Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Forced changes in Atlantic overturning are distinctly fingerprinted by South Atlantic western boundary transports
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

Forced changes in Atlantic overturning are distinctly fingerprinted by South Atlantic western boundary transports

  • Fernanda Marcello  ORCID: orcid.org/0000-0003-3084-707X1,
  • Ilana Wainer  ORCID: orcid.org/0000-0003-3784-623X1,
  • Michel Michaelovitch de Mahiques  ORCID: orcid.org/0000-0002-5249-56101,2 &
  • …
  • Márcia Caruso Bícego1 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 709 Accesses

  • 5 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate and Earth system modelling
  • Physical oceanography

Abstract

As a major ocean circulation system, the Atlantic Meridional Overturning Circulation (AMOC) may approach a critical transition under anthropogenic forcing, yet how large-scale AMOC changes imprint on regional circulation pathways remains incompletely understood. While persistent changes in overturning are expected to be meridionally coherent, their horizontal expression may be highly non-uniform. Here, we use 22,000-year-long transient deglacial climate simulations to examine how latitudinally coherent AMOC variations are redistributed across the upper Atlantic circulation. By separating externally forced, long-term AMOC changes from internally generated, short-term variability, we show that the former are disproportionately reflected along the full meridional extent of the South Atlantic western boundary current system. In contrast, North Atlantic counterparts relate primarily to higher-frequency, unforced AMOC variability. Our findings highlight South Atlantic western boundary transports as outstanding fingerprints of past externally forced AMOC changes, thereby outlining their particular sensitivity to a predicted, anthropogenically forced weakening of the AMOC.

Similar content being viewed by others

Likely accelerated weakening of Atlantic overturning circulation emerges in optimal salinity fingerprint

Article Open access 04 March 2023

A pause in the weakening of the Atlantic meridional overturning circulation since the early 2010s

Article Open access 06 December 2024

Continued Atlantic overturning circulation even under climate extremes

Article Open access 26 February 2025

Data availability

The TraCE and C-iTraCE datasets used in this study can be directly accessed through https://trace-21k.nelson.wisc.edu/Data.html/https://gdex.ucar.edu/datasets/d651050/ and https://sites.google.com/colorado.edu/citrace/https://zenodo.org/records/15510016, respectively.

Code availability

The data analyses and figures presented in this article were conducted using MATLAB_R2021b. Codes are available upon request by contacting the corresponding author.

References

  1. Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26, 80–97 (2013).

    Google Scholar 

  2. Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional overturning circulation: a review. Rev. Geophys. 54, 5–63 (2016).

    Google Scholar 

  3. Johnson, H. L., Cessi, P., Marshall, D. P., Schloesser, F. & Spall, M. A. Recent contributions of theory to our understanding of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans 124, 5376–5399 (2019).

    Google Scholar 

  4. Bingham, R. J., Hughes, C. W., Roussenov, V. & Williams, R. G. Meridional coherence of the North Atlantic meridional overturning circulation. Geophys. Res. Lett. 34, L23606 (2007).

  5. Biastoch, A., Böning, C. W., Getzlaff, J., Molines, J.-M. & Madec, G. Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Clim. 21, 6599–6615 (2008).

    Google Scholar 

  6. Pillar, H. R., Heimbach, P., Johnson, H. L. & Marshall, D. P. Dynamical attribution of recent variability in Atlantic overturning. J. Clim. 29, 3339–3352 (2016).

    Google Scholar 

  7. Gu, S., Liu, Z. & Wu, L. Time scale dependence of the meridional coherence of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans 125, e2019JC015838 (2020).

    Google Scholar 

  8. Buckley, M. W., Lozier, M. S., Desbruyères, D. & Evans, D. G. Buoyancy forcing and the subpolar Atlantic meridional overturning circulation. Philos. Trans. R. Soc. A 381, 20220181 (2023).

    Google Scholar 

  9. Huang, R. X., Cane, M. A., Naik, N. & Goodman, P. Global adjustment of the thermocline in response to deepwater formation. Geophys. Res. Lett. 27, 759–762 (2000).

    Google Scholar 

  10. Johnson, H. L. & Marshall, D. P. A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr. 32, 1121–1132 (2002).

    Google Scholar 

  11. Marshall, D. P. & Johnson, H. L. Propagation of meridional circulation anomalies along western and eastern boundaries. J. Phys. Oceanogr. 43, 2699–2717 (2013).

    Google Scholar 

  12. Cunningham, S. A. & Marsh, R. Observing and modeling changes in the Atlantic MOC. Wiley Interdiscip. Rev. Clim. Change 1, 180–191 (2010).

    Google Scholar 

  13. Perez, R. C. et al. Measuring the Atlantic meridional overturning circulation. Mar. Technol. Soc. J. 49, 167–177 (2015).

    Google Scholar 

  14. Han, L. Mechanism on the short-term variability of the Atlantic meridional overturning circulation in the subtropical and tropical regions. J. Phys. Oceanogr. 53, 2231–2244 (2023).

    Google Scholar 

  15. Han, L. Exploring the AMOC connectivity between the RAPID and OSNAP lines with a model-based data set. Geophys. Res. Lett. 50, e2023GL105225 (2023).

    Google Scholar 

  16. Fraser, N. J., Fox, A. D. & Cunningham, S. A. Impact of Ekman pumping on the meridional coherence of the AMOC. Geophys. Res. Lett. 52, e2024GL108846 (2025).

    Google Scholar 

  17. Wunsch, C. & Heimbach, P. Two decades of the Atlantic meridional overturning circulation: anatomy, variations, extremes, prediction, and overcoming its limitations. J. Clim. 26, 7167–7186 (2013).

    Google Scholar 

  18. Larson, S. M., Buckley, M. W. & Clement, A. C. Extracting the buoyancy-driven Atlantic meridional overturning circulation. J. Clim. 33, 4697–4714 (2020).

    Google Scholar 

  19. Frajka-Williams, E., Foukal, N. & Danabasoglu, G. Should AMOC observations continue: how and why? Philos. Trans. R. Soc. A 381, 20220195 (2023).

    Google Scholar 

  20. Clark, P. U. et al. Global climate evolution during the last deglaciation. Proc. Natl. Acad. Sci. USA 109, E1134–E1142 (2012).

    Google Scholar 

  21. McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Google Scholar 

  22. Lynch-Stieglitz, J. The Atlantic meridional overturning circulation and abrupt climate change. Annu. Rev. Mar. Sci. 9, 83–104 (2017).

    Google Scholar 

  23. Zhu, C., Liu, Z., Zhang, S. & Wu, L. Global oceanic overturning circulation forced by the competition between greenhouse gases and continental ice sheets during the last deglaciation. J. Clim. 34, 7555–7570 (2021).

    Google Scholar 

  24. Liu, Z. Evolution of Atlantic Meridional overturning circulation since the last glaciation: model simulations and relevance to present and future. Philos. Trans. R. Soc. A 381, 20220190 (2023).

    Google Scholar 

  25. Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310–314 (2009).

    Google Scholar 

  26. Ng, H. C. et al. Coherent deglacial changes in western Atlantic Ocean circulation. Nat. Commun. 9, 2947 (2018).

    Google Scholar 

  27. Zhang, R. Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett. 37 (2010).

  28. Zou, S., Lozier, M. S. & Buckley, M. How is meridional coherence maintained in the lower limb of the Atlantic meridional overturning circulation? Geophys. Res. Lett. 46, 244–252 (2019).

    Google Scholar 

  29. Zou, S., Lozier, M. S. & Xu, X. Latitudinal structure of the meridional overturning circulation variability on interannual to decadal time scales in the North Atlantic Ocean. J. Clim. 33, 3845–3862 (2020).

    Google Scholar 

  30. Delworth, T. L. & Zeng, F. The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic meridional overturning circulation. J. Clim. 29, 941–962 (2016).

    Google Scholar 

  31. Jackson, L. & Wood, R. Fingerprints for early detection of changes in the AMOC. J. Clim. 33, 7027–7044 (2020).

    Google Scholar 

  32. McMonigal, K. et al. Fingerprints of AMOC decline are sensitive to external and mechanistic forcing. Geophys. Res. Lett. 52, e2025GL116307 (2025).

    Google Scholar 

  33. Jackson, L. C. et al. The evolution of the North Atlantic meridional overturning circulation since 1980. Nat. Rev. Earth Environ. 3, 241–254 (2022).

    Google Scholar 

  34. Trenberth, K. E., Zhang, Y., Fasullo, J. T. & Cheng, L. Observation-based estimates of global and basin ocean meridional heat transport time series. J. Clim. 32, 4567–4583 (2019).

    Google Scholar 

  35. Stramma, L., Ikeda, Y. & Peterson, R. G. Geostrophic transport in the Brazil Current region north of 20 S. Deep Sea Res. Part A. Oceanogr. Res. Pap. 37, 1875–1886 (1990).

    Google Scholar 

  36. Tuchen, F. P., Brandt, P., Lübbecke, J. F. & Hummels, R. Transports and pathways of the tropical AMOC return flow from Argo data and shipboard velocity measurements. J. Geophys. Res. Oceans 127, e2021JC018115 (2022).

    Google Scholar 

  37. Stramma, L. & Schott, F. The mean flow field of the tropical Atlantic Ocean. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 279–303 (1999).

    Google Scholar 

  38. Hazeleger, W. & Drijfhout, S. Subtropical cells and meridional overturning circulation pathways in the tropical Atlantic. J. Geophys. Res. Oceans 111, C03013 (2006).

  39. Zhang, D., Msadek, R., McPhaden, M. J. & Delworth, T. Multidecadal variability of the North Brazil Current and its connection to the Atlantic meridional overturning circulation. J.Geophys. Res. Oceans 116, C04007 (2011).

  40. Cabré, A., Pelegrí, J. & Vallès-Casanova, I. Subtropical-tropical transfer in the South Atlantic Ocean. J. Geophys. Res. Oceans 124, 4820–4837 (2019).

    Google Scholar 

  41. Fu, Y., Brandt, P., Tuchen, F. P., Lübbecke, J. F. & Wang, C. Representation of the mean Atlantic subtropical cells in CMIP6 models. J. Geophys. Res. Oceans 127, e2021JC018191 (2022).

    Google Scholar 

  42. Rodrigues, R. R., Rothstein, L. M. & Wimbush, M. Seasonal variability of the South Equatorial Current bifurcation in the Atlantic Ocean: A numerical study. J. Phys. Oceanogr. 37, 16–30 (2007).

    Google Scholar 

  43. Marcello, F., Wainer, I. & Rodrigues, R. R. South Atlantic Subtropical Gyre late twentieth century changes. J. Geophys. Res. Oceans 123, 5194–5209 (2018).

    Google Scholar 

  44. Marcello, F., Wainer, I., Gent, P. R., Otto-Bliesner, B. L. & Brady, E. C. South Atlantic surface boundary current system during the last millennium in the CESM-LME: the medieval climate anomaly and little ice age. Geosciences 9, 299 (2019).

    Google Scholar 

  45. Marcello, F., Tonelli, M., Ferrero, B. & Wainer, I. Projected Atlantic overturning slow-down is to be compensated by a strengthened South Atlantic subtropical gyre. Commun. Earth Environ. 4, 92 (2023).

    Google Scholar 

  46. Bower, A. et al. Lagrangian views of the pathways of the Atlantic Meridional Overturning Circulation. J. Geophys. Res. Oceans 124, 5313–5335 (2019).

    Google Scholar 

  47. Srokosz, M. A., Holliday, N. P. & Bryden, H. L. Atlantic overturning: new observations and challenges. Philos. Trans. R. Soc. 381, 20220196 (2023).

  48. Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. CMIP6 models predict significant 21st century decline of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 47, e2019GL086075 (2020).

    Google Scholar 

  49. Sverdrup, H. U. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA 33, 318–326 (1947).

    Google Scholar 

  50. Rühs, S., Getzlaff, K., Durgadoo, J. V., Biastoch, A. & Böning, C. W. On the suitability of North Brazil Current transport estimates for monitoring basin-scale AMOC changes. Geophys. Res. Lett. 42, 8072–8080 (2015).

    Google Scholar 

  51. Asbjørnsen, H. & Årthun, M. Deconstructing future AMOC decline at 26.5 n. Geophys. Res. Lett. 50, e2023GL103515 (2023).

    Google Scholar 

  52. He, F. & Clark, P. U. Freshwater forcing of the Atlantic Meridional Overturning Circulation revisited. Nat. Clim. Change 12, 449–454 (2022).

    Google Scholar 

  53. McCarthy, G., Joyce, T. M. & Josey, S. A. Gulf Stream variability in the context of quasi-decadal and multidecadal Atlantic climate variability. Geophys. Res. Lett. 45, 11–257 (2018).

    Google Scholar 

  54. Zhang, R. et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys. 57, 316–375 (2019).

    Google Scholar 

  55. Jansen, M. F., Nadeau, L.-P. & Merlis, T. M. Transient versus equilibrium response of the ocean’s overturning circulation to warming. J. Clim. 31, 5147–5163 (2018).

    Google Scholar 

  56. Clark, P. U., Pisias, N. G., Stocker, T. F. & Weaver, A. J. The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869 (2002).

    Google Scholar 

  57. Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).

    Google Scholar 

  58. Alley, R. B. et al. Abrupt climate change. Science 299, 2005–2010 (2003).

    Google Scholar 

  59. Joos, F. & Spahni, R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl. Acad. Sci. USA 105, 1425–1430 (2008).

    Google Scholar 

  60. Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).

    Google Scholar 

  61. Canadell, J. G. et al. Intergovernmental Panel on Climate Change (IPCC). Global carbon and other biogeochemical cycles and feedbacks. In Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 673–816 (Cambridge University Press, 2023).

  62. Pöppelmeier, F., Jeltsch-Thömmes, A., Lippold, J., Joos, F. & Stocker, T. F. Multi-proxy constraints on Atlantic circulation dynamics since the last ice age. Nat. Geosci. 16, 349–356 (2023).

    Google Scholar 

  63. Nagai, R. H. et al. Speed changes of the continental slope currents in the SW Atlantic in the last 45,000 years. Quat. Sci. Rev. 349, 109143 (2025).

    Google Scholar 

  64. Nace, T. E. et al. The role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 415, 3–13 (2014).

    Google Scholar 

  65. Chiessi, C. M.et al. Thermal evolution of the western South Atlantic and the adjacent continent during Termination 1. Climate 11, 915–929 (2015).

    Google Scholar 

  66. Meier, K. J. et al. Role of the tropical Atlantic for the interhemispheric heat transport during the last deglaciation. Paleoceanogr. Paleoclimatol. 36, e2020PA004107 (2021).

    Google Scholar 

  67. Nürnberg, D. et al. Western boundary current in relation to Atlantic Subtropical Gyre dynamics during abrupt glacial climate fluctuations. Glob. Planet. Change 201, 103497 (2021).

    Google Scholar 

  68. Santos, T. P. et al. A data-model perspective on the Brazilian margin surface warming from the Last Glacial Maximum to the Holocene. Quat. Sci. Rev. 286, 107557 (2022).

    Google Scholar 

  69. Nascimento, R. A. et al. Long-term variability of the western tropical Atlantic sea surface temperature driven by greenhouse gases and AMOC. Quat. Sci. Rev. 322, 108431 (2023).

    Google Scholar 

  70. Pedro, J. B. et al. Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling. Quat. Sci. Rev. 192, 27–46 (2018).

    Google Scholar 

  71. Bryden, H. L., King, B. A. & McCarthy, G. D. South Atlantic overturning circulation at 24 S. J. Mar. Res. 69, 39–56 (2011).

    Google Scholar 

  72. Pontes, G. M. & Menviel, L. Weakening of the Atlantic Meridional Overturning Circulation driven by subarctic freshening since the mid-twentieth century. Nat. Geosci. 17, 1291–1298 (2024).

  73. Rühs, S., Schwarzkopf, F. U., Speich, S. & Biastoch, A. Cold vs. warm water route–sources for the upper limb of the Atlantic Meridional Overturning Circulation revisited in a high-resolution ocean model. Ocean Sci. 15, 489–512 (2019).

    Google Scholar 

  74. He, F. Simulating transient climate evolution of the last deglaciation with CCSM3. PhD thesis, University of Wisconsin–Madison (2011).

  75. Gu, S. et al. Assessing the ability of zonal δ18O contrast in benthic foraminifera to reconstruct deglacial evolution of Atlantic Meridional Overturning Circulation. Paleoceanogr. Paleoclimatol. 34, 800–812 (2019).

    Google Scholar 

  76. Collins, W. D. et al. The Community Climate System Model version 3 (ccsm3). J. Clim. 19, 2122–2143 (2006).

    Google Scholar 

  77. Otto-Bliesner, B. L. et al. Last Glacial Maximum and Holocene climate in CCSM3. J. Clim. 19, 2526–2544 (2006).

    Google Scholar 

  78. Danabasoglu, G. et al. The CCSM4 ocean component. J. Clim. 25, 1361–1389 (2012).

    Google Scholar 

  79. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).

    Google Scholar 

  80. Liu, Z. et al. Younger Dryas cooling and the Greenland climate response to CO2. Proc. Natl. Acad. Sci. USA 109, 11101–11104 (2012).

    Google Scholar 

  81. Otto-Bliesner, B. L. et al. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 1223–1227 (2014).

    Google Scholar 

  82. Liu, Z. et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature 515, 550–553 (2014).

    Google Scholar 

  83. Wanner, H. et al. Mid-to Late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791–1828 (2008).

    Google Scholar 

  84. Gerber, L. et al. Low variability of the Atlantic Meridional Overturning Circulation throughout the Holocene. Nat. Commun. 16, 6748 (2025).

    Google Scholar 

  85. Zhang, R. & Thomas, M. Horizontal circulation across density surfaces contributes substantially to the long-term mean northern Atlantic Meridional Overturning Circulation. Commun. Earth Environ. 2, 112 (2021).

    Google Scholar 

  86. Nayak, M. S., Bonan, D. B., Newsom, E. R. & Thompson, A. F. Controls on the strength and structure of the Atlantic meridional overturning circulation in climate models. Geophys. Res. Lett. 51, e2024GL109055 (2024).

    Google Scholar 

  87. Johns, W. E. et al. Towards two decades of Atlantic Ocean mass and heat transports at 26.5 N. Philos. Trans. R. Soc. A 381, 20220188 (2023).

    Google Scholar 

  88. Yeager, S. & Danabasoglu, G. The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J. Clim. 27, 3222–3247 (2014).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the São Paulo Research Foundation (FAPESP), Brasil, grants #2021/04984-1 and #2020/14356-5. We thank Gabriel Pontes for insightful discussions that helped conceptualize Fig. 4a–d.

Author information

Authors and Affiliations

  1. Oceanographic Institute of the University of São Paulo, São Paulo, SP, Brazil

    Fernanda Marcello, Ilana Wainer, Michel Michaelovitch de Mahiques & Márcia Caruso Bícego

  2. Institute of Energy and Environment of the University of São Paulo, São Paulo, SP, Brazil

    Michel Michaelovitch de Mahiques

Authors
  1. Fernanda Marcello
    View author publications

    Search author on:PubMed Google Scholar

  2. Ilana Wainer
    View author publications

    Search author on:PubMed Google Scholar

  3. Michel Michaelovitch de Mahiques
    View author publications

    Search author on:PubMed Google Scholar

  4. Márcia Caruso Bícego
    View author publications

    Search author on:PubMed Google Scholar

Contributions

F.M. conceived and designed the study, performed the analyses, prepared the figures, and wrote the manuscript. I.W. supervised the project and, together with M.M.M. and M.C.B., contributed to the discussion of results, provided critical feedback that helped refine the research, and contributed to securing financial support for the project leading to this publication.

Corresponding author

Correspondence to Fernanda Marcello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth & Environment thanks Neil Fraser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Kyung-Sook Yun, Alireza Bahadori and Carolina Ortiz Guerrero. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplemental Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcello, F., Wainer, I., de Mahiques, M.M. et al. Forced changes in Atlantic overturning are distinctly fingerprinted by South Atlantic western boundary transports. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03282-9

Download citation

  • Received: 18 December 2024

  • Accepted: 29 January 2026

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s43247-026-03282-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing