Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Nitrogen deposition reduces grassland phyllosphere microbial diversity and network stability along a precipitation gradient
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 18 February 2026

Nitrogen deposition reduces grassland phyllosphere microbial diversity and network stability along a precipitation gradient

  • Changchun Zhai  ORCID: orcid.org/0000-0002-7668-271X1,
  • Yunfeng Yang2,
  • Lingjie Kong1,
  • Qing Zeng3,
  • Anhui Ge3,
  • Baomin Yao3,
  • Jiayin Feng1,
  • Jingyi Ru1,
  • Jian Song  ORCID: orcid.org/0000-0001-9957-65331,
  • Zhenxing Zhou4,
  • Fuxing Guo1,
  • Xueli Qiu1,
  • Limei Zhang  ORCID: orcid.org/0000-0002-7383-84753,5 &
  • …
  • Shiqiang Wan  ORCID: orcid.org/0000-0003-0631-12321 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 461 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate-change impacts
  • Grassland ecology
  • Microbial ecology

Abstract

Phyllosphere microbiomes are crucial for maintaining plant growth and health, but their responses to global change remain largely unclear. Based on a precipitation gradient and N addition experiment in a semiarid grassland on the Mongolian Plateau, this study explored phyllosphere microbial diversity and stability. Across the two host plant species (Artemisia frigida, Leymus chinensis), decreased precipitation altered phyllosphere microbial community composition only. Increased precipitation reduced bacterial diversity and affected bacterial and fungal community composition. However, N addition significantly decreased bacterial, fungal, and protistan diversity, altered their community composition, and weakened phyllosphere microbiome network complexity and stability in both host plant species, suggesting that N addition had a stronger influence on phyllosphere microbial communities than changing precipitation. Our findings of strong sensitivity of phyllosphere microbial diversity and stability to N enrichment provide mechanistic understanding of changes in phyllosphere microbiomes and consequent plant growth and productivity under future global change scenarios.

Similar content being viewed by others

Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome

Article Open access 10 March 2021

Trajectories and thresholds of multitrophic diversities and multiple functions in response to nitrogen enrichment

Article Open access 10 December 2025

Pathways to engineering the phyllosphere microbiome for sustainable crop production

Article 05 December 2022

Data availability

All raw sequencing data have been submitted to the NCBI Sequence Read Archive (SRA) database under the accession numbers SRP473181 (16S rRNA, https://www.ncbi.nlm.nih.gov/sra/?term=SRP473181), SRP473188 (ITS, https://www.ncbi.nlm.nih.gov/sra/?term=SRP473188), and SRP473194 (18S rRNA, https://www.ncbi.nlm.nih.gov/sra/?term=SRP473194).

References

  1. Sohrabi, R., Paasch, B. C., Liber, J. A. & He, S. Y. Phyllosphere microbiome. Annu. Rev. Plant Biol. 74, 539–568 (2023).

    Google Scholar 

  2. Sasse, J., Martinoia, E. & Northen, T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23, 25–41 (2018).

    Google Scholar 

  3. Labouyrie, M., Ballabio, C., Romero, F., Panagos, P. & Jones, A. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).

    Google Scholar 

  4. Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).

    Google Scholar 

  5. Liu, X., Matsumoto, H., Lv, T., Zhan, C. & Fang, H. et al. Phyllosphere microbiome induces host metabolic defence against rice false-smut disease. Nat. Microbiol. 8, 1419–1433 (2023).

    Google Scholar 

  6. Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).

    Google Scholar 

  7. Kembel, S. W. K. T., Arnold, H. K., Hubbell, S. P., Wright, S. J. & Green, J. L. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. USA. 111, 13715–13720 (2014).

    Google Scholar 

  8. Bashir, I., War, A. F., Rafiq, I., Reshi, Z. A. & Rashid, I. et al. Phyllosphere microbiome: diversity and functions. Microbiol. Res. 254, 126888 (2022).

    Google Scholar 

  9. Herpell, J. B., Alickovic, A., Diallo, B., Schindler, F. & Weckwerth, W. Phyllosphere symbiont promotes plant growth through ACC deaminase production. ISME J. 17, 1267–1277 (2023).

    Google Scholar 

  10. Zhan, C., Matsumoto, H., Liu, Y. & Wang, M. Pathways to engineering the phyllosphere microbiome for sustainable crop production. Nat. Food. 3, 997–1004 (2022).

    Google Scholar 

  11. Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).

    Google Scholar 

  12. Rodriguez, P. A., Rothballer, M., Chowdhury, S. P., Nussbaumer, T. & Gutjahr, C. et al. Systems biology of plant-microbiome interactions. Mol. Plant. 12, 804–821 (2019).

    Google Scholar 

  13. Martin, F. M., Uroz, S. & Barker, D. G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356, eaad4501 (2017).

    Google Scholar 

  14. Debray, R. et al. Water stress and disruption of mycorrhizas induce parallel shifts in phyllosphere microbiome composition. New Phytol. 234, 2018–2031 (2022).

    Google Scholar 

  15. Zhu, Y. G. et al. Impacts of global change on the phyllosphere microbiome. New Phytol. 234, 1977–1986 (2022).

    Google Scholar 

  16. Bai, L. et al. Long-term climate warming and nitrogen deposition increase leaf epiphytic and endophytic bacterial diversity. J. Integr. Plant Biol. 67, 2430–2445 (2025).

    Google Scholar 

  17. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren Van Themaat, E. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).

    Google Scholar 

  18. Remus-Emsermann, M. N. P. & Schlechter, R. O. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol. 218, 1327–1333 (2018).

    Google Scholar 

  19. Yao, H. et al. Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome 7, 57 (2019).

    Google Scholar 

  20. Zhu, Y. et al. Harnessing biological nitrogen fixation in plant leaves. Trends Plant Sci. 28, 1391–1405 (2023).

    Google Scholar 

  21. Stone, B. W. G. & Jackson, C. R. Canopy position is a stronger determinant of bacterial community composition and diversity than environmental disturbance in the phyllosphere. FEMS Microbiol. Ecol. 95, fiz032 (2019).

    Google Scholar 

  22. Chen, Q. L. et al. Precipitation increases the abundance of fungal plant pathogens in Eucalyptus phyllosphere. Environ. Microbiol. 23, 7688–7700 (2021).

    Google Scholar 

  23. Gao, C. et al. Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nat. Commun. 11, 34 (2020).

    Google Scholar 

  24. Bechtold, E. K., Wanek, W., Nuesslein, B., DaCosta, M. & Nüsslein, K. Successional changes in bacterial phyllosphere communities are plant-host species dependent. Appl. Environ. Microbiol. 90, e01750–23 (2024).

    Google Scholar 

  25. Bechtold, E. K. et al. Phyllosphere community assembly and response to drought stress on common tropical and temperate forage grasses. Appl. Environ. Microbiol. 87, e0089521 (2021).

    Google Scholar 

  26. Peñuelas, J., Rico, L., Ogaya, R., Jump, A. S. & Terradas, J. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol. 14, 565–575 (2012).

    Google Scholar 

  27. Rico, L., Ogaya, R., Terradas, J., Peñuelas, J. & Papen, H. Community structures of N2-fixing bacteria associated with the phyllosphere of a holm oak forest and their response to drought. Plant Biol. 16, 586–593 (2014).

    Google Scholar 

  28. Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004).

    Google Scholar 

  29. Yang, Y. et al. Negative effects of multiple global change factors on soil microbial diversity. Soil Biol. Biochem. 156, 108229 (2021).

    Google Scholar 

  30. Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).

    Google Scholar 

  31. Li, J. et al. Plant identity shapes phyllosphere microbiome structure and abundance of genes involved in nutrient cycling. Sci. Total Environ. 865, 161245 (2023).

    Google Scholar 

  32. Huang, Q. et al. Low-nitrogen input enriches Massilia bacteria in the phyllosphere to improve blast resistance in rice. New Phytol. 248, 3151–3167 (2025).

    Google Scholar 

  33. Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).

    Google Scholar 

  34. Wagg, C., Dudenhöffer, J. H., Widmer, F. & van der Heijden, M. G. A. Linking diversity, synchrony and stability in soil microbial communities. Funct. Ecol. 32, 1280–1292 (2018).

    Google Scholar 

  35. Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    Google Scholar 

  36. Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).

    Google Scholar 

  37. Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).

    Google Scholar 

  38. Yuan, M. M. et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Chang. 11, 343–348 (2021).

    Google Scholar 

  39. Jiao, S., Chen, W. & Wei, G. Core microbiota drive functional stability of soil microbiome in reforestation ecosystems. Glob. Change Biol. 28, 1038–1047 (2022).

    Google Scholar 

  40. Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).

    Google Scholar 

  41. Wilson, M. & Lindow, S. E. Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl. Environ. Microbiol. 60, 4468–4477 (1994).

    Google Scholar 

  42. Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).

    Google Scholar 

  43. Wagner, M. R., Roberts, J. H., Balint-Kurti, P. & Holland, J. B. Heterosis of leaf and rhizosphere microbiomes in field-grown maize. New Phytol. 228, 1055–1069 (2020).

    Google Scholar 

  44. Müller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50, 211–234 (2016).

    Google Scholar 

  45. Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4, 27 (2016).

    Google Scholar 

  46. Delaux, P. & Schornack, S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science 371, eaba6605 (2021).

    Google Scholar 

  47. Shakir, S., Zaidi, S. S., de Vries, F. T. & Mansoor, S. Plant genetic networks shaping phyllosphere microbial community. Trends Genet. 37, 306–316 (2021).

    Google Scholar 

  48. Liu, H., Brettell, L. E. & Singh, B. Linking the phyllosphere microbiome to plant health. Trends Plant Sci. 25, 841–844 (2020).

    Google Scholar 

  49. Salazar, K. S., Palanisamy, V., Dass, S. C., Castillo, A. & Joshi, V. Phyllosphere bacterial communities in Spinach are influenced by soil nitrogen availability. Phytobiomes J. 9, 231–239 (2025).

    Google Scholar 

  50. Niu, S. et al. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Glob. Change Biol. 16, 144–155 (2010).

    Google Scholar 

  51. Ikeda, S. et al. Characterization of leaf blade- and leaf sheath-associated bacterial communities and assessment of their responses to environmental changes in CO₂, temperature, and nitrogen levels under field conditions. Microbes Environ. 30, 51–62 (2015).

    Google Scholar 

  52. Xiong, C. et al. Host selection shapes crop microbiome assembly and network complexity. New Phytol. 229, 1091–1104 (2020).

    Google Scholar 

  53. Yan, K. et al. Leaf surface microtopography shaping the bacterial community in the phyllosphere: evidence from 11 tree species. Microbiol. Res. 254, 126897 (2022).

    Google Scholar 

  54. Darlison, J. et al. Leaf mineral content governs microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). Sci. Total Environ. 675, 501–512 (2019).

    Google Scholar 

  55. Liu, W. et al. Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. Glob. Change Biol. 27, 3939–3950 (2021).

    Google Scholar 

  56. Sun, A. et al. Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. Soil Biol. Biochem. 153, 108113 (2021).

    Google Scholar 

  57. Luo, S. et al. Grassland degradation-induced declines in soil fungal complexity reduce fungal community stability and ecosystem multifunctionality. Soil Biol. Biochem. 176, 108865 (2023).

    Google Scholar 

  58. Zhai, C. et al. Soil microbial diversity and network complexity drive the ecosystem multifunctionality of temperate grasslands under changing precipitation. Sci. Total Environ. 906, 167217 (2024).

    Google Scholar 

  59. Hartmann, M. & Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 4, 4–18 (2023).

    Google Scholar 

  60. Rudgers, J. A. et al. Climate disruption of plant-microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).

    Google Scholar 

  61. Dynarski, K. A. & Houlton, B. Z. Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytol. 217, 1050–1061 (2018).

    Google Scholar 

  62. Zhao, L. et al. Biodiversity stabilizes plant communities through statistical-averaging effects rather than compensatory dynamics. Nat. Commun. 13, 7804 (2022).

    Google Scholar 

  63. Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).

    Google Scholar 

  64. Xun, W. et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 9, 35–35 (2021).

    Google Scholar 

  65. Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

    Google Scholar 

  66. Kong, L. et al. Nitrogen addition does not alter symmetric responses of soil respiration to changing precipitation in a semi-arid grassland. Sci. Total Environ. 921, 171170 (2024).

    Google Scholar 

  67. Wu, K. et al. Isolation of a methyl-reducing methanogen outside the Euryarchaeota. Nature 632, 1124–1130 (2024).

    Google Scholar 

  68. Liu, S. et al. Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biol. Biochem. 144, 107763 (2020).

    Google Scholar 

  69. Zhao, Z. et al. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome 7, 33 (2019).

    Google Scholar 

  70. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Google Scholar 

  71. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7, 335–336 (2010).

    Google Scholar 

  72. Xiong, C. et al. Rare taxa maintain the stability of crop mycobiomes and ecosystem functions. Environ. Microbiol. 23, 1907–1924 (2020).

    Google Scholar 

  73. Liu, S. et al. Litter and soil biodiversity jointly drive ecosystem functions. Glob. Change Biol. 29, 6276–6285 (2023).

    Google Scholar 

  74. Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    Google Scholar 

  75. Liaw, A. & Wiener, M. Classification and regression by RandomForest. R. News 2, 18–22 (2002).

    Google Scholar 

  76. Oksanen, J. et al. The vegan package. Commun. Ecol. Package 10, 631–637 (2007).

    Google Scholar 

  77. Baselga, A. & Orme, C. D. L. Betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Google Scholar 

  78. Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl. Acad. Sci. USA. 116, 16892–16898 (2019).

    Google Scholar 

  79. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Google Scholar 

  80. Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. In Proc. International AAAI Conference on Web and Social Media, 361–362 (ICWSM, 2009).

  81. van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).

    Google Scholar 

  82. Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).

    Google Scholar 

Download references

Acknowledgements

We would like to give our thanks to Jiawei Hou, Xueke Wang, Xiaojing Yue, Haidao Wang, Xuedan Lei, Yali Li, and Chao Yang for their assistance in the field experimentation. We also wish to thank Chao Xiong and Bing Han for their help in laboratory work. This work was financially supported by the National Natural Science Foundation of China (31830012) and Natural Science Foundation of Hebei Province (C2022201042).

Author information

Authors and Affiliations

  1. School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China

    Changchun Zhai, Lingjie Kong, Jiayin Feng, Jingyi Ru, Jian Song, Fuxing Guo, Xueli Qiu & Shiqiang Wan

  2. Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China

    Yunfeng Yang

  3. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China

    Qing Zeng, Anhui Ge, Baomin Yao & Limei Zhang

  4. School of Life Sciences and Health Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan, China

    Zhenxing Zhou

  5. University of Chinese Academy of Sciences, Beijing, China

    Limei Zhang

Authors
  1. Changchun Zhai
    View author publications

    Search author on:PubMed Google Scholar

  2. Yunfeng Yang
    View author publications

    Search author on:PubMed Google Scholar

  3. Lingjie Kong
    View author publications

    Search author on:PubMed Google Scholar

  4. Qing Zeng
    View author publications

    Search author on:PubMed Google Scholar

  5. Anhui Ge
    View author publications

    Search author on:PubMed Google Scholar

  6. Baomin Yao
    View author publications

    Search author on:PubMed Google Scholar

  7. Jiayin Feng
    View author publications

    Search author on:PubMed Google Scholar

  8. Jingyi Ru
    View author publications

    Search author on:PubMed Google Scholar

  9. Jian Song
    View author publications

    Search author on:PubMed Google Scholar

  10. Zhenxing Zhou
    View author publications

    Search author on:PubMed Google Scholar

  11. Fuxing Guo
    View author publications

    Search author on:PubMed Google Scholar

  12. Xueli Qiu
    View author publications

    Search author on:PubMed Google Scholar

  13. Limei Zhang
    View author publications

    Search author on:PubMed Google Scholar

  14. Shiqiang Wan
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.Q.W., L.M.Z., and C.C.Z. conceived and designed the study; L.J.K., J.Y.F., J.Y.R., J.S., Z.X.Z., and X.L.Q. conducted field sampling and experiments; C.C.Z., Q.Z., A.H.G., and B.M.Y. performed the lab experiments; C.C.Z. conducted data analyses; C.C.Z. and JYF interpreted the data; C.C.Z., S.Q.W., L.M.Z., and Y.F.Y. wrote the manuscript with input from all coauthors. The author(s) read and approved the final manuscript.

Corresponding authors

Correspondence to Limei Zhang or Shiqiang Wan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Mengjie Wang. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, C., Yang, Y., Kong, L. et al. Nitrogen deposition reduces grassland phyllosphere microbial diversity and network stability along a precipitation gradient. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03306-4

Download citation

  • Received: 05 April 2025

  • Accepted: 06 February 2026

  • Published: 18 February 2026

  • DOI: https://doi.org/10.1038/s43247-026-03306-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing