Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

mRNA m6A detection

Abstract

N6-methyladenosine (m6A) is the most prevalent internal mRNA modification. Recent research has highlighted its role as a key regulator of gene expression, influencing cellular processes and determining cell fate. Advances in techniques for global mapping of m6A, the discovery of m6A demethylases that enhance its dynamic properties and the identification of reader proteins that interact with m6A have substantially propelled this field forward. This Primer outlines the available tools for detecting and mapping m6A, discusses the strengths and limitations of each method and offers guidance on selecting the most suitable approach. Identifying and detecting m6A lays the groundwork for functional studies that address important biological and medical questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proteins involved in m6A methylation of mRNA.
Fig. 2: Basic antibody-dependent m6A mapping tools.
Fig. 3: Isoform-aware and low input antibody-based methods.
Fig. 4: Metabolic labelling methods for mapping m6A.
Fig. 5: Additional methods for m6A profiling.

Similar content being viewed by others

References

  1. Desrosiers, R., Friderici, K. & Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl Acad. Sci. USA 71, 3971–3975 (1974).

    Article  ADS  Google Scholar 

  2. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  ADS  Google Scholar 

  3. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  Google Scholar 

  4. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  Google Scholar 

  5. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  Google Scholar 

  6. Dominissini, D. et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441–446 (2016).

    Article  ADS  Google Scholar 

  7. Levanon, E. Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    Article  Google Scholar 

  8. Squires, J. E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    Article  ADS  Google Scholar 

  9. Delatte, B. et al. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351, 282–285 (2016).

    Article  ADS  Google Scholar 

  10. Carlile, T. M., Rojas-Duran, M. F. & Gilbert, W. V. in Methods in Enzymology Vol. 560, 219–245 (Elsevier, 2015).

  11. Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11, 592–597 (2015).

    Article  ADS  Google Scholar 

  12. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    Article  Google Scholar 

  13. Akichika, S. et al. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 363, eaav0080 (2019).

    Article  Google Scholar 

  14. Mauer, J. et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541, 371–375 (2017).

    Article  ADS  Google Scholar 

  15. Sun, H., Zhang, M., Li, K., Bai, D. & Yi, C. Cap-specific, terminal N6-methylation by a mammalian m6Am methyltransferase. Cell Res. 29, 80–82 (2019).

    Article  Google Scholar 

  16. Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175, 1872–1886.e24 (2018).

    Article  Google Scholar 

  17. Zhang, L.-S. et al. Transcriptome-wide mapping of internal N7-methylguanosine methylome in mammalian mRNA. Mol. Cell 74, 1304–1316.e8 (2019).

    Article  Google Scholar 

  18. Dai, Q. et al. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat. Methods 14, 695–698 (2017).

    Article  Google Scholar 

  19. Liu, J. E. et al. Landscape and regulation of m6A and m6Am methylome across human and mouse tissues. Mol. Cell 77, 426–440.e6 (2020).

    Article  Google Scholar 

  20. Liu, N. et al. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1848–1856 (2013).

    Article  Google Scholar 

  21. Wei, J. et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985.e5 (2018).

    Article  Google Scholar 

  22. Sendinc, E. et al. PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol. Cell 75, 620–630.e9 (2019).

    Article  Google Scholar 

  23. Hu, J., Xu, T. & Kang, H. Crosstalk between RNA m6A modification and epigenetic factors in plant gene regulation. Plant Commun. 5, 101037 (2024).

    Article  Google Scholar 

  24. Garcias Morales, D. & Reyes, J. L. A birds’-eye view of the activity and specificity of the mRNA mA methyltransferase complex. WIREs RNA 12, e1618 (2021).

    Article  Google Scholar 

  25. Zhang, W., Qian, Y. & Jia, G. The detection and functions of RNA modification m6A based on m6A writers and erasers. J. Biol. Chem. 297, 100973 (2021).

    Article  Google Scholar 

  26. Knuckles, P. et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 32, 415–429 (2018).

    Article  Google Scholar 

  27. Ensinck, I. et al. The yeast RNA methylation complex consists of conserved yet reconfigured components with m6A-dependent and independent roles. eLife 12, RP87860 (2023).

    Article  Google Scholar 

  28. Mermoud, J. E. The role of the m6A RNA methyltransferase METTL16 in gene expression and SAM homeostasis. Genes 13, 2312 (2022).

    Article  Google Scholar 

  29. Satterwhite, E. R. & Mansfield, K. D. RNA methyltransferase METTL16: targets and function. WIREs RNA 13, e1681 (2022).

    Article  Google Scholar 

  30. Lence, T., Paolantoni, C., Worpenberg, L. & Roignant, J.-Y. Mechanistic insights into m6A RNA enzymes. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 222–229 (2019).

    Article  Google Scholar 

  31. Garcia-Campos, M. A. et al. Deciphering the ‘m6A code’ via antibody-independent quantitative profiling. Cell 178, 731–747.e16 (2019).

    Article  Google Scholar 

  32. Gerken, T. et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318, 1469–1472 (2007).

    Article  ADS  Google Scholar 

  33. Herr, C. Q. & Hausinger, R. P. Amazing diversity in biochemical roles of Fe (II)/2-oxoglutarate oxygenases. Trends Biochem. Sci. 43, 517–532 (2018).

    Article  Google Scholar 

  34. Liao, S., Sun, H. & Xu, C. YTH domain: a family of N(6)-methyladenosine (m(6)A) readers. Genomics Proteom. Bioinforma. 16, 99–107 (2018).

