaus and tessera terrains. Earth Planet. Sci. Lett. 276, 85–97 (2008).

    Google Scholar 

  44. Hashimoto, G. L. et al. Felsic highland crust on Venus suggested by galileo near-infrared mapping spectrometer data. J. Geophys. Res. 113, E00B24 (2008).

    Google Scholar 

  45. Surkov, Y. A. et al. Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega-1 and Vega-2. J. Geophys. Res. 92, B537–B540 (1987).

    Google Scholar 

  46. McKenzie, D., Jackson, J. & Priestley, K. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233, 337–349 (2005).

    Google Scholar 

  47. Tesauro, M. et al. 3D strength and gravity anomalies of the European lithosphere. Earth Planet. Sci. Lett. 263, 56–73 (2007).

    Google Scholar 

  48. Grimm, R. E. Recent deformation rates on Venus. J. Geophys. Res. 99, 23163–23171 (1994).

    Google Scholar 

  49. Crumpler, L. S., Head, J. W. & Aubele, J. C. Relation of major volcanic center concentration on Venus to global tectonic patterns. Science 261, 591–595 (1993).

    Google Scholar 

  50. McDonough, W. F. & Sun, S. -s The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Google Scholar 

  51. Lyubetskaya, T. & Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Methods and results. J. Geophys. Res. 112, B03211 (2007).

    Google Scholar 

  52. Jackson, M. G. & Jellinek, A. M. Major and trace element composition of the high 3He/4He mantle: Implications for the composition of a nonchonditic Earth. Geochem. Geophys. Geosyst. 14, 2954–2976 (2013).

    Google Scholar 

  53. Javoy, M. & Kaminski, E. Earth’s Uranium and Thorium content and geoneutrinos fluxes based on enstatite chondrites. Earth Planet. Sci. Lett. 407, 1–8 (2014).

    Google Scholar 

  54. Korenaga, J. Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophys. 46, RG2007 (2008).

    Google Scholar 

  55. Adams, A. C., Stegman, D. R., Smrekar, S. E. & Tackley, P. J. Regional-scale lithospheric recycling on Venus via peel-back delamination. J. Geophys. Res. Planets 127, e2022JE007460 (2022).

  56. Gülcher, A. J. P., Gerya, T. V., Montési, L. G. J. & Munch, J. Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nat. Geosci. 13, 547–554 (2020).

    Google Scholar 

  57. Kearey, P., Klepeis, K. & Vine, F. J., 2009. Global Tectonics (Wiley-Blackwell, 2009).

  58. Pérez-Gussinyé, M. et al. Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics. Earth Planet. Sci. Lett. 287, 152–167 (2009).

  59. Hoggard, M. J., Parnell-Turner, R. & White, N. Hotspots and mantle plumes revisited: Towards reconciling the mantle heat transfer discrepancy. Earth Planet. Sci. Lett. 542, 116317 (2020).

    Google Scholar 

  60. Hahn, R. M. & Byrne, P. K. A morphological and spatial analysis of volcanoes on Venus. J. Geophys. Res. Planets 128, e2023JE007753 (2023).

  61. Watts, A. B. & Burov, E. B. Lithospheric strength and its relation to the elastic and seismogenetic layer thickness. Earth Planet. Sci. Lett. 213, 113–131 (2003).

    Google Scholar 

  62. McGovern, P. J. et al. Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution. J. Geophys. Res. 107, 5136 (2002).

    Google Scholar 

  63. Jellinek, A. M. & Jackson, M. G. Connections between the bulk composition, geodynamics and habitability of Earth. Nat. Geosci. 8, 587–593 (2015).

    Google Scholar 

  64. Ruiz, J. Heat flow evolution of the Earth from paleomantle temperatures: Evidence for increasing heat loss since ~2.5 Ga. Phys. Earth Planet. Inter. 269, 165–171 (2017).

    Google Scholar 

  65. McGregor, N. J. et al. (2025). Probing the viscosity of Venus’s mantle from dynamic topography at Baltis Vallis. J. Geophys. Res. 130, e2024JE008581 (2025).

    Google Scholar 

  66. Davaille, A., Smrekar, S. E. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017).

    Google Scholar 

  67. Rappaport, N. J., Konopliv, A. S. & Kucinskas, A. B. An improved 360 degree and order model of Venus topography. Icarus 139, 19–31 (1999).

    Google Scholar 

  68. Konopliv, A. S., Banerdt, W. B. & Sjogren, W. L. Venus gravity: 180th degree and order model. Icarus 139, 3–18 (1999).

    Google Scholar 

  69. Kirby, J. F. Spectral Methods for the Estimation of the Effective Elastic Thickness Of The Lithosphere (Springer International Publishing, 2022).

  70. Forsyth, D. W. Subsurface loading estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res. 90, 12,623–12,632 (1985).

    Google Scholar 

  71. Simons, F. J. & Olhede, S. C. Maximum-likelihood estimation of lithospheric flexural rigidity, initial-loading fraction and load correlation, under isotropy. Geophys. J. Int. 193, 1300–1342 (2013).

    Google Scholar 

  72. Burov, E. B. & Diament, M. The effective elastic thickness (Te) of continental lithosphere: What does it really mean?. J. Geophys. Res. 100, 3905–3927 (1995).

    Google Scholar 

  73. Burov, E. B. Rheology and strength of the lithosphere. Mar. Pet. Geol. 28, 1402–1443 (2011).

    Google Scholar 

  74. Stamps, D. S., Saria, E. & Kreemer, C. A Geodetic Strain Rate Model for the East African Rift System. Sci. Rep. 8, 732 (2018).

    Google Scholar 

  75. Chopra, P. N. & Paterson, M. S. The role of water in the deformation of dunite. J. Geophys. Res. 89, 7861–7876 (1984).

    Google Scholar 

  76. Mackwell, S. J., Zimmerman, M. E. & Kohlstedt, D. L. High temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res. 103, 975–984 (1998).

    Google Scholar 

  77. Ranalli, G. Nonlinear flexure and equivalent mechanical thickness of the lithosphere. Tectonophysics 240, 107–114 (1994).

    Google Scholar 

  78. Beardsmore, G. R. & Cull, J. P. Crustal Heat Flow: A Guide to Measurement and Modelling (Cambridge University Press, 2001).

  79. Van Schmus, W. R. in Global Earth physics: A Handbook of Physical Constants (ed. Ahrens, T. J.), 283–291 (American Geophysical Union, 1995).

  80. Wieczorek, M. A. Gravity and Topography of the Terrestrial Planets (Elsevier, 2015).

  81. Regorda, A. et al. Rifting Venus: Insights from numerical modeling. J. Geophys. Res. Planets 128, e2022JE007588 (2023).

    Google Scholar 

  82. Hess, P. C. & Head, J. W. Derivation of primary magmas and melting of crustal materials on Venus: some preliminary petrogenetic considerations. Earth, Moon, Planets 50/51, 57–80 (1990).

    Google Scholar 

  83. Herzog, S. G., Hess, P. C. & Parmentier, E. M. Constraints on the basalt to eclogite transition and crustal recycling on Venus. Lunar Planet. Sci. Conf. 26, 591 (1995).

    Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Spanish Agencia Estatal de Investigación through the project PID2022-140686NB-I00 (MARVEN). This paper is dedicated to the memory of Blanqui L.R.

Author information

Authors and Affiliations

  1. Departamento de Geodinámica, Estratigrafía y Paleontología; Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain

    Javier Ruiz & Ignacio Romeo

  2. Departamento de Biología y Geología, Física y Química Inorgánica. ESCET, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain

    Alberto Jiménez-Díaz

  3. Departamento de Física Aplicada. Escuela Superior de Ingeniería. Universidad de Cádiz, Puerto Real, Cádiz, Spain

    Isabel Egea-González

  4. Geodesy & Earth Observation, DTU Space, Technical University of Denmark, Kongens, Lyngby, Denmark

    Jon F. Kirby

  5. Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Ontario, Canada

    Pascal Audet

Authors
  1. Javier Ruiz
    View author publications

    Search author on:PubMed Google Scholar

  2. Alberto Jiménez-Díaz
    View author publications

    Search author on:PubMed Google Scholar

  3. Isabel Egea-González
    View author publications

    Search author on:PubMed Google Scholar

  4. Ignacio Romeo
    View author publications

    Search author on:PubMed Google Scholar

  5. Jon F. Kirby
    View author publications

    Search author on:PubMed Google Scholar

  6. Pascal Audet
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.R. designed the research, calculated heat production and global heat budget, and wrote the first draft of the main manuscript. P.A., J.F.K., A.J.-D., I.E.-G. and J.R. designed the methodology. P.A. and J.R. conceptualized the model relating heat flow and elastic thickness data. A.J.-D. and J.R.K managed crustal and elastic thickness data and performed the heat flow calculations. J.R., A.J.-D, and I.R. interpreted heat flow results. A.J.-D. and I.E.-G. analyzed temperature profiles and large-scale stability of the crust. J.R. and I.R. managed funding acquisition. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Javier Ruiz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Joe Aslin and Carolina Ortiz Guerrero. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, J., Jiménez-Díaz, A., Egea-González, I. et al. Heat loss and internal dynamics of Venus from lithosphere strength. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03278-5

Download citation

  • Received: 14 August 2024

  • Accepted: 29 January 2026

  • Published: 18 February 2026

  • DOI: https://doi.org/10.1038/s43247-026-03278-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing