Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Electrolyte-gated transistors for enhanced performance bioelectronics

Abstract

Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EGTs for enhanced bioelectronics.
Fig. 2: Typical organic materials used for EGTs.
Fig. 3: Typical inorganic semiconductors used for EGTs.
Fig. 4: Fabrication of EGTs.
Fig. 5: Integration of bio-layers in EGTs.
Fig. 6: Representative electrical characteristics of EGTs.
Fig. 7: Three-dimensional cell monitoring, ultra-sensitive biosensors and in vivo electrophysiology using EGTs.
Fig. 8: Synaptics and neuromorphics with EGTs.

Similar content being viewed by others

References

  1. Willner, I. & Katz, E. (eds) Bioelectronics: From Theory to Applications (Wiley, 2005).

  2. Hess, L. H., Seifert, M. & Garrido, J. A. Graphene transistors for bioelectronics. Proc. IEEE 101, 1780–1792 (2013).

    Google Scholar 

  3. Zhou, W., Dai, X. & Lieber, C. M. Advances in nanowire bioelectronics. Rep. Prog. Phys. 80, 16701 (2016).

    Google Scholar 

  4. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018). This review provides an overview of OECTs.

    ADS  Google Scholar 

  5. Wang, N., Yang, A., Fu, Y., Li, Y. & Yan, F. Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 52, 277–287 (2019).

    Google Scholar 

  6. Kim, S. H. et al. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 25, 1822–1846 (2013).

    Google Scholar 

  7. Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater. 29, 1–48 (2017).

    Google Scholar 

  8. Jiang, J., Wan, Q., Sun, J. & Lu, A. Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature. Appl. Phys. Lett. 95, 3–6 (2009).

    Google Scholar 

  9. Chae, M. S., Park, J. H., Son, H. W., Hwang, K. S. & Kim, T. G. IGZO-based electrolyte-gated field-effect transistor for in situ biological sensing platform. Sensors Actuators. B Chem. 262, 876–883 (2018).

    Google Scholar 

  10. Woo Son, H., Park, J. H., Chae, M.-S., Kim, B.-H. & Kim, T. G. Bilayer indium gallium zinc oxide electrolyte-gated field-effect transistor for biosensor platform with high reliability. Sens. Actuators B Chem. 312, 127955 (2020).

    Google Scholar 

  11. Zhu, J. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018).

    Google Scholar 

  12. Song, J., Chu, Y., Liu, Z. & Xu, H. Fabrication of solution-processed ambipolar electrolyte-gated field effect transistors from a MoS2–polymer hybrid for multifunctional optoelectronics. J. Mater. Chem. C. 9, 1701–1708 (2021).

    Google Scholar 

  13. Wan, C. J. et al. Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems. Adv. Mater. 28, 3557–3563 (2016).

    Google Scholar 

  14. Furlan de Oliveira, R. et al. Liquid-gated transistors based on reduced graphene oxide for flexible and wearable electronics. Adv. Funct. Mater. 29, 1905375 (2019).

    Google Scholar 

  15. Joshi, S. et al. Ambient processed, water-stable, aqueous-gated sub 1 V n-type carbon nanotube field effect transistor. Sci. Rep. 8, 11386 (2018).

    ADS  Google Scholar 

  16. Cho, K. G. et al. Printable carbon nanotube-based elastic conductors for fully-printed sub-1 V stretchable electrolyte-gated transistors and inverters. J. Mater. Chem. C. 8, 3639–3645 (2020).

    Google Scholar 

  17. Lu, S. & Franklin, A. D. Printed carbon nanotube thin-film transistors: progress on printable materials and the path to applications. Nanoscale 12, 23371–23390 (2020).

    Google Scholar 

  18. Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008). This article describes printable ion-gel gated polymer transistors.

    ADS  Google Scholar 

  19. Leonardi, F. et al. Electrolyte-gated organic field-effect transistor based on a solution sheared organic semiconductor blend. Adv. Mater. 28, 10311–10316 (2016).

    Google Scholar 

  20. Zeglio, E. & Inganäs, O. Active materials for organic electrochemical transistors. Adv. Mater. 30, 1800941 (2018).

    Google Scholar 

  21. Proctor, C. M., Rivnay, J. & Malliaras, G. G. Understanding volumetric capacitance in conducting polymers. J. Polym. Sci. B Polym. Phys. 54, 1433–1436 (2016).

    ADS  Google Scholar 

  22. Volkov, A. V. et al. Understanding the capacitance of PEDOT:PSS. Adv. Funct. Mater. 27, 1700329 (2017).

    Google Scholar 

  23. Tybrandt, K., Zozoulenko, I. V. & Berggren, M. Chemical potential–electric double layer coupling in conjugated polymer–polyelectrolyte blends. Sci. Adv. https://doi.org/10.1126/sciadv.aao3659 (2017).

    Article  Google Scholar 

  24. Romele, P., Ghittorelli, M., Kovács-Vajna, Z. M. & Torricelli, F. Ion buffering and interface charge enable high performance electronics with organic electrochemical transistors. Nat. Commun. 10, 3044 (2019).

    ADS  Google Scholar 

  25. Moser, M., Ponder, J. F. Jr, Wadsworth, A., Giovannitti, A. & McCulloch, I. Materials in organic electrochemical transistors for bioelectronic applications: past, present, and future. Adv. Funct. Mater. 29, 1807033 (2019).

    Google Scholar 

  26. Borges-González, J., Kousseff, C. J. & Nielsen, C. B. Organic semiconductors for biological sensing. J. Mater. Chem. C. 7, 1111–1130 (2019).

    Google Scholar 

  27. Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020). This article presents an insightful review of organic mixed ionic–electronic conductors.

    ADS  Google Scholar 

  28. Inal, S., Malliaras, G. G. & Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 8, 1767 (2017).

    ADS  Google Scholar 

  29. Sun, H., Gerasimov, J., Berggren, M. & Fabiano, S. n-Type organic electrochemical transistors: materials and challenges. J. Mater. Chem. C. 6, 11778–11784 (2018).

    Google Scholar 

  30. Giovannitti, A. et al. n-Type organic electrochemical transistors with stability in water. Nat. Commun. 7, 13066 (2016).

    ADS  Google Scholar 

  31. Lill, A. T. et al. Organic electrochemical transistors based on the conjugated polyelectrolyte PCPDTBT-SO 3K (CPE-K). Adv. Mater. 32, 1908120 (2020).

    Google Scholar 

  32. Parr, Z. S. et al. Semiconducting small molecules as active materials for p-type accumulation mode organic electrochemical transistors. Adv. Electron. Mater. 6, 2000215 (2020).

    Google Scholar 

  33. White, H. S., Kittlesen, G. P. & Wrighton, M. S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Chem. Soc. 106, 5375–5377 (1984).

    Google Scholar 

  34. Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. BME-17, 70–71 (1970).

    Google Scholar 

  35. Bergveld, P. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. BME-19, 342–351 (1972).

    Google Scholar 

  36. Matsuo, T. & Wise, K. D. An integrated field-effect electrode for biopotential recording. IEEE Trans. Biomed. Eng. BME-21, 485–487 (1974).

    Google Scholar 

  37. Janata, J. Historical review: twenty years of ion-selective field-effect transistors. Analyst 119, 2275–2278 (1994).

    ADS  Google Scholar 

  38. Moser, N., Lande, T. S., Toumazou, C. & Georgiou, P. ISFETs in CMOS and emergent trends in instrumentation: a review. IEEE Sens. J. 16, 6496–6514 (2016).

    ADS  Google Scholar 

  39. Bai, L. et al. Biological applications of organic electrochemical transistors: electrochemical biosensors and electrophysiology recording. Front. Chem. 7, 313 (2019).

    ADS  Google Scholar 

  40. Masvidal-Codina, E. et al. High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors. Nat. Mater. 18, 280–288 (2019).

    Google Scholar 

  41. Kyndiah, A. et al. Bioelectronic recordings of cardiomyocytes with accumulation mode electrolyte gated organic field effect transistors. Biosens. Bioelectron. 150, 111844 (2020).

    Google Scholar 

  42. Schmoltner, K., Kofler, J., Klug, A. & List-Kratochvil, E. J. W. Electrolyte-gated organic field-effect transistor for selective reversible ion detection. Adv. Mater. 25, 6895–6899 (2013).

    Google Scholar 

  43. Sessolo, M., Rivnay, J., Bandiello, E., Malliaras, G. G. & Bolink, H. J. Ion-selective organic electrochemical transistors. Adv. Mater. 26, 4803–4807 (2014).

    Google Scholar 

  44. Melzer, K. et al. Selective ion-sensing with membrane-functionalized electrolyte-gated carbon nanotube field-effect transistors. Analyst 139, 4947–4954 (2014).

    ADS  Google Scholar 

  45. Gkoupidenis, P., Koutsouras, D. A. & Malliaras, G. G. Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 8, 15448 (2017). This article is the first demonstration of electrolyte-gated neuromorphic devices with global connectivity.

    ADS  Google Scholar 

  46. Jiang, J. et al. 2D MoS2 neuromorphic devices for brain-like computational systems. Small 13, 1700933 (2017).

    Google Scholar 

  47. Gerasimov, J. Y. et al. An evolvable organic electrochemical transistor for neuromorphic applications. Adv. Sci. 6, 1801339 (2019).

    Google Scholar 

  48. Keene, S. T. et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19, 969–973 (2020). This article is the first demonstration of a bio-hybrid synapse with neurotransmitter-mediated plasticity.

    ADS  Google Scholar 

  49. Ling, H. et al. Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl. Phys. Rev. 7, 011307 (2020).

    ADS  Google Scholar 

  50. Berto, M. et al. EGOFET peptide aptasensor for label-free detection of inflammatory cytokines in complex fluids. Adv. Biosyst. 2, 1700072 (2018).

    Google Scholar 

  51. Macchia, E. et al. Label-free and selective single-molecule bioelectronic sensing with a millimeter-wide self-assembled monolayer of anti-immunoglobulins. Chem. Mater. 31, 6476–6483 (2019).

    Google Scholar 

  52. Ricci, S. et al. Label-free immunodetection of α-synuclein by using a microfluidics coplanar electrolyte-gated organic field-effect transistor. Biosens. Bioelectron. 167, 112433 (2020).

    Google Scholar 

  53. Macchia, E. et al. Ultra-low HIV-1 p24 detection limits with a bioelectronic sensor. Anal. Bioanal. Chem. 412, 811–818 (2020).

    Google Scholar 

  54. Pappa, A.-M. et al. Organic transistor arrays integrated with finger-powered microfluidics for multianalyte saliva testing. Adv. Healthc. Mater. 5, 2295–2302 (2016).

    Google Scholar 

  55. Fenoy, G. E., Marmisollé, W. A., Azzaroni, O. & Knoll, W. Acetylcholine biosensor based on the electrochemical functionalization of graphene field-effect transistors. Biosens. Bioelectron. 148, 111796 (2020).

    Google Scholar 

  56. Ohayon, D. et al. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat. Mater. 19, 456–463 (2020).

    ADS  Google Scholar 

  57. Hajian, R. et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 3, 427–437 (2019).

    Google Scholar 

  58. Campos, R. et al. Attomolar label-free detection of DNA hybridization with electrolyte-gated graphene field-effect transistors. ACS Sens. 4, 286–293 (2019).

    Google Scholar 

  59. Hwang, M. T. et al. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 11, 1543 (2020).

    ADS  Google Scholar 

  60. Zhang, Z., Zheng, T. & Zhu, R. Long-term and label-free monitoring for osteogenic differentiation of mesenchymal stem cells using force sensor and impedance measurement. J. Mater. Chem. B 8, 9913–9920 (2020).

    Google Scholar 

  61. Decataldo, F. et al. Organic electrochemical transistors for real-time monitoring of in vitro silver nanoparticle toxicity. Adv. Biosyst. 4, 1900204 (2020).

    Google Scholar 

  62. Sun, C. et al. Facile and cost-effective liver cancer diagnosis by water-gated organic field-effect transistors. Biosens. Bioelectron. 164, 112251 (2020).

    Google Scholar 

  63. Danielson, E. et al. Non-enzymatic and highly sensitive lactose detection utilizing graphene field-effect transistors. Biosens. Bioelectron. 165, 112419 (2020).

    Google Scholar 

  64. Kanai, Y. et al. Graphene field effect transistor-based immunosensor for ultrasensitive noncompetitive detection of small antigens. ACS Sens. 5, 24–28 (2020).

    Google Scholar 

  65. Wu, D. et al. Dual-aptamer modified graphene field-effect transistor nanosensor for label-free and specific detection of hepatocellular carcinoma-derived microvesicles. Anal. Chem. 92, 4006–4015 (2020).

    Google Scholar 

  66. Seo, G. et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14, 5135–5142 (2020).

    Google Scholar 

  67. Jimison, L. H. et al. Measurement of barrier tissue integrity with an organic electrochemical transistor. Adv. Mater. 24, 5919–5923 (2012).

    Google Scholar 

  68. Ferro, M. P. et al. Effect of e cigarette emissions on tracheal cells monitored at the air–liquid interface using an organic electrochemical transistor. Adv. Biosyst. 3, 1800249 (2019).

    Google Scholar 

  69. Lingstedt, L. V. et al. Monitoring of cell layer integrity with a current-driven organic electrochemical transistor. Adv. Healthc. Mater. 8, 1900128 (2019).

    Google Scholar 

  70. Pierre, A., Doris, S. E., Lujan, R. & Street, R. A. Monolithic integration of ion-selective organic electrochemical transistors with thin film transistors on flexible substrates. Adv. Mater. Technol. 4, 1800577 (2019).

    Google Scholar 

  71. Demuru, S., Kunnel, B. P. & Briand, D. Real-time multi-ion detection in the sweat concentration range enabled by flexible, printed, and microfluidics-integrated organic transistor arrays. Adv. Mater. Technol. 5, 2000328 (2020).

    Google Scholar 

  72. Han, S., Yamamoto, S., Polyravas, A. G. & Malliaras, G. G. Microfabricated ion-selective transistors with fast and super-Nernstian response. Adv. Mater. 32, 2004790 (2020).

    Google Scholar 

  73. Romele, P. et al. Multiscale real time and high sensitivity ion detection with complementary organic electrochemical transistors amplifier. Nat. Commun. 11, 1–11 (2020). This article is the first demonstration of local detection and amplification with an iontronic integrated amplifier for multifunctional bioelectronics.

    Google Scholar 

  74. Spyropoulos, G. D., Gelinas, J. N. & Khodagholy, D. Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics. Sci. Adv. 5, eaau7378 (2019).

    ADS  Google Scholar 

  75. Cea, C. et al. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020).

    ADS  Google Scholar 

  76. Gualandi, I. et al. Textile organic electrochemical transistors as a platform for wearable biosensors. Sci. Rep. 6, 33637 (2016).

    ADS  Google Scholar 

  77. Sensi, M. et al. Modulating the faradic operation of all-printed organic electrochemical transistors by facile in situ modification of the gate electrode. ACS Omega 4, 5374–5381 (2019).

    Google Scholar 

  78. Minamiki, T., Hashima, Y., Sasaki, Y. & Minami, T. An electrolyte-gated polythiophene transistor for the detection of biogenic amines in water. Chem. Commun. 54, 6907–6910 (2018).

    Google Scholar 

  79. Koutsouras, D. A., Prodromakis, T., Malliaras, G. G., Blom, P. W. M. & Gkoupidenis, P. Functional connectivity of organic neuromorphic devices by global voltage oscillations. Adv. Intell. Syst. 1, 1900013 (2019).

    Google Scholar 

  80. White, S. P., Dorfman, K. D. & Frisbie, C. D. Operating and sensing mechanism of electrolyte-gated transistors with floating gates: building a platform for amplified biodetection. J. Phys. Chem. C. 120, 108–117 (2016).

    Google Scholar 

  81. White, S. P., Sreevatsan, S., Frisbie, C. D. & Dorfman, K. D. Rapid, selective, label-free aptameric capture and detection of ricin in potable liquids using a printed floating gate transistor. ACS Sens. 1, 1213–1216 (2016).

    Google Scholar 

  82. White, S. P., Dorfman, K. D. & Frisbie, C. D. Label-free DNA sensing platform with low-voltage electrolyte-gated transistors. Anal. Chem. 87, 1861–1866 (2015).

    Google Scholar 

  83. White, S. P., Frisbie, C. D. & Dorfman, K. D. Detection and sourcing of gluten in grain with multiple floating-gate transistor biosensors. ACS Sens. 3, 395–402 (2018).

    Google Scholar 

  84. Lai, S., Barbaro, M. & Bonfiglio, A. Tailoring the sensing performances of an OFET-based biosensor. Sens. Actuators B Chem. 233, 314–319 (2016).

    Google Scholar 

  85. Spanu, A. et al. An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells. Sci. Rep. 5, 1–7 (2015).

    Google Scholar 

  86. Leighton, C. Electrolyte-based ionic control of functional oxides. Nat. Mater. 18, 13–18 (2019).

    ADS  Google Scholar 

  87. Xu, K. & Fullerton-Shirey, S. K. Electric-double-layer-gated transistors based on two-dimensional crystals: recent approaches and advances. J. Phys. Mater. 3, 032001 (2020).

    Google Scholar 

  88. Hai, Z., Wei, Z., Xue, C., Xu, H. & Verpoort, F. Nanostructured tungsten oxide thin film devices: from optoelectronics and ionics to iontronics. J. Mater. Chem. C. 7, 12968–12990 (2019).

    Google Scholar 

  89. Fan, Q. et al. Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. Nanoscale 12, 11364–11394 (2020).

    Google Scholar 

  90. Manoli, K. et al. Printable bioelectronics to investigate functional biological interfaces. Angew. Chem. Int. Ed. 54, 12562–12576 (2015).

    Google Scholar 

  91. Picca, R. A. et al. Ultimately sensitive organic bioelectronic transistor sensors by materials and device structure design. Adv. Funct. Mater. 30, 1–23 (2020).

    Google Scholar 

  92. He, Y., Yang, Y., Nie, S., Liu, R. & Wan, Q. Electric-double-layer transistors for synaptic devices and neuromorphic systems. J. Mater. Chem. C. 6, 5336–5352 (2018).

    Google Scholar 

  93. Bao, C. & Kim, W. S. Perspective of printed solid-state ion sensors toward high sensitivity and selectivity. Adv. Eng. Mater. 22, 1–14 (2020).

    Google Scholar 

  94. Liu, J., Zhao, F., Li, H. & Pei, Q. Electrolyte-gated light-emitting transistors: working principle and applications. Mater. Chem. Front. 2, 253–263 (2018).

    Google Scholar 

  95. Zhu, J., Zhang, T., Yang, Y. & Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 7, 011312 (2020).

    ADS  Google Scholar 

  96. Jiang, S. et al. Emerging synaptic devices: from two-terminal memristors to multiterminal neuromorphic transistors. Mater. Today Nano 8, 101846 (2019).

    Google Scholar 

  97. Zeglio, E. et al. Conjugated polyelectrolyte blends for electrochromic and electrochemical transistor devices. Chem. Mater. 27, 6385–6393 (2015).

    Google Scholar 

  98. Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016).

    ADS  Google Scholar 

  99. Kim, S.-M. et al. Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat. Commun. 9, 3858 (2018).

    ADS  Google Scholar 

  100. Kim, Y. et al. Strain-engineering induced anisotropic crystallite orientation and maximized carrier mobility for high-performance microfiber-based organic bioelectronic devices. Adv. Mater. 33, 2007550 (2021).

    Google Scholar 

  101. Inal, S. et al. Organic electrochemical transistors based on PEDOT with different anionic polyelectrolyte dopants. J. Polym. Sci. B Polym. Phys. 54, 147–151 (2016).

    ADS  Google Scholar 

  102. Singh, T. B. et al. High-performance ambipolar pentacene organic field-effect transistors on poly(vinyl alcohol) organic gate dielectric. Adv. Mater. 17, 2315–2320 (2005).

    Google Scholar 

  103. Yang, S. Y., Shin, K. & Park, C. E. The effect of gate–dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics. Adv. Funct. Mater. 15, 1806–1814 (2005).

    Google Scholar 

  104. Cramer, T. et al. Double layer capacitance measured by organic field effect transistor operated in water. Appl. Phys. Lett. 100, 143302 (2012).

    ADS  Google Scholar 

  105. Chang, J.-F. et al. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem. Mater. 16, 4772–4776 (2004).

    Google Scholar 

  106. Kergoat, L. et al. A water-gate organic field-effect transistor. Adv. Mater. 22, 2565–2569 (2010).

    Google Scholar 

  107. Mulla, M. Y. et al. Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat. Commun. 6, 6010 (2015).

    ADS  Google Scholar 

  108. Li, J. et al. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2, 754 (2012).

    Google Scholar 

  109. Nguyen, T. T. K. et al. Triggering the electrolyte-gated organic field-effect transistor output characteristics through gate functionalization using diazonium chemistry: application to biodetection of 2,4-dichlorophenoxyacetic acid. Biosens. Bioelectron. 113, 32–38 (2018).

    Google Scholar 

  110. Bronstein, H., Nielsen, C. B., Schroeder, B. C. & McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 4, 66–77 (2020).

    Google Scholar 

  111. Moser, M. et al. Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability. Adv. Mater. 32, 1–6 (2020).

    Google Scholar 

  112. Moser, M. et al. Polaron delocalization in donor–acceptor polymers and its impact on organic electrochemical transistor performance. Angew. Chem. Int. Ed. 60, 7777–7785 (2021).

    Google Scholar 

  113. Moser, M. et al. Controlling electrochemically induced volume changes in conjugated polymers by chemical design: from theory to devices. Adv. Funct. Mater. 31, 2100723 (2021).

    Google Scholar 

  114. Sun, H. et al. Complementary logic circuits based on high-performance n-type organic electrochemical transistors. Adv. Mater. 30, 1704916 (2018).

    Google Scholar 

  115. Giovannitti, A. et al. Energetic control of redox-active polymers toward safe organic bioelectronic materials. Adv. Mater. 32, 1908047 (2020).

    Google Scholar 

  116. Flagg, L. Q. et al. Polymer crystallinity controls water uptake in glycol side-chain polymer organic electrochemical transistors. J. Am. Chem. Soc. 141, 4345–4354 (2019).

    Google Scholar 

  117. Zhang, Y., Zeng, Q., Shen, Y., Yang, L. & Yu, F. Electrochemical stability investigations and drug toxicity tests of electrolyte-gated organic field-effect transistors. ACS Appl. Mater. Interfaces 12, 56216–56221 (2020).

    Google Scholar 

  118. Maria, I. P. et al. The effect of alkyl spacers on the mixed ionic–electronic conduction properties of n-type polymers. Adv. Funct. Mater. 31, 2008718 (2021).

    Google Scholar 

  119. Chen, X. et al. n-Type rigid semiconducting polymers bearing oligo(ethylene glycol) side chains for high-performance organic electrochemical transistors. Angew. Chem. Int. Ed. 60, 9368 (2021).

    ADS  Google Scholar 

  120. Moser, M. et al. Ethylene glycol-based side chain length engineering in polythiophenes and its impact on organic electrochemical transistor performance. Chem. Mater. 32, 6618–6628 (2020).

    Google Scholar 

  121. Nielsen, C. B. et al. Molecular design of semiconducting polymers for high-performance organic electrochemical transistors. J. Am. Chem. Soc. 138, 10252–10259 (2016).

    Google Scholar 

  122. Kumar, N., Kumar, J. & Panda, S. Back-channel electrolyte-gated a-IGZO dual-gate thin-film transistor for enhancement of pH sensitivity over nernst limit. IEEE Electron. Device Lett. 37, 500–503 (2016).

    ADS  Google Scholar 

  123. Chen, S. H. et al. High performance electric-double-layer amorphous IGZO thin-film transistors gated with hydrated bovine serum albumin protein. Org. Electron. 24, 200–204 (2015).

    Google Scholar 

  124. Samanta, C., Ghimire, R. R. & Ghosh, B. Fabrication of amorphous indium–gallium–zinc-oxide thin-film transistor on flexible substrate using a polymer electrolyte as gate dielectric. IEEE Trans. Electron. Devices 65, 2827–2832 (2018).

    Google Scholar 

  125. Bandiello, E., Sessolo, M. & Bolink, H. J. Aqueous electrolyte-gated ZnO transistors for environmental and biological sensing. J. Mater. Chem. C. 2, 10277–10281 (2014).

    Google Scholar 

  126. Hong, K., Kim, S. H., Lee, K. H. & Frisbie, C. D. Printed, sub-2 V ZnO electrolyte gated transistors and inverters on plastic. Adv. Mater. 25, 3413–3418 (2013).

    Google Scholar 

  127. Zare Bidoky, F. et al. Sub-3 V ZnO electrolyte-gated transistors and circuits with screen-printed and photo-crosslinked ion gel gate dielectrics: new routes to improved performance. Adv. Funct. Mater. 30, 1902028 (2020).

    Google Scholar 

  128. Al Naim, A. & Grell, M. Electron transporting water-gated thin film transistors. Appl. Phys. Lett. 101, 141603 (2012).

    ADS  Google Scholar 

  129. Dasgupta, S., Kruk, R. & Hahn, H. Inkjet printed, high mobility inorganic-oxide field effect temperature. ACS Nano 5, 9628–9638 (2011).

    Google Scholar 

  130. Kim, J. et al. Fabrication of high-performance ultrathin In2O3 film field-effect transistors and biosensors using chemical lift-off lithography. ACS Nano 9, 4572–4582 (2015).

    Google Scholar 

  131. Nakatsuka, N. et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).

    ADS  Google Scholar 

  132. Feng, X. et al. Impact of intrinsic capacitances on the dynamic performance of printed electrolyte-gated inorganic field effect transistors. IEEE Trans. Electron. Devices 66, 3365–3370 (2019).

    ADS  Google Scholar 

  133. Marques, G. C. et al. Influence of humidity on the performance of composite polymer electrolyte-gated field-effect transistors and circuits. IEEE Trans. Electron. Devices 66, 2202–2207 (2019).

    ADS  Google Scholar 

  134. Cherukupally, N., Divya, M. & Dasgupta, S. A comparative study on printable solid electrolytes toward ultrahigh current and environmentally stable thin film transistors. Adv. Electron. Mater. 6, 2000788 (2020).

    Google Scholar 

  135. Ohno, Y., Maehashi, K., Yamashiro, Y. & Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting ph and protein adsorption. Nano Lett. 9, 3318–3322 (2009).

    ADS  Google Scholar 

  136. Hao, Z. et al. Real-time monitoring of insulin using a graphene field-effect transistor aptameric nanosensor. ACS Appl. Mater. Interfaces 9, 27504–27511 (2017).

    Google Scholar 

  137. Han, D., Chand, R. & Kim, Y. S. Microscale loop-mediated isothermal amplification of viral DNA with real-time monitoring on solution-gated graphene FET microchip. Biosens. Bioelectron. 93, 220–225 (2017).

    Google Scholar 

  138. Liu, S. et al. Detection of bisphenol a using DNA-functionalized graphene field effect transistors integrated in microfluidic systems. ACS Appl. Mater. Interfaces 10, 23522–23528 (2018).

    Google Scholar 

  139. Sarkar, D. et al. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992–4003 (2014).

    ADS  Google Scholar 

  140. Zhou, G. et al. Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field-effect transistor device. ACS Sens. 1, 295–302 (2016).

    Google Scholar 

  141. Kelly, A. G. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–73 (2017).

    ADS  Google Scholar 

  142. Masurkar, N., Kumar, N., Yurgelevic, S. & Varma, S. Reliable and highly sensitive biosensor from suspended MoS2 atomic layer on nano-gap electrodes. Biosensors 172, 112724 (2020).

    Google Scholar 

  143. Higgins, T. M. et al. Electrolyte-gated n-type transistors produced from aqueous inks of WS2 nanosheets. Adv. Funct. Mater. 29, 1804387 (2019).

    Google Scholar 

  144. Heller, I. et al. Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J. Am. Chem. Soc. 132, 17149–17156 (2010).

    Google Scholar 

  145. Rosenblatt, S. et al. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869–872 (2002).

    ADS  Google Scholar 

  146. Chen, L. et al. Organic electrochemical transistors for the detection of cell surface glycans. ACS Appl. Mater. Interfaces 10, 18470–18477 (2018).

    Google Scholar 

  147. Scuratti, F. et al. Real-time monitoring of cellular cultures with electrolyte-gated carbon nanotube transistors. ACS Appl. Mater. Interfaces 11, 37966–37972 (2019).

    Google Scholar 

  148. Singaraju, S. A. et al. Development of fully printed electrolyte-gated oxide transistors using graphene passive structures. ACS Appl. Electron. Mater. 1, 1538–1544 (2019).

    Google Scholar 

  149. Li, H. et al. Polyfluorinated electrolyte for fully printed carbon nanotube electronics. Adv. Funct. Mater. 26, 6914–6920 (2016).

    ADS  Google Scholar 

  150. Cardenas, J. A., Lu, S., Williams, N. X., Doherty, J. L. & Franklin, A. D. In-place printing of flexible electrolyte-gated carbon nanotube transistors with enhanced stability. IEEE Electron. Device Lett. 42, 367–370 (2021).

    ADS  Google Scholar 

  151. Hyun, W. J., Secor, E. B., Hersam, M. C., Frisbie, C. D. & Francis, L. F. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27, 109–115 (2015).

    Google Scholar 

  152. Kim, S. H., Hong, K., Lee, K. H. & Frisbie, C. D. Performance and stability of aerosol-jet-printed electrolyte-gated transistors based on poly(3-hexylthiophene). ACS Appl. Mater. Interfaces 5, 6580–6585 (2013).

    Google Scholar 

  153. Blasi, D. et al. Printed, cost-effective and stable poly(3-hexylthiophene) electrolyte-gated field-effect transistors. J. Mater. Chem. C. 8, 15312 (2020).

    Google Scholar 

  154. Scheiblin, G. et al. Screen-printed organic electrochemical transistors for metabolite sensing. MRS Commun. 5, 507–511 (2015).

    Google Scholar 

  155. Galliani, M. et al. Flexible printed organic electrochemical transistors for the detection of uric acid in artificial wound exudate. Adv. Mater. Interfaces 7, 2001218 (2020).

    Google Scholar 

  156. Zabihipour, M. et al. High yield manufacturing of fully screen-printed organic electrochemical transistors. NPJ Flex. Electron. 4, 1–8 (2020).

    Google Scholar 

  157. Medina-Sánchez, M., Martínez-Domingo, C., Ramon, E. & Merkoçi, A. An inkjet-printed field-effect transistor for label-free biosensing. Adv. Funct. Mater. 24, 6291–6302 (2014).

    Google Scholar 

  158. Bihar, E. et al. A disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. Sci. Rep. 6, 27582 (2016).

    ADS  Google Scholar 

  159. Cho, N. B., Lim, T. H., Jeon, Y. M. & Gong, M. S. Humidity sensors fabricated with photo-curable electrolyte inks using an ink-jet printing technique and their properties. Sens. Actuators B Chem. 130, 594–598 (2008).

    Google Scholar 

  160. Thomas, M. S., White, S. P., Dorfman, K. D. & Frisbie, C. D. Interfacial charge contributions to chemical sensing by electrolyte-gated transistors with floating gates. J. Phys. Chem. Lett. 9, 1335–1339 (2018).

    Google Scholar 

  161. Thomas, M. S., Dorfman, K. D. & Frisbie, C. D. Detection and amplification of capacitance- and charge-based signals using printed electrolyte gated transistors with floating gates. Flexi. Print. Electron. 4, 044001 (2019).

    Google Scholar 

  162. Lu, B. & Maharbiz, M. M. Germanium as a scalable sacrificial layer for nanoscale protein patterning. PLoS ONE 13, 1–10 (2018).

    Google Scholar 

  163. Holzer, B. et al. Characterization of covalently bound anti-human immunoglobulins on self-assembled monolayer modified gold electrodes. Adv. Biosyst. 1, 1700055 (2017).

    Google Scholar 

  164. Macchia, E. et al. Single-molecule detection with a millimetre-sized transistor. Nat. Commun. 9, 3223 (2018). This article is the first demonstration of single-molecule detection with a millimetre-sized EGT.

    ADS  Google Scholar 

  165. Dorfman, K. D., Adrahtas, D. Z., Thomas, M. S. & Frisbie, C. D. Microfluidic opportunities in printed electrolyte-gated transistor biosensors. Biomicrofluidics 14, 011301 (2020).

    Google Scholar 

  166. Curto, V. F., Ferro, M. P., Mariani, F., Scavetta, E. & Owens, R. M. A planar impedance sensor for 3D spheroids. Lab. Chip 18, 933–943 (2018).

    Google Scholar 

  167. Jonkheijm, P., Weinrich, D., Schröder, H., Niemeyer, C. M. & Waldmann, H. Chemical strategies for generating protein biochips. Angew. Chem. Int. Ed. 47, 9618–9647 (2008).

    Google Scholar 

  168. Torsi, L., Magliulo, M., Manoli, K. & Palazzo, G. Organic field-effect transistor sensors: a tutorial review. Chem. Soc. Rev. 42, 8612–8628 (2013).

    Google Scholar 

  169. Macchia, E. et al. Organic bioelectronics probing conformational changes in surface confined proteins. Sci. Rep. 6, 28085 (2016).

    ADS  Google Scholar 

  170. Shinagawa, T. & Takanabe, K. Towards versatile and sustainable hydrogen production through electrocatalytic water splitting: electrolyte engineering. ChemSusChem 10, 1318–1336 (2017).

    Google Scholar 

  171. Auten, R. L. & Davis, J. M. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr. Res. 66, 121–127 (2009).

    Google Scholar 

  172. Bernards, D. A. & Malliaras, G. G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 17, 3538–3544 (2007).

    Google Scholar 

  173. Kireev, D. et al. Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity. Sci. Rep. 7, 6658 (2017).

    ADS  Google Scholar 

  174. Friedlein, J. T., McLeod, R. R. & Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 63, 398–414 (2018).

    Google Scholar 

  175. Keene, S. T. et al. Enhancement-mode PEDOT:PSS organic electrochemical transistors using molecular de-doping. Adv. Mater. 32, 2000270 (2020).

    Google Scholar 

  176. Thiburce, Q., Giovannitti, A., McCulloch, I. & Campbell, A. J. Nanoscale ion-doped polymer transistors. Nano Lett. 19, 1712–1718 (2019).

    ADS  Google Scholar 

  177. Braendlein, M., Lonjaret, T., Leleux, P., Badier, J.-M. & Malliaras, G. G. Voltage amplifier based on organic electrochemical transistor. Adv. Sci. 4, 1600247 (2016).

    Google Scholar 

  178. Macchia, E. et al. About the amplification factors in organic bioelectronic sensors. Mater. Horiz. 7, 999–1013 (2020). This article provides a critical review of organic bioelectronic sensors operating in potentiometric and amperometric mode.

    Google Scholar 

  179. Porrazzo, R. et al. Water-gated n-type organic field-effect transistors for complementary integrated circuits operating in an aqueous environment. ACS Omega 2, 1–10 (2017).

    Google Scholar 

  180. Khodagholy, D. et al. High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013).

    ADS  Google Scholar 

  181. Torricelli, F., Colalongo, L., Raiteri, D., Kovács-Vajna, Z. M. & Cantatore, E. Ultra-high gain diffusion-driven organic transistor. Nat. Commun. 7, 10550 (2016).

    ADS  Google Scholar 

  182. Leydecker, T., Wang, Z. M., Torricelli, F. & Orgiu, E. Organic-based inverters: basic concepts, materials, novel architectures and applications. Chem. Soc. Rev. 49, 7627–7670 (2020).

    Google Scholar 

  183. Paudel, P. R., Kaphle, V., Dahal, D., Radha Krishnan, R. K. & Lüssem, B. Tuning the transconductance of organic electrochemical transistors. Adv. Funct. Mater. 31, 2004939 (2021).

    Google Scholar 

  184. Inal, S. et al. A high transconductance accumulation mode electrochemical transistor. Adv. Mater. 26, 7450–7455 (2014).

    Google Scholar 

  185. Di Lauro, M. et al. Liquid-gated organic electronic devices based on high-performance solution-processed molecular semiconductor. Adv. Electron. Mater. 3, 1700159 (2017).

    Google Scholar 

  186. Dankerl, M. et al. Graphene solution-gated field-effect transistor array for sensing applications. Adv. Funct. Mater. 20, 3117–3124 (2010).

    Google Scholar 

  187. Luan, X., Liu, J. & Li, H. Electrolyte-gated vertical organic transistor and circuit. J. Phys. Chem. C. 122, 14615–14620 (2018).

    Google Scholar 

  188. Rivnay, J. et al. High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 1, e1400251 (2015). This article is the first demonstration of bioelectronics exploiting the volumetric ionic–electronic charge interaction.

    ADS  Google Scholar 

  189. Grey, P. et al. Solid state electrochemical WO3 transistors with high current modulation. Adv. Electron. Mater. 2, 1500414 (2016).

    MathSciNet  Google Scholar 

  190. Bischak, C. G., Flagg, L. Q. & Ginger, D. S. Ion exchange gels allow organic electrochemical transistor operation with hydrophobic polymers in aqueous solution. Adv. Mater. 32, 2002610 (2020).

    Google Scholar 

  191. Macchia, E. et al. Ultra-sensitive protein detection with organic electrochemical transistors printed on plastic substrates. Flex. Print. Electron. 3, 1–17 (2018).

    Google Scholar 

  192. Kwon, O. S. et al. An ultrasensitive, selective, multiplexed superbioelectronic nose that mimics the human sense of smell. Nano Lett. 15, 6559–6567 (2015).

    ADS  Google Scholar 

  193. Zhou, L. et al. Novel graphene biosensor based on the functionalization of multifunctional nano-bovine serum albumin for the highly sensitive detection of cancer biomarkers. Nano-Micro Lett. 11, 20 (2019).

    ADS  Google Scholar 

  194. Murugathas, T. et al. Biosensing with insect odorant receptor nanodiscs and carbon nanotube field-effect transistors. ACS Appl. Mater. Interfaces 11, 9530–9538 (2019).

    Google Scholar 

  195. Liang, Y. et al. Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers. ACS Nano 14, 8866–8874 (2020).

    Google Scholar 

  196. Macchia, E. et al. Organic field-effect transistor platform for label-free, single-molecule detection of genomic biomarkers. ACS Sens. 5, 1822–1830 (2020).

    Google Scholar 

  197. Hess, L. H. et al. Electrical coupling between cells and graphene transistors. Small 11, 1703–1710 (2015).

    Google Scholar 

  198. Zhang, Y. et al. Liquid–solid dual-gate organic transistors with tunable threshold voltage for cell sensing. ACS Appl. Mater. Interfaces 9, 38687–38694 (2017).

    Google Scholar 

  199. Yeung, S. Y., Gu, X., Tsang, C. M., Tsao, S. W. G. & Hsing, I. Organic electrochemical transistor array for monitoring barrier integrity of epithelial cells invaded by nasopharyngeal carcinoma. Sens. Actuators B Chem. 297, 126761 (2019).

    Google Scholar 

  200. Magliulo, M. et al. Electrolyte-gated organic field-effect transistor sensors based on supported biotinylated phospholipid bilayer. Adv. Mater. 25, 2090–2094 (2013).

    Google Scholar 

  201. Zhang, Y. et al. Supported lipid bilayer assembly on PEDOT:PSS films and transistors. Adv. Funct. Mater. 26, 7304–7313 (2016).

    Google Scholar 

  202. Kawan, M. et al. Monitoring supported lipid bilayers with n-type organic electrochemical transistors. Mater. Horiz. 7, 2348–2358 (2020).

    Google Scholar 

  203. Magliulo, M. et al. Printable and flexible electronics: from TFTs to bioelectronic devices. J. Mater. Chem. C. 3, 12347–12363 (2015).

    Google Scholar 

  204. Nikolka, M. et al. Low-voltage, dual-gate organic transistors with high sensitivity and stability toward electrostatic biosensing. ACS Appl. Mater. Interfaces 12, 40581–40589 (2020).

    Google Scholar 

  205. Palazzo, G. et al. Detection beyond Debye’s length with an electrolyte-gated organic field-effect transistor. Adv. Mater. 27, 911–916 (2015).

    Google Scholar 

  206. Aspermair, P. et al. Dual monitoring of surface reactions in real time by combined surface-plasmon resonance and field-effect transistor interrogation. J. Am. Chem. Soc. 142, 11709–11716 (2020).

    Google Scholar 

  207. Lieberth, K. et al. Monitoring reversible tight junction modulation with a current-driven organic electrochemical transistor. Adv. Mater. Technol. 6, 2000940 (2021).

    Google Scholar 

  208. Lieberth, K. et al. Current-driven organic electrochemical transistors for monitoring cell layer integrity with enhanced sensitivity. Adv. Healthcare Mater. https://doi.org/10.1002/adhm.202100845 (2021).

    Article  Google Scholar 

  209. Faria, G. C., Duong, D. T. & Salleo, A. On the transient response of organic electrochemical transistors. Org. Electron. 45, 215–221 (2017).

    Google Scholar 

  210. Wang, J. et al. Nanomesh organic electrochemical transistor for comfortable on-skin electrodes with local amplifying function. ACS Appl. Electron. Mater. 2, 3601–3609 (2020).

    Google Scholar 

  211. Jo, Y. J. et al. Biocompatible and biodegradable organic transistors using a solid-state electrolyte incorporated with choline-based ionic liquid and polysaccharide. Adv. Funct. Mater. 30, 1909707 (2020).

    Google Scholar 

  212. Tyrrell, J. E., Boutelle, M. G. & Campbell, A. J. Measurement of electrophysiological signals in vitro using high-performance organic electrochemical transistors. Adv. Funct. Mater. 31, 2007086 (2021).

    Google Scholar 

  213. Campana, A., Cramer, T., Simon, D. T., Berggren, M. & Biscarini, F. Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater. 26, 3874–3878 (2014).

    Google Scholar 

  214. Yao, C., Li, Q., Guo, J., Yan, F. & Hsing, I.-M. Rigid and flexible organic electrochemical transistor arrays for monitoring action potentials from electrogenic cells. Adv. Healthcare Mater. 4, 528–533 (2015).

    Google Scholar 

  215. Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Google Scholar 

  216. Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).

    ADS  Google Scholar 

  217. Giaever, I. & Keese, C. R. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc. Natl Acad. Sci. USA 81, 3761–3764 (1984).

    ADS  Google Scholar 

  218. Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A. & Sabatini, D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 77, 853–880 (1978).

    Google Scholar 

  219. Fromherz, P., Offenhäusser, A., Vetter, T. & Weis, J. A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252, 1290–1293 (1991).

    ADS  Google Scholar 

  220. Spira, M. E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013).

    ADS  Google Scholar 

  221. Cramer, T. et al. Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks. Phys. Chem. Chem. Phys. 15, 3897–3905 (2013).