    Article  Google Scholar 

  35. Duan, M. et al. IGF2BPs as novel m(6)A readers: diverse roles in regulating cancer cell biological functions, hypoxia adaptation, metabolism, and immunosuppressive tumor microenvironment. Genes Dis. 11, 890–920 (2024).

    Article  Google Scholar 

  36. Liu, N. et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051–6063 (2017).

    Article  ADS  Google Scholar 

  37. Alarcón & Claudio, R. et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).

    Article  Google Scholar 

  38. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564 (2015).

    Article  ADS  Google Scholar 

  39. Arguello, A. E., DeLiberto, A. N. & Kleiner, R. E. RNA chemical proteomics reveals the N6-methyladenosine (m6A)-regulated protein–RNA interactome. J. Am. Chem. Soc. 139, 17249–17252 (2017).

    Article  Google Scholar 

  40. Edupuganti, R. R. et al. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24, 870–878 (2017).

    Article  Google Scholar 

  41. Dominissini, D. & Rechavi, G. Epitranscriptome regulation [poster]. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-018-0140-7 (2018).

  42. Xiao, W. et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

    Article  Google Scholar 

  43. Kasowitz, S. D. et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 14, e1007412 (2018).

    Article  Google Scholar 

  44. Chen, L. et al. Nuclear m6A reader YTHDC1 suppresses proximal alternative polyadenylation sites by interfering with the 3′ processing machinery. EMBO Rep. 23, e54686 (2022).

    Article  Google Scholar 

  45. Roundtree, I. A. et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife 6, e31311 (2017).

    Article  Google Scholar 

  46. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    Article  ADS  Google Scholar 

  47. Cheng, Y. et al. N6-methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell 39, 958–972.e8 (2021).

    Article  Google Scholar 

  48. Du, H. et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

    Article  ADS  Google Scholar 

  49. Huang, H. et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–295 (2018).

    Article  Google Scholar 

  50. Geula, S. et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347, 1002–1006 (2015).

    Article  ADS  Google Scholar 

  51. Zhang, Q., Dong, L., Gong, S. & Wang, T. Unraveling the landscape of m6A RNA methylation in wound healing and scars. Cell Death Discov. 10, 458 (2024).

    Article  Google Scholar 

  52. Zhang, Y., Hu, W. & Li, H.-B. RNA modification-mediated translational control in immune cells. RNA Biol. 20, 603–613 (2023).

    Article  Google Scholar 

  53. Zhao, M. et al. N6-methyladenosine modification of TSC1 mRNA contributes to macrophage polarization regulated by Coptisine in DSS-induced ulcerative colitis. Phytomedicine 122, 155153 (2024).

    Article  Google Scholar 

  54. Shen, L., Liang, Z. & Yu, H. Dot blot analysis of N6-methyladenosine RNA modification levels. bio-protocol 7, e2095 (2017).

    Article  Google Scholar 

  55. Desrosiers, R. C., Friderici, K. H. & Rottman, F. M. Characterization of Novikoff hepatoma mRNA methylation and heterogeneity in the methylated 5′-terminus. Biochemistry 14, 4367–4374 (1975).

    Article  Google Scholar 

  56. Gehrke, C. W. & Kuo, K. C. Ribonucleoside analysis by reversed-phase high-performance liquid chromatography. J. Chromatogr. 471, 3–36 (1989).

    Article  Google Scholar 

  57. Buck, M., Connick, M. & Ames, B. N. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal. Biochem. 129, 1–13 (1983).

    Article  Google Scholar 

  58. Grosjean, H., Droogmans, L., Roovers, M. & Keith, G. in Methods in Enzymology Vol. 425, 55–101 (Academic Press, 2007).

  59. Ensinck, I. et al. m6A-ELISA, a simple method for quantifying N6-methyladenosine from mRNA populations. RNA 29, 705–712 (2023).

    Article  Google Scholar 

  60. Lauman, R. & Garcia, B. A. Unraveling the RNA modification code with mass spectrometry. Mol. Omics 16, 305–315 (2020).

    Article  Google Scholar 

  61. Su, D. et al. Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat. Protoc. 9, 828–841 (2014).

    Article  Google Scholar 

  62. Sarin, L. P. et al. Nano LC–MS using capillary columns enables accurate quantification of modified ribonucleosides at low femtomol levels. RNA 24, 1403–1417 (2018).

    Article  Google Scholar 

  63. Basanta-Sanchez, M., Temple, S., Ansari, S. A., D’Amico, A. & Agris, P.F. Attomole quantification and global profile of RNA modifications: Epitranscriptome of human neural stem cells. Nucleic Acids Res. 44, e26 (2016).

    Article  Google Scholar 

  64. Li, S. & Limbach, P. A. Method for comparative analysis of ribonucleic acids using isotope labeling and mass spectrometry. Anal. Chem. 84, 8607–8613 (2012).

    Article  Google Scholar 

  65. Paulines, M. J. & Limbach, P. A. Stable isotope labeling for improved comparative analysis of RNA digests by mass spectrometry. J. Am. Soc. Mass. Spectrom. 28, 551–561 (2017).

    Article  ADS  Google Scholar 

  66. Sun, H. et al. m6Am-seq reveals the dynamic m6Am methylation in the human transcriptome. Nat. Commun. 12, 4778 (2021).

    Article  ADS  Google Scholar 

  67. Solivio, B., Yu, N., Addepalli, B. & Limbach, P. A. Improving RNA modification mapping sequence coverage by LC–MS through a nonspecific RNase U2-E49A mutant. Anal. Chim. Acta 1036, 73–79 (2018).

    Article  Google Scholar 

  68. Mirza, A. H., Attarwala, N., Gross, S. S., Chen, Q. & Jaffrey, S. R. Selective detection of m6A derived from mRNA using the Phospho-tag m6A assay. Preprint at bioRxiv https://doi.org/10.1101/2022.05.23.493172 (2022).

  69. Dominissini, D., Moshitch-Moshkovitz, S., Salmon-Divon, M., Amariglio, N. & Rechavi, G. Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nat. Protoc. 8, 176–189 (2013).

    Article  Google Scholar 

  70. Dierks, D. et al. Multiplexed profiling facilitates robust m6A quantification at site, gene and sample resolution. Nat. Methods 18, 1060–1067 (2021).

    Article  Google Scholar 

  71. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  ADS  Google Scholar 

  72. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  ADS  Google Scholar 

  73. Darnell, R. B. HITS-CLIP: panoramic views of protein–RNA regulation in living cells. WIREs RNA 1, 266–286 (2010).

    Article  Google Scholar 

  74. Dziuba, D., Hoffmann, J.-E., Hentze, M. W. & Schultz, C. A genetically encoded diazirine analogue for RNA–protein photo-crosslinking. ChemBioChem 21, 88–93 (2020).

    Article  Google Scholar 

  75. Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29, 2037–2053 (2015).

    Article  Google Scholar 

  76. Körtel, N. et al. Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning. Nucleic Acids Res. 49, e92 (2021).

    Article  Google Scholar 

  77. Chen, K. et al. High-resolution N(6)-methyladenosine (m(6)A) map using photo-crosslinking-assisted m(6)A sequencing. Angew. Chem. Int. Ed. 54, 1587–1590 (2015).

    Article  Google Scholar 

  78. Koh, C. W. Q., Goh, Y. T. & Goh, W. S. S. Atlas of quantitative single-base-resolution N6-methyl-adenine methylomes. Nat. Commun. 10, 5636 (2019).

    Article  ADS  Google Scholar 

  79. Molinie, B. et al. m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nat. Methods 13, 692–698 (2016).

    Article  Google Scholar 

  80. Yin, R. et al. Differential m6A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function. Cell Stem Cell 29, 149–159.e7 (2022).

    Article  Google Scholar 

  81. Ramsköld, D. et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  Google Scholar 

  82. Li, Y. et al. Single-cell m6A mapping in vivo using picoMeRIP-seq. Nat. Biotechnol. 42, 591–596 (2023).

    Article  Google Scholar 

  83. Yao, H. et al. scm6A-seq reveals single-cell landscapes of the dynamic m6A during oocyte maturation and early embryonic development. Nat. Commun. 14, 315 (2023).

    Article  ADS  Google Scholar 

  84. Grozhik, A. V. et al. Antibody cross-reactivity accounts for widespread appearance of m1A in 5′UTRs. Nat. Commun. 10, 5126 (2019).

    Article  ADS  Google Scholar 

  85. Moshitch-Moshkovitz, S., Heldman, Y., Yayon, A. & Katchalski-Katzir, E. Sorting polyclonal antibodies into functionally distinct fractions using peptide phage display: ‘a library on top of a library’. J. Immunol. Methods 242, 183–191 (2000).

    Article  Google Scholar 

  86. Moshitch-Moshkovitz, S., Dominissini, D. & Rechavi, G. The epitranscriptome toolbox. Cell 185, 764–776 (2022).

    Article  Google Scholar 

  87. Shu, X., Cao, J. & Liu, J. m6A-label-seq: a metabolic labeling protocol to detect transcriptome-wide mRNA N6-methyladenosine (m6A) at base resolution. STAR Protoc. 3, 101096 (2022).

    Article  Google Scholar 

  88. Shu, X. et al. A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nat. Chem. Biol. 16, 887–895 (2020).

    Article  Google Scholar 

  89. Meyer, K. D. DART-seq: an antibody-free method for global m6A detection. Nat. Methods 16, 1275–1280 (2019).

    Article  Google Scholar 

  90. Xu, C. et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol. 10, 927–929 (2014).

    Article  Google Scholar 

  91. Shen, D. et al. Detailed resume of RNA m6A demethylases. Acta Pharm. Sin. B 12, 2193–2205 (2022).

    Article  Google Scholar 

  92. Blanc, V. & Davidson, N. O. APOBEC‐1‐mediated RNA editing. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 594–602 (2010).

    Article  Google Scholar 

  93. Tegowski, M., Flamand, M. N. & Meyer, K. D. scDART-seq reveals distinct m6A signatures and mRNA methylation heterogeneity in single cells. Mol. Cell 82, 868–878.e10 (2022).

    Article  Google Scholar 

  94. Wang, Y., Xiao, Y., Dong, S., Yu, Q. & Jia, G. Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine. Nat. Chem. Biol. 16, 896–903 (2020).

    Article  Google Scholar 

  95. Ge, R. et al. m6A-SAC-seq for quantitative whole transcriptome m6A profiling. Nat. Protoc. 18, 626–657 (2023).

    Article  Google Scholar 

  96. Chen, H.-X., Zhang, Z., Ma, D.-Z., Chen, L.-Q. & Luo, G.-Z. Mapping single-nucleotide m6A by m6A-REF-seq. Methods 203, 392–398 (2022).

    Article  Google Scholar 

  97. Zhang, Z. et al. Systematic calibration of epitranscriptomic maps using a synthetic modification-free RNA library. Nat. Methods 18, 1213–1222 (2021).

    Article  Google Scholar 

  98. Keegan, L. P., Leroy, A., Sproul, D. & O’Connell, M. A. Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. Genome Biol. 5, 209 (2004).

    Article  Google Scholar 

  99. Xiang, J. F. et al. N(6)-methyladenosines modulate A-to-I RNA editing. Mol. Cell 69, 126–135.e6 (2018).

    Article  Google Scholar 

  100. Véliz, E. A., Easterwood, L. M. & Beal, P. A. Substrate analogues for an RNA-editing adenosine deaminase: mechanistic investigation and inhibitor design. J. Am. Chem. Soc. 125, 10867–10876 (2003).

    Article  Google Scholar 

  101. Xiao, Y.-L. et al. Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination. Nat. Biotechnol. 41, 993–1003 (2023).

    Article  Google Scholar 

  102. Shen, W. et al. GLORI for absolute quantification of transcriptome-wide m6A at single-base resolution. Nat. Protoc. 19, 1252–1287 (2024).

    Article  Google Scholar 

  103. Liu, C. et al. Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI. Nat. Biotechnol. 41, 355–366 (2023).

    Article  Google Scholar 

  104. Xiao, Y. et al. An elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N6-methyladenosine modification. Angew. Chem. Int. Ed. 57, 15995–16000 (2018).

    Article  Google Scholar 

  105. Liu, W. et al. Identification of a selective DNA ligase for accurate recognition and ultrasensitive quantification of N6-methyladenosine in RNA at one-nucleotide resolution. Chem. Sci. 9, 3354–3359 (2018).

    Article  ADS  Google Scholar 

  106. Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

    Article  Google Scholar 

  107. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly (A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

    Article  Google Scholar 

  108. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article  Google Scholar 

  109. Furlan, M. et al. Computational methods for RNA modification detection from nanopore direct RNA sequencing data. RNA Biol. 18, 31–40 (2021).

    Article  Google Scholar 

  110. Price, A. M. et al. Direct RNA sequencing reveals m(6)A modifications on adenovirus RNA are necessary for efficient splicing. Nat. Commun. 11, 6016 (2020).

    Article  ADS  Google Scholar 

  111. Leger, A. et al. RNA modifications detection by comparative nanopore direct RNA sequencing. Nat. Commun. 12, 7198 (2021).

    Article  ADS  Google Scholar 

  112. Pratanwanich, P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. 39, 1394–1402 (2021).

    Article  Google Scholar 

  113. Liu, H., Begik, O. & Novoa, E. M. in RNA Modifications: Methods and Protocols (ed. McMahon, M.) 31–52 (Springer US, 2021).

  114. Lorenz, D. A., Sathe, S., Einstein, J. M. & Yeo, G. W. Direct RNA sequencing enables m(6)A detection in endogenous transcript isoforms at base-specific resolution. RNA 26, 19–28 (2020).

    Article  Google Scholar 

  115. Gao, Y. et al. Quantitative profiling of N(6)-methyladenosine at single-base resolution in stem-differentiating xylem of Populus trichocarpa using Nanopore direct RNA sequencing. Genome Biol. 22, 22 (2021).

    Article  Google Scholar 

  116. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  Google Scholar 

  117. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  118. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  Google Scholar 

  119. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  Google Scholar 

  120. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2012).

    Article  Google Scholar 

  121. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  Google Scholar 

  122. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    Article  Google Scholar 

  123. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

  124. Meng, J., Cui, X., Rao, M. K., Chen, Y. & Huang, Y. Exome-based analysis for RNA epigenome sequencing data. Bioinformatics 29, 1565–1567 (2013).

    Article  Google Scholar 

  125. Cui, X. et al. MeTDiff: a novel differential RNA methylation analysis for MeRIP-seq data. IEEE/ACM Trans. Comput. Biol. Bioinform. 15, 526–534 (2018).

    Article  Google Scholar 

  126. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article  Google Scholar 

  127. Yao, Z. et al. Evaluation of variant calling tools for large plant genome re-sequencing. BMC Bioinformatics 21, 1–16 (2020).

    Article  Google Scholar 

  128. Danecek, P. & McCarthy, S. A. BCFtools/csq: haplotype-aware variant consequences. Bioinformatics 33, 2037–2039 (2017).

    Article  Google Scholar 

  129. Poh, H. X. Mirza, A. H., Pickering, B. F. & Jaffrey, S. R. Alternative splicing of METTL3 explains apparently METTL3-independent m6A modifications in mRNA. PLoS Biol. 20, e3001683 (2022).

    Article  Google Scholar 

  130. Schwartz, S. et al. High-resolution mapping reveals a conserved widespread dynamic mRNA methylation program in yeast meiosis. Cell 155, 1409–1421 (2013).

    Article  Google Scholar 

  131. Varier, R. A. et al. N6-methyladenosine (m6A) reader Pho92 is recruited co-transcriptionally and couples translation to mRNA decay to promote meiotic fitness in yeast. eLife 11, e84034 (2022).

    Article  Google Scholar 

  132. Zhou, J. et al. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594 (2015).

    Article  ADS  Google Scholar 

  133. Dominissini, D. & Rechavi, G. Loud and clear epitranscriptomic m1A signals: now in single-base resolution. Mol. Cell 68, 825–826 (2017).

    Article  Google Scholar 

  134. Batista, P. J. et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719 (2014).

    Article  Google Scholar 

  135. Wang, Y. et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16, 191–198 (2014).

    Article  Google Scholar 

  136. Lin, Z. & Tong, M.-H. m6A mRNA modification regulates mammalian spermatogenesis. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 403–411 (2019).

    Article  Google Scholar 

  137. Tan, X., Zheng, C., Zhuang, Y., Jin, P. & Wang, F. The m6A reader PRRC2A is essential for meiosis I completion during spermatogenesis. Nat. Commun. 14, 1636 (2023).

    Article  ADS  Google Scholar 

  138. Qi, M. et al. m6A reader protein YTHDF2 regulates spermatogenesis by timely clearance of phase‐specific transcripts. Cell Prolif. 55, e13164 (2022).

    Article  Google Scholar 

  139. Gu, Y., Song, Y., Pan, Y. & Liu, J. The essential roles of m6A modification in osteogenesis and common bone diseases. Genes Dis. 11, 335–345 (2023).

    Article  Google Scholar 

  140. He, M. et al. METTL14 regulates osteogenesis of bone marrow mesenchymal stem cells via inducing autophagy through m6A/IGF2BPs/Beclin-1 signal axis. Stem Cell Transl. Med. 11, 987–1001 (2022).

    Article  Google Scholar 

  141. Liu, T. et al. The m6A ‘reader’ YTHDF1 promotes osteogenesis of bone marrow mesenchymal stem cells through translational control of ZNF839. Cell Death Dis. 12, 1078 (2021).

    Article  Google Scholar 

  142. Zhao, X. et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 24, 1403–1419 (2014).

    Article  Google Scholar 

  143. Wang, X. et al. m(6)A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy 16, 1221–1235 (2020).

    Article  Google Scholar 

  144. Yang, Z., Yu, G. L., Zhu, X., Peng, T. H. & Lv, Y. C. Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: implications in lipid metabolic disorders. Genes Dis. 9, 51–61 (2022).

    Article  Google Scholar 

  145. Yen, Y. P. & Chen, J. A. The m(6)A epitranscriptome on neural development and degeneration. J. Biomed. Sci. 28, 40 (2021).

    Article  Google Scholar 

  146. Yoon, K. J. et al. Temporal control of mammalian cortical neurogenesis by m(6)A methylation. Cell 171, 877–889.e17 (2017).

    Article  Google Scholar 

  147. Livneh, I., Moshitch-Moshkovitz, S., Amariglio, N., Rechavi, G. & Dominissini, D. The m(6)A epitranscriptome: transcriptome plasticity in brain development and function. Nat. Rev. Neurosci. 21, 36–51 (2020).

    Article  Google Scholar 

  148. Sun, T., Wu, R. & Ming, L. The role of m6A RNA methylation in cancer. Biomed. Pharmacother. 112, 108613 (2019).

    Article  Google Scholar 

  149. Lan, Q. et al. The critical role of RNA m6A methylation in cancer. Cancer Res. 79, 1285–1292 (2019).

    Article  Google Scholar 

  150. Huang, H., Weng, H. & Chen, J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 37, 270–288 (2020).

    Article  Google Scholar 

  151. Liu, H.-T. et al. Deciphering the divergent gene expression landscapes of m6A/m5C/m1A methylation regulators in hepatocellular carcinoma through single-cell and bulk RNA transcriptomic analysis. J. Hepatocell. Carcinoma 10, 2383–2395 (2023).

    Article  Google Scholar 

  152. Yuan, F. et al. Roles of the m6A modification of RNA in the glioblastoma microenvironment as revealed by single-cell analyses. Front. Immunol. 13, 798583 (2022).

    Article  Google Scholar 

  153. Li, Z. et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals RNA N6-methyladenosine modification associated with prognosis and drug resistance in acute myeloid leukemia. Front. Immunol. 14, 1281687 (2023).

    Article  Google Scholar 

  154. Gao, Y. et al. Single-cell N6-methyladenosine regulator patterns guide intercellular communication of tumor microenvironment that contribute to colorectal cancer progression and immunotherapy. J. Transl. Med. 20, 197 (2022).

    Article  Google Scholar 

  155. Weng, H. et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell 22, 191–205.e9 (2018).

    Article  Google Scholar 

  156. Vu, L. P. et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23, 1369–1376 (2017).

    Article  Google Scholar 

  157. Barbieri, I. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552, 126–131 (2017).

    Article  ADS  Google Scholar 

  158. Li, Z. et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell 31, 127–141 (2017).

    Article  ADS  Google Scholar 

  159. Su, R. et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell 38, 79–96.e11 (2020).

    Article  Google Scholar 

  160. Zhang, L. & Su, X. Bioactive peptide inhibits acute myeloid leukemia cell proliferation by downregulating ALKBH5-mediated m6A demethylation of EIF4EBP1 and MLST8 mRNA. Cell. Oncol. 45, 355–365 (2022).

    Article  Google Scholar 

  161. Yan, F. et al. A dynamic N6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Res. 28, 1062–1076 (2018).

    Article  Google Scholar 

  162. Hong, Y.-G. et al. The RNA m6A reader YTHDF1 is required for acute myeloid leukemia progression. Cancer Res. 83, 845–860 (2023).

    Article  Google Scholar 

  163. Sheng, Y. et al. A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex-mediated DNA replication. Blood 138, 2838–2852 (2021).

    Article  Google Scholar 

  164. Hong, Y.-G. et al. The RNA m6A reader YTHDF1 promotes hematopoietic malignancy by maintaining oncogenic translation. Preprint at bioRxiv https://doi.org/10.1101/2022.10.08.511406 (2022).

  165. Zhang, Z. et al. RNA m6A reader YTHDF2 facilitates precursor miR-126 maturation to promote acute myeloid leukemia progression. Genes Dis. 11, 382–396 (2024).

    Article  Google Scholar 

  166. Zhang, L. et al. Targeting miR-126 in inv(16) acute myeloid leukemia inhibits leukemia development and leukemia stem cell maintenance. Nat. Commun. 12, 6154 (2021).

    Article  ADS  Google Scholar 

  167. Caserta, C. et al. miR-126 identifies a quiescent and chemo-resistant human B-ALL cell subset that correlates with minimal residual disease. Leukemia 37, 1994–2005 (2023).

    Article  Google Scholar 

  168. Wang, X. et al. Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature 534, 575–578 (2016).

    Article  ADS  Google Scholar 

  169. Fiorentino, F., Menna, M., Rotili, D., Valente, S. & Mai, A. METTL3 from target validation to the first small-molecule inhibitors: a medicinal chemistry journey. J. Med. Chem. 66, 1654–1677 (2023).

    Article  Google Scholar 

  170. Bedi, R. K. et al. Small-molecule inhibitors of METTL3, the major human epitranscriptomic writer. ChemMedChem 15, 744–748 (2020).

    Article  Google Scholar 

  171. Borchardt, R. T., Eiden, L. E., Wu, B. & Rutledge, C. O. Sinefungin, a potent inhibitor of S-adenosylmethionine: protein O-methyltransferase. Biochem. Biophys. Res. Commun. 89, 919–924 (1979).

    Article  Google Scholar 

  172. Du, Y. et al. Discovery of METTL3 small molecule inhibitors by virtual screening of natural products. Front. Pharmacol. 13, 878135 (2022).

    Article  Google Scholar 

  173. Li, H., Zhang, Q., Feng, Q., You, Q. & Guo, X. The development of small molecules targeting methyltransferase-like 3. Drug Discov. Today 28, 103513 (2023).

    Article  Google Scholar 

  174. Yankova, E. et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593, 597–601 (2021).

    Article  ADS  Google Scholar 

  175. Guirguis, A. A. et al. Inhibition of METTL3 results in a cell-intrinsic interferon response that enhances antitumor immunity. Cancer Discov. 13, 2228–2247 (2023).

    Article  Google Scholar 

  176. Ofir-Rosenfeld, Y. et al. STC-15, an oral small molecule inhibitor of the RNA methyltransferase METTL3, inhibits tumour growth through activation of anti-cancer immune responses associated with increased interferon signalling, and synergises with T cell checkpoint blockade. Eur. J. Cancer 174, S123 (2022).

    Article  Google Scholar 

  177. Li, Z. et al. A stapled peptide inhibitor targeting the binding interface of N6-adenosine-methyltransferase subunits METTL3 and METTL14 for cancer therapy. Angew. Chem. Int. Ed. 63, e202402611 (2024).

    Article  Google Scholar 

  178. Dolbois, A. et al. 1,4,9-Triazaspiro[5.5]undecan-2-one derivatives as potent and selective METTL3 inhibitors. J. Med. Chem. 64, 12738–12760 (2021).

    Article  Google Scholar 

  179. Moroz‐Omori, E. V. et al. METTL3 inhibitors for epitranscriptomic modulation of cellular processes. ChemMedChem 16, 3035–3043 (2021).

    Article  Google Scholar 

  180. Chowdhury, R. et al. Selective small molecule probes for the hypoxia inducible factor (HIF) prolyl hydroxylases. ACS Chem. Biol. 8, 1488–1496 (2013).

    Article  Google Scholar 

  181. Nakashima, Y., Brewitz, L., Tumber, A., Salah, E. & Schofield, C. J. 2-Oxoglutarate derivatives can selectively enhance or inhibit the activity of human oxygenases. Nat. Commun. 12, 6478 (2021).

    Article  ADS  Google Scholar 

  182. Šimelis, K. et al. Selective targeting of human TET1 by cyclic peptide inhibitors: insights from biochemical profiling. Bioorg. Med. Chem. 99, 117597 (2024).

    Article  Google Scholar 

  183. You, Y. et al. Recent advances of m6A demethylases inhibitors and their biological functions in human diseases. Int. J. Mol. Sci. 23, 5815 (2022).

    Article  Google Scholar 

  184. Zhang, R., Li, Y., Wang, H., Zhu, K. & Zhang, G. Rhein regulates the proliferation and apoptosis of human leukaemia cells and its effects on the miR-27/CUL5 axis. Archiv. Med. Sci. https://doi.org/10.5114/aoms.2020.96711 (2020).

  185. Canaani, J. et al. A phase II study of bisantrene in patients with relapsed/refractory acute myeloid leukemia. Eur. J. Haematol. 106, 260–266 (2021).

    Article  Google Scholar 

  186. Boissel, S. et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am. J. Hum. Genet. 85, 106–111 (2009).

    Article  Google Scholar 

  187. Huang, T. et al. FTO knockout causes chromosome instability and G2/M arrest in mouse GC-1 cells. Front. Genet. 9, 732 (2019).

    Article  ADS  Google Scholar 

  188. Carnevali, L. et al. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice. PLoS ONE 9, e95499 (2014).

    Article  ADS  Google Scholar 

  189. Merkestein, M. et al. FTO influences adipogenesis by regulating mitotic clonal expansion. Nat. Commun. 6, 6792 (2015).

    Article  ADS  Google Scholar 

  190. Li, Y., Su, R., Deng, X., Chen, Y. & Chen, J. FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer 8, 598–614 (2022).

    Article  Google Scholar 

  191. Su, R. et al. Effective novel FTO inhibitors show potent anti-cancer efficacy and suppress drug resistance. Blood 134, 233 (2019).

    Article  Google Scholar 

  192. Huang, Y. et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell 35, 677–691.e10 (2019).

    Article  Google Scholar 

  193. Huang, Y. et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 43, 373–384 (2014).

    Article  Google Scholar 

  194. Huff, S., Tiwari, S. K., Gonzalez, G. M., Wang, Y. & Rana, T. M. m(6)A-RNA demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem. Biol. 16, 324–333 (2021).

    Article  Google Scholar 

  195. Sun, K. et al. Saikosaponin D exhibits anti-leukemic activity by targeting FTO/m(6)A signaling. Theranostics 11, 5831–5846 (2021).

    Article  Google Scholar 

  196. Hu, R. et al. N6-methyladenosine RNA modifications: a potential therapeutic target for AML. Ann. Hematol. https://doi.org/10.1007/s00277-023-05302-6 (2023).

  197. Papazoglou, P., Peng, L. & Sachinidis, A. Epigenetic mechanisms involved in the cardiovascular toxicity of anticancer drugs. Front. Cardiovasc. Med. 8, 658900 (2021).

    Article  Google Scholar 

  198. Huang, Y., Xia, W., Dong, Z. & Yang, C.-G. Chemical inhibitors targeting the oncogenic m6A modifying proteins. Acc. Chem. Res. 56, 3010–3022 (2023).

    Article  Google Scholar 

  199. Wang, Y.-Z. et al. Discovery of pyrazolo[1,5-a]pyrimidine derivative as a novel and selective ALKBH5 inhibitor for the treatment of AML. J. Med. Chem. 66, 15944–15959 (2023).

    Article  Google Scholar 

  200. Lai, G.-Q. et al. A covalent compound selectively inhibits RNA demethylase ALKBH5 rather than FTO. RSC Chem. Biol. 5, 335–343 (2024).

    Article  Google Scholar 

  201. Shi, P. & Wu, X. Programmable RNA targeting with CRISPR–Cas13. RNA Biol. 21, 1–9 (2024).

    Article  Google Scholar 

  202. Wilson, C., Chen, P. J., Miao, Z. & Liu, D. R. Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat. Biotechnol. 38, 1431–1440 (2020).

    Article  Google Scholar 

  203. Chang, C., Ma, G., Cheung, E. & Hutchins, A. P. A programmable system to methylate and demethylate N6-methyladenosine (m6A) on specific RNA transcripts in mammalian cells. J. Biol. Chem. 298, 102525 (2022).

    Article  Google Scholar 

  204. Xuan, J.-J. et al. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res. 46, D327–D334 (2017).

    Article  Google Scholar 

  205. Xuan, J. et al. RMBase v3.0: decode the landscape, mechanisms and functions of RNA modifications. Nucleic Acids Res. 52, D273–D284 (2023).

    Article  Google Scholar 

  206. Yang, X. et al. 5-Methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27, 606–625 (2017).

    Article  Google Scholar 

  207. Zhang, Y. et al. CDK13 promotes lipid deposition and prostate cancer progression by stimulating NSUN5-mediated m5C modification of ACC1 mRNA. Cell Death Differ. 30, 2462–2476 (2023).

    Article  Google Scholar 

  208. Zheng, Q. et al. Cytoplasmic m1A reader YTHDF3 inhibits trophoblast invasion by downregulation of m1A-methylated IGF1R. Cell Discov. 6, 12 (2020).

    Article  Google Scholar 

  209. Wu, Y. et al. RNA m(1)A methylation regulates glycolysis of cancer cells through modulating ATP5D. Proc. Natl Acad. Sci. USA 119, e2119038119 (2022).

    Article  Google Scholar 

  210. Seo, K. W. & Kleiner, R. E. YTHDF2 recognition of N1-methyladenosine (m1A)-modified RNA is associated with transcript destabilization. ACS Chem. Biol. 15, 132–139 (2019).

    Article  Google Scholar 

  211. Boo, S. H., Ha, H. & Kim, Y. K. m(1)A and m(6)A modifications function cooperatively to facilitate rapid mRNA degradation. Cell Rep. 40, 111317 (2022).

    Article  Google Scholar 

  212. Biever, A., Donlin-Asp, P. G. & Schuman, E. M. Local translation in neuronal processes. Curr. Opin. Neurobiol. 57, 141–148 (2019).

    Article  Google Scholar 

  213. Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).

    Article  Google Scholar 

  214. Deng, Y. et al. Spatial-CUT&tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    Article  ADS  Google Scholar 

  215. Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

    Article  ADS  Google Scholar 

  216. Merkurjev, D. et al. Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts. Nat. Neurosci. 21, 1004–1014 (2018).

    Article  Google Scholar 

  217. Yu, J. et al. Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res. 46, 1412–1423 (2018).

    Article  Google Scholar 

  218. Weng, Y.-L. et al. Epitranscriptomic m6A regulation of axon regeneration in the adult mammalian nervous system. Neuron 97, 313–325.e6 (2018).

    Article  Google Scholar 

  219. Feng, Z. et al. Lighting up RNA-specific multi-photon and super-resolution imaging using a novel zinc complex. Nanoscale 15, 5486–5493 (2023).

    Article  Google Scholar 

  220. Marayati, B. F., Thompson, M. G., Holley, C. L., Horner, S. M. & Meyer, K. D. Programmable protein expression using a genetically encoded m6A sensor. Nat. Biotechnol. 42, 1417–1428 (2024).

    Article  Google Scholar 

  221. Selberg, S. et al. Discovery of small molecules that activate RNA methylation through cooperative binding to the METTL3-14-WTAP complex active site. Cell Rep. 26, 3762–3771.e5 (2019).

    Article  Google Scholar 

  222. Li, J. & Gregory, R. I. Mining for METTL3 inhibitors to suppress cancer. Nat. Struct. Mol. Biol. 28, 460–462 (2021).

    Article  Google Scholar 

  223. Sturgess, K. et al. Pharmacological inhibition of METTL3 impacts specific haematopoietic lineages. Leukemia 37, 2133–2137 (2023).

    Article  Google Scholar 

  224. Brewer, G. METTL3 inhibition enhances anti-tumour immunity. Nat. Rev. Cancer 23, 654–654 (2023).

    Article  Google Scholar 

  225. Su, R. et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell 172, 90–105.e23 (2018).

    Article  Google Scholar 

  226. Li, F., Zhao, D., Wu, J. & Shi, Y. Structure of the YTH domain of human YTHDF2 in complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition. Cell Res. 24, 1490–1492 (2014).

    Article  Google Scholar 

  227. Patil, D. P. et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369–373 (2016).

    Article  ADS  Google Scholar 

  228. Liu, J. et al. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367, 580–586 (2020).

    Article  ADS  Google Scholar 

  229. Widagdo, J., Anggono, V. & Wong, J. J.-L. The multifaceted effects of YTHDC1-mediated nuclear m6A recognition. Trends Genet. 38, 325–332 (2022).

    Article  Google Scholar 

  230. Liu, J. et al. YTHDF2/3 are required for somatic reprogramming through different RNA deadenylation pathways. Cell Rep. 32, 108120 (2020).

    Article  Google Scholar 

  231. Chen, Y. et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A-guided epigenetic inhibition of LYPD1. Mol. Cancer 19, 123 (2020).

    Article  Google Scholar 

  232. Xue, M. et al. MFAP2, upregulated by m1A methylation, promotes colorectal cancer invasiveness via CLK3. Cancer Med. 12, 8403–8414 (2023).

    Article  Google Scholar 

  233. Yang, J. et al. Mapping of complete set of ribose and base modifications of yeast rRNA by RP-HPLC and mung bean nuclease assay. PLoS ONE 11, e0168873 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank G. Moshkovitz for drawing the figures. This work was supported by the infrastructure grant of the Israel Innovation Authority, Israel Ministry of Health and the National Headquarter ‘Digital Israel’. The authors also thank the Kahn Family Foundation for continuous support of their research. D.D. is supported by grants from the Israel Science Foundation (2494/18 and 2625/17) and the Human Frontier Science Program (CDA 00048/2018). G.R. is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 743168) and the Flight Attendant Medical Research Institute (FAMRI). G.R. and D.D. are supported by the German–Israeli Project Cooperation (DIP) of the German Federal Ministry of Education and Research and by a grant from the Varda and Boaz Dotan Research Center in Hemato-Oncology, Tel Aviv University. G.R. holds the Djerassi Chair in Oncology at the Tel Aviv University.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (G.R., S.M.-M., M.S.-S., and D.D.); Experimentation (S.M.-M., E.G.-S. and M.S.-S.); Results (E.G.-S., R.A.-F. and S.M.-M.); Applications (S.M.-M. and G.R.); Reproducibility and data deposition (R.A.-F.); Limitations and optimizations (S.M.-M. and G.R.); Outlook (S.M.-M. and G.R.); overview of the Primer (S.M.-M., G.R. and D.D.).

Corresponding author

Correspondence to Sharon Moshitch-Moshkovitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Arne Klungland, Guan-Zheng Luo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European Nucleotide Archive: https://www.ebi.ac.uk/ena/browser/submit

FastQC: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Gene Expression Omnibus: https://www.ncbi.nlm.nih.gov/geo/

Picard MarkDuplicates: https://broadinstitute.github.io/picard/

Sequence Read Archive: https://www.ncbi.nlm.nih.gov/sra

Trim Galore: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshitch-Moshkovitz, S., Sevilla-Sharon, M., Ashwal-Fluss, R. et al. mRNA m6A detection. Nat Rev Methods Primers 4, 87 (2024). https://doi.org/10.1038/s43586-024-00365-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00365-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing