Abstract
As a major ocean circulation system, the Atlantic Meridional Overturning Circulation (AMOC) may approach a critical transition under anthropogenic forcing, yet how large-scale AMOC changes imprint on regional circulation pathways remains incompletely understood. While persistent changes in overturning are expected to be meridionally coherent, their horizontal expression may be highly non-uniform. Here, we use 22,000-year-long transient deglacial climate simulations to examine how latitudinally coherent AMOC variations are redistributed across the upper Atlantic circulation. By separating externally forced, long-term AMOC changes from internally generated, short-term variability, we show that the former are disproportionately reflected along the full meridional extent of the South Atlantic western boundary current system. In contrast, North Atlantic counterparts relate primarily to higher-frequency, unforced AMOC variability. Our findings highlight South Atlantic western boundary transports as outstanding fingerprints of past externally forced AMOC changes, thereby outlining their particular sensitivity to a predicted, anthropogenically forced weakening of the AMOC.
Similar content being viewed by others
Data availability
The TraCE and C-iTraCE datasets used in this study can be directly accessed through https://trace-21k.nelson.wisc.edu/Data.html/https://gdex.ucar.edu/datasets/d651050/ and https://sites.google.com/colorado.edu/citrace/https://zenodo.org/records/15510016, respectively.
Code availability
The data analyses and figures presented in this article were conducted using MATLAB_R2021b. Codes are available upon request by contacting the corresponding author.
References
Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26, 80–97 (2013).
Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional overturning circulation: a review. Rev. Geophys. 54, 5–63 (2016).
Johnson, H. L., Cessi, P., Marshall, D. P., Schloesser, F. & Spall, M. A. Recent contributions of theory to our understanding of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans 124, 5376–5399 (2019).
Bingham, R. J., Hughes, C. W., Roussenov, V. & Williams, R. G. Meridional coherence of the North Atlantic meridional overturning circulation. Geophys. Res. Lett. 34, L23606 (2007).
Biastoch, A., Böning, C. W., Getzlaff, J., Molines, J.-M. & Madec, G. Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Clim. 21, 6599–6615 (2008).
Pillar, H. R., Heimbach, P., Johnson, H. L. & Marshall, D. P. Dynamical attribution of recent variability in Atlantic overturning. J. Clim. 29, 3339–3352 (2016).
Gu, S., Liu, Z. & Wu, L. Time scale dependence of the meridional coherence of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans 125, e2019JC015838 (2020).
Buckley, M. W., Lozier, M. S., Desbruyères, D. & Evans, D. G. Buoyancy forcing and the subpolar Atlantic meridional overturning circulation. Philos. Trans. R. Soc. A 381, 20220181 (2023).
Huang, R. X., Cane, M. A., Naik, N. & Goodman, P. Global adjustment of the thermocline in response to deepwater formation. Geophys. Res. Lett. 27, 759–762 (2000).
Johnson, H. L. & Marshall, D. P. A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr. 32, 1121–1132 (2002).
Marshall, D. P. & Johnson, H. L. Propagation of meridional circulation anomalies along western and eastern boundaries. J. Phys. Oceanogr. 43, 2699–2717 (2013).
Cunningham, S. A. & Marsh, R. Observing and modeling changes in the Atlantic MOC. Wiley Interdiscip. Rev. Clim. Change 1, 180–191 (2010).
Perez, R. C. et al. Measuring the Atlantic meridional overturning circulation. Mar. Technol. Soc. J. 49, 167–177 (2015).
Han, L. Mechanism on the short-term variability of the Atlantic meridional overturning circulation in the subtropical and tropical regions. J. Phys. Oceanogr. 53, 2231–2244 (2023).
Han, L. Exploring the AMOC connectivity between the RAPID and OSNAP lines with a model-based data set. Geophys. Res. Lett. 50, e2023GL105225 (2023).
Fraser, N. J., Fox, A. D. & Cunningham, S. A. Impact of Ekman pumping on the meridional coherence of the AMOC. Geophys. Res. Lett. 52, e2024GL108846 (2025).
Wunsch, C. & Heimbach, P. Two decades of the Atlantic meridional overturning circulation: anatomy, variations, extremes, prediction, and overcoming its limitations. J. Clim. 26, 7167–7186 (2013).
Larson, S. M., Buckley, M. W. & Clement, A. C. Extracting the buoyancy-driven Atlantic meridional overturning circulation. J. Clim. 33, 4697–4714 (2020).
Frajka-Williams, E., Foukal, N. & Danabasoglu, G. Should AMOC observations continue: how and why? Philos. Trans. R. Soc. A 381, 20220195 (2023).
Clark, P. U. et al. Global climate evolution during the last deglaciation. Proc. Natl. Acad. Sci. USA 109, E1134–E1142 (2012).
McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).
Lynch-Stieglitz, J. The Atlantic meridional overturning circulation and abrupt climate change. Annu. Rev. Mar. Sci. 9, 83–104 (2017).
Zhu, C., Liu, Z., Zhang, S. & Wu, L. Global oceanic overturning circulation forced by the competition between greenhouse gases and continental ice sheets during the last deglaciation. J. Clim. 34, 7555–7570 (2021).
Liu, Z. Evolution of Atlantic Meridional overturning circulation since the last glaciation: model simulations and relevance to present and future. Philos. Trans. R. Soc. A 381, 20220190 (2023).
Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310–314 (2009).
Ng, H. C. et al. Coherent deglacial changes in western Atlantic Ocean circulation. Nat. Commun. 9, 2947 (2018).
Zhang, R. Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett. 37 (2010).
Zou, S., Lozier, M. S. & Buckley, M. How is meridional coherence maintained in the lower limb of the Atlantic meridional overturning circulation? Geophys. Res. Lett. 46, 244–252 (2019).
Zou, S., Lozier, M. S. & Xu, X. Latitudinal structure of the meridional overturning circulation variability on interannual to decadal time scales in the North Atlantic Ocean. J. Clim. 33, 3845–3862 (2020).
Delworth, T. L. & Zeng, F. The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic meridional overturning circulation. J. Clim. 29, 941–962 (2016).
Jackson, L. & Wood, R. Fingerprints for early detection of changes in the AMOC. J. Clim. 33, 7027–7044 (2020).
McMonigal, K. et al. Fingerprints of AMOC decline are sensitive to external and mechanistic forcing. Geophys. Res. Lett. 52, e2025GL116307 (2025).
Jackson, L. C. et al. The evolution of the North Atlantic meridional overturning circulation since 1980. Nat. Rev. Earth Environ. 3, 241–254 (2022).
Trenberth, K. E., Zhang, Y., Fasullo, J. T. & Cheng, L. Observation-based estimates of global and basin ocean meridional heat transport time series. J. Clim. 32, 4567–4583 (2019).
Stramma, L., Ikeda, Y. & Peterson, R. G. Geostrophic transport in the Brazil Current region north of 20 S. Deep Sea Res. Part A. Oceanogr. Res. Pap. 37, 1875–1886 (1990).
Tuchen, F. P., Brandt, P., Lübbecke, J. F. & Hummels, R. Transports and pathways of the tropical AMOC return flow from Argo data and shipboard velocity measurements. J. Geophys. Res. Oceans 127, e2021JC018115 (2022).
Stramma, L. & Schott, F. The mean flow field of the tropical Atlantic Ocean. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 279–303 (1999).
Hazeleger, W. & Drijfhout, S. Subtropical cells and meridional overturning circulation pathways in the tropical Atlantic. J. Geophys. Res. Oceans 111, C03013 (2006).
Zhang, D., Msadek, R., McPhaden, M. J. & Delworth, T. Multidecadal variability of the North Brazil Current and its connection to the Atlantic meridional overturning circulation. J.Geophys. Res. Oceans 116, C04007 (2011).
Cabré, A., Pelegrí, J. & Vallès-Casanova, I. Subtropical-tropical transfer in the South Atlantic Ocean. J. Geophys. Res. Oceans 124, 4820–4837 (2019).
Fu, Y., Brandt, P., Tuchen, F. P., Lübbecke, J. F. & Wang, C. Representation of the mean Atlantic subtropical cells in CMIP6 models. J. Geophys. Res. Oceans 127, e2021JC018191 (2022).
Rodrigues, R. R., Rothstein, L. M. & Wimbush, M. Seasonal variability of the South Equatorial Current bifurcation in the Atlantic Ocean: A numerical study. J. Phys. Oceanogr. 37, 16–30 (2007).
Marcello, F., Wainer, I. & Rodrigues, R. R. South Atlantic Subtropical Gyre late twentieth century changes. J. Geophys. Res. Oceans 123, 5194–5209 (2018).
Marcello, F., Wainer, I., Gent, P. R., Otto-Bliesner, B. L. & Brady, E. C. South Atlantic surface boundary current system during the last millennium in the CESM-LME: the medieval climate anomaly and little ice age. Geosciences 9, 299 (2019).
Marcello, F., Tonelli, M., Ferrero, B. & Wainer, I. Projected Atlantic overturning slow-down is to be compensated by a strengthened South Atlantic subtropical gyre. Commun. Earth Environ. 4, 92 (2023).
Bower, A. et al. Lagrangian views of the pathways of the Atlantic Meridional Overturning Circulation. J. Geophys. Res. Oceans 124, 5313–5335 (2019).
Srokosz, M. A., Holliday, N. P. & Bryden, H. L. Atlantic overturning: new observations and challenges. Philos. Trans. R. Soc. 381, 20220196 (2023).
Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. CMIP6 models predict significant 21st century decline of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 47, e2019GL086075 (2020).
Sverdrup, H. U. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA 33, 318–326 (1947).
Rühs, S., Getzlaff, K., Durgadoo, J. V., Biastoch, A. & Böning, C. W. On the suitability of North Brazil Current transport estimates for monitoring basin-scale AMOC changes. Geophys. Res. Lett. 42, 8072–8080 (2015).
Asbjørnsen, H. & Årthun, M. Deconstructing future AMOC decline at 26.5 n. Geophys. Res. Lett. 50, e2023GL103515 (2023).
He, F. & Clark, P. U. Freshwater forcing of the Atlantic Meridional Overturning Circulation revisited. Nat. Clim. Change 12, 449–454 (2022).
McCarthy, G., Joyce, T. M. & Josey, S. A. Gulf Stream variability in the context of quasi-decadal and multidecadal Atlantic climate variability. Geophys. Res. Lett. 45, 11–257 (2018).
Zhang, R. et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys. 57, 316–375 (2019).
Jansen, M. F., Nadeau, L.-P. & Merlis, T. M. Transient versus equilibrium response of the ocean’s overturning circulation to warming. J. Clim. 31, 5147–5163 (2018).
Clark, P. U., Pisias, N. G., Stocker, T. F. & Weaver, A. J. The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869 (2002).
Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).
Alley, R. B. et al. Abrupt climate change. Science 299, 2005–2010 (2003).
Joos, F. & Spahni, R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl. Acad. Sci. USA 105, 1425–1430 (2008).
Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).
Canadell, J. G. et al. Intergovernmental Panel on Climate Change (IPCC). Global carbon and other biogeochemical cycles and feedbacks. In Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 673–816 (Cambridge University Press, 2023).
Pöppelmeier, F., Jeltsch-Thömmes, A., Lippold, J., Joos, F. & Stocker, T. F. Multi-proxy constraints on Atlantic circulation dynamics since the last ice age. Nat. Geosci. 16, 349–356 (2023).
Nagai, R. H. et al. Speed changes of the continental slope currents in the SW Atlantic in the last 45,000 years. Quat. Sci. Rev. 349, 109143 (2025).
Nace, T. E. et al. The role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 415, 3–13 (2014).
Chiessi, C. M.et al. Thermal evolution of the western South Atlantic and the adjacent continent during Termination 1. Climate 11, 915–929 (2015).
Meier, K. J. et al. Role of the tropical Atlantic for the interhemispheric heat transport during the last deglaciation. Paleoceanogr. Paleoclimatol. 36, e2020PA004107 (2021).
Nürnberg, D. et al. Western boundary current in relation to Atlantic Subtropical Gyre dynamics during abrupt glacial climate fluctuations. Glob. Planet. Change 201, 103497 (2021).
Santos, T. P. et al. A data-model perspective on the Brazilian margin surface warming from the Last Glacial Maximum to the Holocene. Quat. Sci. Rev. 286, 107557 (2022).
Nascimento, R. A. et al. Long-term variability of the western tropical Atlantic sea surface temperature driven by greenhouse gases and AMOC. Quat. Sci. Rev. 322, 108431 (2023).
Pedro, J. B. et al. Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling. Quat. Sci. Rev. 192, 27–46 (2018).
Bryden, H. L., King, B. A. & McCarthy, G. D. South Atlantic overturning circulation at 24 S. J. Mar. Res. 69, 39–56 (2011).
Pontes, G. M. & Menviel, L. Weakening of the Atlantic Meridional Overturning Circulation driven by subarctic freshening since the mid-twentieth century. Nat. Geosci. 17, 1291–1298 (2024).
Rühs, S., Schwarzkopf, F. U., Speich, S. & Biastoch, A. Cold vs. warm water route–sources for the upper limb of the Atlantic Meridional Overturning Circulation revisited in a high-resolution ocean model. Ocean Sci. 15, 489–512 (2019).
He, F. Simulating transient climate evolution of the last deglaciation with CCSM3. PhD thesis, University of Wisconsin–Madison (2011).
Gu, S. et al. Assessing the ability of zonal δ18O contrast in benthic foraminifera to reconstruct deglacial evolution of Atlantic Meridional Overturning Circulation. Paleoceanogr. Paleoclimatol. 34, 800–812 (2019).
Collins, W. D. et al. The Community Climate System Model version 3 (ccsm3). J. Clim. 19, 2122–2143 (2006).
Otto-Bliesner, B. L. et al. Last Glacial Maximum and Holocene climate in CCSM3. J. Clim. 19, 2526–2544 (2006).
Danabasoglu, G. et al. The CCSM4 ocean component. J. Clim. 25, 1361–1389 (2012).
Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).
Liu, Z. et al. Younger Dryas cooling and the Greenland climate response to CO2. Proc. Natl. Acad. Sci. USA 109, 11101–11104 (2012).
Otto-Bliesner, B. L. et al. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 1223–1227 (2014).
Liu, Z. et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature 515, 550–553 (2014).
Wanner, H. et al. Mid-to Late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791–1828 (2008).
Gerber, L. et al. Low variability of the Atlantic Meridional Overturning Circulation throughout the Holocene. Nat. Commun. 16, 6748 (2025).
Zhang, R. & Thomas, M. Horizontal circulation across density surfaces contributes substantially to the long-term mean northern Atlantic Meridional Overturning Circulation. Commun. Earth Environ. 2, 112 (2021).
Nayak, M. S., Bonan, D. B., Newsom, E. R. & Thompson, A. F. Controls on the strength and structure of the Atlantic meridional overturning circulation in climate models. Geophys. Res. Lett. 51, e2024GL109055 (2024).
Johns, W. E. et al. Towards two decades of Atlantic Ocean mass and heat transports at 26.5 N. Philos. Trans. R. Soc. A 381, 20220188 (2023).
Yeager, S. & Danabasoglu, G. The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J. Clim. 27, 3222–3247 (2014).
Acknowledgements
This study was supported by the São Paulo Research Foundation (FAPESP), Brasil, grants #2021/04984-1 and #2020/14356-5. We thank Gabriel Pontes for insightful discussions that helped conceptualize Fig. 4a–d.
Author information
Authors and Affiliations
Contributions
F.M. conceived and designed the study, performed the analyses, prepared the figures, and wrote the manuscript. I.W. supervised the project and, together with M.M.M. and M.C.B., contributed to the discussion of results, provided critical feedback that helped refine the research, and contributed to securing financial support for the project leading to this publication.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth & Environment thanks Neil Fraser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Kyung-Sook Yun, Alireza Bahadori and Carolina Ortiz Guerrero. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Marcello, F., Wainer, I., de Mahiques, M.M. et al. Forced changes in Atlantic overturning are distinctly fingerprinted by South Atlantic western boundary transports. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03282-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-026-03282-9