    Google Scholar 

  222. Yao, C. et al. Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells. Adv. Mater. 25, 6575–6580 (2013).

    Google Scholar 

  223. Gu, X., Yao, C., Liu, Y. & Hsing, I.-M. 16-Channel organic electrochemical transistor array for in vitro conduction mapping of cardiac action potential. Adv. Healthc. Mater. 5, 2345–2351 (2016).

    Google Scholar 

  224. Hess, L. H. et al. Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23, 5045–5049 (2011).

    Google Scholar 

  225. Ramuz, M., Hama, A., Rivnay, J., Leleux, P. & Owens, R. M. Monitoring of cell layer coverage and differentiation with the organic electrochemical transistor. J. Mater. Chem. B 3, 5971–5977 (2015).

    Google Scholar 

  226. Ramuz, M. et al. Optimization of a planar all-polymer transistor for characterization of barrier tissue. ChemPhysChem 16, 1210–1216 (2015).

    Google Scholar 

  227. Ramuz, M. et al. Combined optical and electronic sensing of epithelial cells using planar organic transistors. Adv. Mater. 26, 7083–7090 (2014).

    Google Scholar 

  228. Curto, V. F. et al. Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring. Microsyst. Nanoeng. 3, 17028 (2017).

    Google Scholar 

  229. Santoro, F. et al. Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter. ACS Nano 8, 6713–6723 (2014).

    Google Scholar 

  230. Kalmykov, A. et al. Organ-on-e-chip: three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci. Adv. 5, eaax0729 (2019).

    ADS  Google Scholar 

  231. Wan, A. M.-D. et al. 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. J. Mater. Chem. B 3, 5040–5048 (2015).

    Google Scholar 

  232. Inal, S. et al. Conducting polymer scaffolds for hosting and monitoring 3D cell. Culture. Adv. Biosyst. 1, 1700052 (2017).

    Google Scholar 

  233. Pitsalidis, C. et al. Transistor in a tube: a route to three-dimensional bioelectronics. Sci. Adv. 4, eaat4253 (2018). This article demonstrates a new route to three-dimensional bioelectronics with EGTs.

    ADS  Google Scholar 

  234. Moysidou, C.-M. et al. 3D bioelectronic model of the human intestine. Adv. Biol. 5, 2000306 (2021).

    Google Scholar 

  235. Iandolo, D. et al. Biomimetic and electroactive 3D scaffolds for human neural crest-derived stem cell expansion and osteogenic differentiation. MRS Commun. 10, 179–187 (2020).

    Google Scholar 

  236. del Agua, I. et al. Conducting polymer scaffolds based on poly(3,4-ethylenedioxythiophene) and xanthan gum for live-cell monitoring. ACS Omega 3, 7424–7431 (2018).

    Google Scholar 

  237. Gooding, J. J. & Gaus, K. Single-molecule sensors: challenges and opportunities for quantitative analysis. Angew. Chem. Int. Ed. 55, 11354–11366 (2016).

    Google Scholar 

  238. Macchia, E., Manoli, K., Di Franco, C., Scamarcio, G. & Torsi, L. New trends in single-molecule bioanalytical detection. Anal. Bioanal. Chem. 412, 5005–5014 (2020).

    Google Scholar 

  239. Macchia, E. et al. Diffusion of a single marker detected at a large capturing interface. Adv. Sci. (in the press).

  240. Rissin, D. M. & Walt, D. R. Digital concentration readout of single enzyme molecules using femtoliter arrays and poisson statistics. Nano Lett. 6, 520–523 (2006).

    ADS  Google Scholar 

  241. Park, S. J. et al. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett. 12, 5082–5090 (2012).

    ADS  Google Scholar 

  242. Fu, W. et al. Graphene transistors are insensitive to pH changes in solution. Nano Lett. 11, 3597–3600 (2011).

    ADS  Google Scholar 

  243. Macchia, E. et al. Label-free electronic detection of peptides at the physical limit. Adv Healthc. Mater (in the press).

  244. Macchia, E. et al. Selective single-molecule analytical detection of C-reactive protein in saliva with an organic transistor. Anal. Bioanal. Chem. 411, 4899–4908 (2019).

    Google Scholar 

  245. Buzsáki, G. & Press., O. U. Rhythms of the Brain (Oxford Univ. Press, 2011).

  246. Rogers, J., Malliaras, G. & Someya, T. Biomedical devices go wild. Sci. Adv. 4, eaav1889 (2018).

    ADS  Google Scholar 

  247. Strakosas, X., Bongo, M. & Owens, R. M. The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 132, 41735 (2015).

    Google Scholar 

  248. Sophocleous, M., Contat-Rodrigo, L., Garcia-Breijo, E. & Georgiou, J. Organic electrochemical transistors as an emerging platform for bio-sensing applications: a review. IEEE Sens. J. 21, 3977–4006 (2021).

    ADS  Google Scholar 

  249. San Roman, D., Garg, R. & Cohen-Karni, T. Bioelectronics with graphene nanostructures. APL. Mater. 8, 100906 (2020).

    ADS  Google Scholar 

  250. Lee, W. et al. Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc. Natl Acad. Sci. USA 114, 10554–10559 (2017).

    ADS  Google Scholar 

  251. Lee, W. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 4, eaau2426 (2018).

    ADS  Google Scholar 

  252. Williamson, A. et al. Localized neuron stimulation with organic electrochemical transistors on delaminating depth probes. Adv. Mater. 27, 4405–4410 (2015).

    Google Scholar 

  253. Yang, L. et al. Highly crumpled all-carbon transistors for brain activity recording. Nano Lett. 17, 71–77 (2017).

    ADS  Google Scholar 

  254. Blaschke, B. M. et al. Mapping brain activity with flexible graphene micro-transistors. 2D Mater. 4, 025040 (2017).

    Google Scholar 

  255. Garcia-Cortadella, R. et al. Switchless multiplexing of graphene active sensor arrays for brain mapping. Nano Lett. 20, 3528–3537 (2020).

    ADS  Google Scholar 

  256. Schaefer, N. et al. Multiplexed neural sensor array of graphene solution-gated field-effect transistors. 2D Mater. 7, 025046 (2020).

    Google Scholar 

  257. Garcia-Cortadella, R. et al. Graphene active sensor arrays for long-term and wireless mapping of wide frequency band epicortical brain activity. Nat. Commun. 12, 211 (2021).

    ADS  Google Scholar 

  258. Schuhmann, T. G., Yao, J., Hong, G., Fu, T.-M. & Lieber, C. M. Syringe-injectable electronics with a plug-and-play input/output interface. Nano Lett. 17, 5836–5842 (2017).

    ADS  Google Scholar 

  259. Girardi, S., Maschietto, M., Zeitler, R., Mahmud, M. & Vassanelli, S. in Proc. 2011 5th Int. IEEE/EMBS Conf. Neural Eng. 269–272 (IEEE, 2011).

  260. Lee, H. et al. Ultrathin organic electrochemical transistor with nonvolatile and thin gel electrolyte for long-term electrophysiological monitoring. Adv. Funct. Mater. 29, 1906982 (2019).

    Google Scholar 

  261. Kim, S. J. et al. A new architecture for fibrous organic transistors based on a double-stranded assembly of electrode microfibers for electronic textile applications. Adv. Mater. 31, 1900564 (2019).

    Google Scholar 

  262. Leleux, P. et al. Organic electrochemical transistors for clinical applications. Adv. Healthc. Mater. 4, 142–147 (2015).

    Google Scholar 

  263. Venkatraman, V. et al. Subthreshold operation of organic electrochemical transistors for biosignal amplification. Adv. Sci. 5, 1800453 (2018).

    Google Scholar 

  264. Yu, Y. et al. Small-molecule-based organic field-effect transistor for nonvolatile memory and artificial synapse. Adv. Funct. Mater. 29, 1904602 (2019).

    Google Scholar 

  265. Dai, S. et al. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29, 1903700 (2019).

    Google Scholar 

  266. Han, H., Yu, H., Wei, H., Gong, J. & Xu, W. Recent progress in three-terminal artificial synapses: from device to system. Small 15, 1900695 (2019).

    Google Scholar 

  267. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    ADS  Google Scholar 

  268. van de Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).

    Google Scholar 

  269. Xu, W., Min, S.-Y., Hwang, H. & Lee, T.-W. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2, e1501326 (2016).

    ADS  Google Scholar 

  270. van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

    ADS  Google Scholar 

  271. Emelyanov, A. V. et al. First steps towards the realization of a double layer perceptron based on organic memristive devices. AIP Adv. 6, 111301 (2016).

    ADS  Google Scholar 

  272. Battistoni, S., Erokhin, V. & Iannotta, S. Emulation with organic memristive devices of impairment of LTP mechanism in neurodegenerative disease pathology. Neural Plast. 2017, 6090312 (2017).

    Google Scholar 

  273. Juzekaeva, E. et al. Coupling cortical neurons through electronic memristive synapse. Adv. Mater. Technol. 4, 1800350 (2019).

    Google Scholar 

  274. Gkoupidenis, P., Schaefer, N., Garlan, B. & Malliaras, G. G. Neuromorphic functions in PEDOT:PSS organic electrochemical transistors. Adv. Mater. 27, 7176–7180 (2015).

    Google Scholar 

  275. Gkoupidenis, P., Schaefer, N., Strakosas, X., Fairfield, J. A. & Malliaras, G. G. Synaptic plasticity functions in an organic electrochemical transistor. Appl. Phys. Lett. 107, 263302 (2015).

    ADS  Google Scholar 

  276. Gkoupidenis, P., Koutsouras, D. A., Lonjaret, T., Fairfield, J. A. & Malliaras, G. G. Orientation selectivity in a multi-gated organic electrochemical transistor. Sci. Rep. 6, 27007 (2016).

    ADS  Google Scholar 

  277. Koutsouras, D. A., Malliaras, G. G. & Gkoupidenis, P. Emulating homeoplasticity phenomena with organic electrochemical devices. MRS Commun. 8, 493–497 (2018).

    Google Scholar 

  278. Jörntell, H. et al. Segregation of tactile input features in neurons of the cuneate nucleus. Neuron 83, 1444–1452 (2014).

    Google Scholar 

  279. Bengtsson, F., Brasselet, R., Johansson, R. S., Arleo, A. & Jörntell, H. Integration of sensory quanta in cuneate nucleus neurons in vivo. PLoS ONE 8, e56630 (2013).

    ADS  Google Scholar 

  280. Knibestöl, M. Stimulus-response functions of slowly adapting mechanoreceptors in the human glabrous skin area. J. Physiol. 245, 63–80 (1975).

    Google Scholar 

  281. Tee, B. C.-K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

    ADS  Google Scholar 

  282. Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018). This article is the first demonstration of an artificial afferent nerve with EGTs.

    ADS  Google Scholar 

  283. Takeuchi, Y. et al. Rewiring of afferent fibers in the somatosensory thalamus of mice caused by peripheral sensory nerve transection. J. Neurosci. 32, 6917–6930 (2012).

    Google Scholar 

  284. Lee, Y. et al. Stretchable organic optoelectronic sensorimotor synapse. Sci. Adv. 4, eaat7387 (2018).

    ADS  Google Scholar 

  285. Jung, Y. H., Park, B., Kim, J. U. & Kim, T. Bioinspired electronics for artificial sensory systems. Adv. Mater. 31, 1803637 (2019).

    Google Scholar 

  286. Shim, H. et al. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 5, eaax4961 (2019).

    ADS  Google Scholar 

  287. Park, H.-L. et al. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 32, 1903558 (2020).

    Google Scholar 

  288. Wan, C. et al. Artificial sensory memory. Adv. Mater. 32, 1902434 (2020).

    Google Scholar 

  289. Porrazzo, R. et al. Improving mobility and electrochemical stability of a water-gated polymer field-effect transistor. Org. Electron. 15, 2126–2134 (2014).

    Google Scholar 

  290. Vagin, M. et al. Negatively-doped conducting polymers for oxygen reduction reaction. Adv. Energy Mater. 11, 2002664 (2021).

    Google Scholar 

  291. Picca, R. A. et al. A study on the stability of water-gated organic field-effect-transistors based on a commercial p-type polymer. Front. Chem. 7, 1–10 (2019).

    ADS  Google Scholar 

  292. Giridharagopal, R. et al. Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors. Nat. Mater. 16, 737–742 (2017).

    ADS  Google Scholar 

  293. Wang, G. Y., Lian, K. & Chu, T. Y. Electrolyte-gated field effect transistors in biological sensing: a survey of electrolytes. IEEE J. Electron Devices Soc. https://doi.org/10.1109/JEDS.2021.3082420 (2021).

    Article  Google Scholar 

  294. Park, S. et al. Sub-0.5 V highly stable aqueous salt gated metal oxide electronics. Sci. Rep. 5, 1–9 (2015).

    Google Scholar 

  295. Bubel, S., Meyer, S. & Chabinyc, M. L. Stability of ionic liquid-gated metal oxides and transistors. IEEE Trans. Electron. Devices 61, 1561–1566 (2014).

    ADS  Google Scholar 

  296. Thiemann, S., Sachnov, S., Porscha, S., Wasserscheid, P. & Zaumseil, J. Ionic liquids for electrolyte-gating of ZnO field-effect transistors. J. Phys. Chem. C. 116, 13536–13544 (2012).

    Google Scholar 

  297. van Druenen, M. Degradation of black phosphorus and strategies to enhance its ambient lifetime. Adv. Mater. Interfaces 7, 1–14 (2020).

    Google Scholar 

  298. Flagg, L. Q., Giridharagopal, R., Guo, J. & Ginger, D. S. Anion-dependent doping and charge transport in organic electrochemical transistors. Chem. Mater. 30, 5380–5389 (2018).

    Google Scholar 

  299. Torricelli, F. et al. in Proc. 2019 Int. Conf. Simulation of Semiconductor Processes and Devices (SISPAD) 1–4 (IEEE, 2019).

  300. Robin, M. et al. Overcoming electrochemical instabilities of printed silver electrodes in all-printed ion gel gated carbon nanotube thin-film transistors. ACS Appl. Mater. Interfaces 11, 41531–41543 (2019).

    Google Scholar 

  301. Prescimone, F. et al. 3D versus 2D electrolyte–semiconductor interfaces in rylenediimide-based electron-transporting water-gated organic field-effect transistors. Adv. Electron. Mater. 6, 2–11 (2020).

    Google Scholar 

  302. Torricelli, F. Enhanced multifunctional bioelectronics with integrated organic electrochemical transistor architectures. SPIE 11663, 116630P (2021).

    Google Scholar 

  303. Paterson, A. F. et al. Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat. Commun. 11, 3004 (2020).

    ADS  Google Scholar 

  304. Torsi, L. et al. A sensitivity-enhanced field-effect chiral sensor. Nat. Mater. 7, 412–417 (2008).

    ADS  Google Scholar 

  305. Macchia, E., Giordano, F., Magliulo, M., Palazzo, G. & Torsi, L. An analytical model for bio-electronic organic field-effect transistor sensors. Appl. Phys. Lett. 103, 103301 (2013).

    ADS  Google Scholar 

  306. Magliulo, M. et al. PE-CVD of hydrophilic-COOH functionalized coatings on electrolyte gated field-effect transistor electronic layers. Plasma Process. Polym. 10, 102–109 (2013).

    Google Scholar 

  307. Giovannitti, A. et al. Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl Acad. Sci. USA 113, 12017–12022 (2016).

    ADS  Google Scholar 

  308. Suspène, C. et al. Copolythiophene-based water-gated organic field-effect transistors for biosensing. J. Mater. Chem. B 1, 2090–2097 (2013).

    Google Scholar 

  309. Angione, M. D. et al. Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors. Proc. Natl Acad. Sci. USA 109, 6429–6434 (2012).

    ADS  Google Scholar 

  310. Pappa, A. M. et al. Optical and electronic ion channel monitoring from native human membranes. ACS Nano 14, 12538–12545 (2020).

    Google Scholar 

  311. Liu, H. Y. et al. Self-assembly of mammalian-cell membranes on bioelectronic devices with functional transmembrane proteins. Langmuir 36, 7325–7331 (2020).

    Google Scholar 

  312. Cui, B. et al. Thermal conductivity comparison of indium gallium zinc oxide thin films: dependence on temperature, crystallinity, and porosity. J. Phys. Chem. C. 120, 7467–7475 (2016).

    Google Scholar 

  313. Li, H., Guo, Y. & Robertson, J. Hydrogen and the light-induced bias instability mechanism in amorphous oxide semiconductors. Sci. Rep. 7, 16858 (2017).

    ADS  Google Scholar 

  314. Medvedeva, J. E., Buchholz, D. B. & Chang, R. P. H. Recent advances in understanding the structure and properties of amorphous oxide semiconductors. Adv. Electron. Mater. 3, 1700082 (2017).

    Google Scholar 

  315. Armano, A. & Agnello, S. Two-dimensional carbon: a review of synthesis methods, and electronic, optical, and vibrational properties of single-layer. Graphene. C. 5, 67 (2019).

    Google Scholar 

  316. He, Z. & Que, W. Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl. Mater. Today 3, 23–56 (2016).

    Google Scholar 

  317. Casalini, S., Leonardi, F., Cramer, T. & Biscarini, F. Organic field-effect transistor for label-free dopamine sensing. Org. Electron. Phys. Mater. Appl. 14, 156–163 (2013).

    Google Scholar 

  318. Blasi, D. et al. Enhancing the sensitivity of biotinylated surfaces by tailoring the design of the mixed self-assembled monolayer synthesis. ACS Omega 5, 16762–16771 (2020).

    Google Scholar 

  319. Casalini, S. et al. Multiscale sensing of antibody-antigen interactions by organic transistors and single-molecule force spectroscopy. ACS Nano 9, 5051–5062 (2015). This article provides fundamental insights into antigen–antibody interactions.

    Google Scholar 

  320. Berto, M. et al. Label free detection of plant viruses with organic transistor biosensors. Sens. Actuators B Chem. 281, 150–156 (2019).

    Google Scholar 

  321. Selvaraj, M. et al. Label free detection of miRNA-21 with electrolyte gated organic field effect transistors (EGOFETs). Biosens. Bioelectron. 182, 113144 (2021).

    Google Scholar 

  322. Sensi, M. et al. Anti-drug antibody detection with label-free electrolyte-gated organic field-effect transistors. Chem. Commun. 57, 367–370 (2021).

    Google Scholar 

  323. Helmholtz, H. Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern mit anwendung auf die thierisch-elektrischen versuche [German]. Ann. Phys. 165, 211–233 (1853).

    Google Scholar 

  324. Stern, O. Zur theorie der elektrolytischen doppelschicht [German]. Z. für Elektrochemie und Angew. Phys. Chem. 30, 508–516 (1924).

    Google Scholar 

  325. Berggren, M. & Malliaras, G. G. How conducting polymer electrodes operate. Science 364, 233–234 (2019).

    ADS  Google Scholar 

  326. Bisquert, J. et al. A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorganica Chim. Acta 361, 684–698 (2008).

    Google Scholar 

  327. Lee, J. et al. Ion gel-gated polymer thin-film transistors: operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability. J. Phys. Chem. C. 113, 8972–8981 (2009).

    Google Scholar 

  328. Yáñez-Sedeño, P., Pingarrón, J. M., Riu, J. & Rius, F. X. Electrochemical sensing based on carbon nanotubes. Trends Analyt. Chem. 29, 939–953 (2010).

    Google Scholar 

  329. Yuan, H. et al. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. J. Am. Chem. Soc. 132, 18402–18407 (2010).

    Google Scholar 

  330. Laiho, A., Herlogsson, L., Forchheimer, R., Crispin, X. & Berggren, M. Controlling the dimensionality of charge transport in organic thin-film transistors. Proc. Natl Acad. Sci. USA 108, 15069–15073 (2011).

    ADS  Google Scholar 

  331. Vagin, M., Che, C., Gueskine, V., Berggren, M. & Crispin, X. Ion-selective electrocatalysis on conducting polymer electrodes: improving the performance of redox flow batteries. Adv. Funct. Mater. 30, 2007009 (2020).

    Google Scholar 

  332. Mackin, C. et al. A current–voltage model for graphene electrolyte-gated field-effect transistors. IEEE Trans. Electron. Devices 61, 3971–3977 (2014).

    ADS  Google Scholar 

  333. Sahalianov, I., Singh, S. K., Tybrandt, K., Berggren, M. & Zozoulenko, I. The intrinsic volumetric capacitance of conducting polymers: pseudo-capacitors or double-layer supercapacitors? RSC Adv. 9, 42498–42508 (2019).

    ADS  Google Scholar 

  334. Singh, M. et al. Effect of the gate metal work function on water-gated ZnO thin-film transistor performance. J. Phys. D Appl. Phys. 49, 275101 (2016).

    Google Scholar 

  335. Lai, S. et al. Ultralow voltage, OTFT-based sensor for label-free DNA detection. Adv. Mater. 25, 103–107 (2013).

    Google Scholar 

  336. Napoli, C. et al. Electronic detection of DNA hybridization by coupling organic field-effect transistor-based sensors and hairpin-shaped probes. Sensors 18, 990 (2018).

    ADS  Google Scholar 

  337. Spanu, A., Tedesco, M. T., Martines, L., Martinoia, S. & Bonfiglio, A. An organic neurophysiological tool for neuronal metabolic activity monitoring. APL. Bioeng. 2, 046105 (2018).

    Google Scholar 

  338. Spanu, A. et al. A reference-less pH sensor based on an organic field effect transistor with tunable sensitivity. Org. Electron. 48, 188–193 (2017).

    Google Scholar 

  339. Spanu, A. et al. A high-sensitivity tactile sensor based on piezoelectric polymer PVDF coupled to an ultra-low voltage organic transistor. Org. Electron. Phys. Mater. Appl. 36, 57–60 (2016).

    Google Scholar 

  340. Viola, F. A., Spanu, A., Ricci, P. C., Bonfiglio, A. & Cosseddu, P. Ultrathin, flexible and multimodal tactile sensors based on organic field-effect transistors. Sci. Rep. 8, 8073 (2018).

    ADS  Google Scholar 

Download references

Acknowledgements

F.T and L.T. acknowledge financial support from the European Union, Italian Government and Lombardia Region for the project BIOSCREEN (POR FESR 2014-2020, ID number 1831459, CUP E81B20000320007). F.T., E.M. and L.T. acknowledge financial support from the European Commission for the project SiMBiT (Horizon 2020 ICT, contract number 824946). D.Z.A. was supported by a Biotechnology Training (Grant No. NIH T32GM008347). G.G.M. acknowledges support from H2020-EU-FET Open MITICS (964677).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (F.T., C.D.F. and D.Z.A.); Box 1 (F.B. and C.A.B.); Experimentation (T.-Q.N., I.M., M.M., C.D.F., D.Z.A., L.T., E.M., F.B. and C.A.B.); Box 2 (M.B.), Box 3 (A.B. and A. Spanu); Results (F.T.); Applications (R.M.O., L.T., G.G.M., A. Salleo and Z.B); Reproducibility and data deposition (F.T. and G.G.M.); Limitations and optimizations (F.T., F.B. and C.A.B.); Outlook (L.T.); Overview of the Primer (F.T. and L.T.). All authors commented on the paper.

Corresponding authors

Correspondence to Fabrizio Torricelli or Luisa Torsi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks S. Dasgupta, H. Kawarada, Q. Wan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Bio-layer

A biological layer made with biological entities such as, for example, antibodies, peptides, DNA, RNA, enzymes, cells, tissues or organs.

Intermolecular hopping events

Charge transport mechanisms taking place between various parts of molecules and polymers.

Hole injection

The transfer of holes from an electrode to a semiconductor.

HOMO

(Highest occupied molecular orbital). A type of molecular orbital.

Polarons

Fermionic quasiparticles due to the strong interaction between electrons and atoms in a solid material. When electrons move in a dielectric crystal, the atoms displace from their equilibrium positions to screen the electronic charges.

Atomic layer deposition

A vacuum deposition method based on sequential use of one or more volatile compounds that react and/or decompose on the substrate surface, producing a deposit of a thin-film layer.

Sputtering

A method used for the deposition of metals, insulators and semiconductors. In a vacuum chamber, a solid material (named target) is bombarded by energetic particles of a plasma or gas. The microscopic particles ejected from its surface deposit on a substrate.

Oxygen plasma

A plasma for treatment of a surface that is an effective, economical, environmentally safe method for critical cleaning.

Ozone cleaning

A cleaning process of surfaces based on photochemical reactions involving ultraviolet light, oxygen and the material on the surface of the substrate.

Shadow masking

A technique using a metal, silicon or plastic sheet with suitably designed openings coupled to a substrate. A material deposited over the mask can reach the substrate only in the opening regions, thus defining a pattern according to the design of the mask.

Polarizable

Characterized by a charge separation at the electrode–electrolyte interface and electrically equivalent to a capacitor.

Non-polarizable

Characterized by no charge separation and electrically equivalent to a resistor.

Electrocardiography

The process of recording the electrical signals of the heart.

Electromyography

The process of recording the electrical signals of skeletal muscles.

Electro-oculography

The process of recording the electrical signals of eye.

Spheroids

Dense three-dimensional assemblies of cells grown in gels composed of extracellular matrix.

Point-of-care

Medical diagnostic testing at the place and time of the patient care.

Memristive

Relating to a non-linear two-terminal electrical component linking magnetic flux and electric charge.

Gate voltage scanning

A method in which the gate voltage is swept from an initial value to a final value, typically with a constant voltage and time step size.

Plasma

A gas of ions with one or more orbital electrons stripped and free electrons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torricelli, F., Adrahtas, D.Z., Bao, Z. et al. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat Rev Methods Primers 1, 66 (2021). https://doi.org/10.1038/s43586-021-00065-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-021-00065-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing