Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Perovskite solar cells

Abstract

Photovoltaic technologies have emerged as crucial solutions to the global energy crisis and climate change challenges. Although silicon-based solar cells have long dominated the market, metal halide perovskite solar cells (PSCs) have rapidly advanced as a promising alternative. Despite their relatively short history, PSCs are progressing at an unprecedented rate, driven by global research efforts that capitalize on their unique advantages. These innovative cells offer lower manufacturing costs, simpler fabrication processes and greater mechanical flexibility compared with traditional silicon cells. Remarkably, their power conversion efficiency has recently surpassed 26%, approaching that of silicon cells. This Primer outlines the diverse fabrication methods for high-performance PSCs, focusing on three key components: the photoactive layer, charge-transporting layers and electrodes. The photoactive layer, typically made of ABX₃ perovskite materials, is crucial for light absorption and forms the cornerstone of device functionality. Charge-transporting layers, specifically the electron and hole transport layers, facilitate efficient charge movement and mitigate recombination losses, enhancing overall cell performance. Electrodes, traditionally formed by pure metals or metal oxides, complete the cell structure and govern additional functionalities, such as mechanical flexibility and cell transparency. This Primer concludes by examining current limitations and offers insights into the future prospects of PSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram illustrating the operating principles of perovskite solar cells.
Fig. 2: Schematic illustration of strategies for α-phase FAPbI3 stabilization.
Fig. 3: Precursor design for common crystallization strategy for α-phase FAPbI3.
Fig. 4: Schematic illustration of solution-based perovskite thin film fabrication.
Fig. 5: Schematic illustration of thermal evaporation fabrication process.
Fig. 6: Schematic illustration of the fabrication process for a quantum dot active layer.
Fig. 7: A typical current density–voltage (JV) curve and quantum efficiency spectrum as a function of wavelength.

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). To our knowledge, this is the first report on perovskite solar cells.

    Article  Google Scholar 

  2. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). To our knowledge, this article reports the first solid-state perovskite solar cells.

    Article  MATH  Google Scholar 

  3. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  ADS  Google Scholar 

  4. Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    Article  MATH  Google Scholar 

  5. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    Article  ADS  MATH  Google Scholar 

  6. Taylor, A. D. et al. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun. 12, 1878 (2021).

    Article  ADS  MATH  Google Scholar 

  7. Han, J. et al. Genetic manipulation of M13 bacteriophage for enhancing the efficiency of virus‐inoculated perovskite solar cells with a certified efficiency of 22.3. Adv. Energy Mater. https://doi.org/10.1002/aenm.202101221 (2021).

  8. Kim, K. et al. Homogeneously miscible fullerene inducing vertical gradient in perovskite thin‐film toward highly efficient solar cells. Adv. Energy Mater. https://doi.org/10.1002/aenm.202200877 (2022).

  9. Kim, K. et al. Liquid‐state dithiocarbonate‐based polymeric additives with monodispersity rendering perovskite solar cells with exceptionally high certified photocurrent and fill factor. Adv. Energy Mater. 13, 2203742 (2023).

    Article  ADS  Google Scholar 

  10. Lee, J.-W. et al. A bifunctional Lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 3, 290–302 (2017).

    Article  MATH  Google Scholar 

  11. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  ADS  MATH  Google Scholar 

  12. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  ADS  MATH  Google Scholar 

  13. Chen, Q. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014).

    Article  MATH  Google Scholar 

  14. Zuo, L. et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, e1700106 (2017).

    Article  ADS  Google Scholar 

  15. Zuo, L. et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137, 2674–2679 (2015).

    Article  MATH  Google Scholar 

  16. Degani, M. et al. 23.7% efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 7, eabj7930 (2021).

    Article  ADS  MATH  Google Scholar 

  17. Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article  ADS  MATH  Google Scholar 

  18. Amat, A. et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014).

    Article  ADS  MATH  Google Scholar 

  19. Goyal, A. et al. Origin of pronounced nonlinear band gap behavior in lead–tin hybrid perovskite alloys. Chem. Mater. 30, 3920–3928 (2018).

    Article  MATH  Google Scholar 

  20. Fan, Z., Sun, K. & Wang, J. Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. J. Mater. Chem. A Mater. 3, 18809–18828 (2015).

    Article  Google Scholar 

  21. Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article  ADS  MATH  Google Scholar 

  22. Liang, Z. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023).

    Article  ADS  MATH  Google Scholar 

  23. Lee, J., Seol, D., Cho, A. & Park, N. High‐efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26, 4991–4998 (2014).

    Article  MATH  Google Scholar 

  24. Kim, J. Y., Lee, J.-W., Jung, H. S. & Shin, H. & Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020).

    Article  Google Scholar 

  25. Lee, J.-W. et al. Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022).

    Article  Google Scholar 

  26. Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).

    Article  ADS  MATH  Google Scholar 

  27. Qiu, Z., Li, N., Huang, Z., Chen, Q. & Zhou, H. Recent advances in improving phase stability of perovskite solar cells. Small Methods https://doi.org/10.1002/smtd.201900877 (2020).

  28. Chen, T. et al. Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2, e1601650 (2016).

    Article  ADS  Google Scholar 

  29. Bechtel, J. S. & Van der Ven, A. Octahedral tilting instabilities in inorganic halide perovskites. Phys. Rev. Mater. 2, 025401 (2018).

    Article  MATH  Google Scholar 

  30. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  MATH  Google Scholar 

  31. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  ADS  MATH  Google Scholar 

  32. Jang, Y.-W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).

    Article  ADS  MATH  Google Scholar 

  33. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019). This article is a pioneering work that shows the potential of surface passivation, now widely used in state-of-the-art perovskite solar cells.

    Article  ADS  MATH  Google Scholar 

  34. Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article  ADS  MATH  Google Scholar 

  35. Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

    Article  ADS  MATH  Google Scholar 

  36. Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article  ADS  MATH  Google Scholar 

  37. Peng, W. et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023).

    Article  ADS  MATH  Google Scholar 

  38. Wu, X. et al. Backbone engineering enables highly efficient polymer hole‐transporting materials for inverted perovskite solar cells. Adv. Mater. 35, e2208431 (2023).

    Article  Google Scholar 

  39. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article  ADS  MATH  Google Scholar 

  40. Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article  ADS  MATH  Google Scholar 

  41. Lee, J. et al. Formamidinium and cesium hybridization for photo‐ and moisture‐stable perovskite solar cell. Adv. Energy Mater. https://doi.org/10.1002/aenm.201501310 (2015). This article reports a strategy for stabilizing formamidinium perovskites, widely used in state-of-the-art perovskite solar cells.

  42. Liu, X. et al. Stabilization of photoactive phases for perovskite photovoltaics. Nat. Rev. Chem. 7, 462–479 (2023).

    Article  ADS  MATH  Google Scholar 

  43. Isikgor, F. H. et al. Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5, 1566–1586 (2021).

    Article  Google Scholar 

  44. Li, N. et al. Microscopic degradation in formamidinium–cesium lead iodide perovskite solar cells under operational stressors. Joule 4, 1743–1758 (2020).

    Article  MATH  Google Scholar 

  45. Jeong, M. J. et al. Boosting radiation of stacked halide layer for perovskite solar cells with efficiency over 25%. Joule 7, 112–127 (2023).

    Article  MATH  Google Scholar 

  46. Kim, M. et al. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022).

    Article  ADS  MATH  Google Scholar 

  47. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  ADS  MATH  Google Scholar 

  48. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  ADS  MATH  Google Scholar 

  49. Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article  MATH  Google Scholar 

  50. Lee, J.-W. et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9, 3021 (2018).

    Article  ADS  MATH  Google Scholar 

  51. Sidhik, S. et al. Two-dimensional perovskite templates for durable, efficient formamidinium perovskite solar cells. Science 384, 1227–1235 (2024).

    Article  ADS  MATH  Google Scholar 

  52. Lee, J.-W. et al. Solid-phase hetero epitaxial growth of α-phase formamidinium perovskite. Nat. Commun. 11, 5514 (2020).

    Article  ADS  MATH  Google Scholar 

  53. Ahn, N. et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015). This article reports a methodology for depositing uniform perovskite films, widely used in perovskite solar cells.

    Article  MATH  Google Scholar 

  54. Lee, J.-W., Kim, H.-S. & Park, N.-G. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016).

    Article  MATH  Google Scholar 

  55. Hamill, J. C., Schwartz, J. & Loo, Y.-L. Influence of solvent coordination on hybrid organic–inorganic perovskite formation. ACS Energy Lett. 3, 92–97 (2018).

    Article  Google Scholar 

  56. Lee, J.-W. et al. Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317–6324 (2018).

    Article  MATH  Google Scholar 

  57. Wu, T. et al. Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%. J. Power Sources 365, 1–6 (2017).

    Article  ADS  MATH  Google Scholar 

  58. Lee, C. M. et al. Impact of ternary solvent on the grain size and defects of perovskite layer to realize a stable morphology for efficient inverted solar cells. Sol. RRL https://doi.org/10.1002/solr.202300604 (2023).

  59. Bautista-Quijano, J. R., Telschow, O., Paulus, F. & Vaynzof, Y. Solvent–antisolvent interactions in metal halide perovskites. Chem. Commun. 59, 10588–10603 (2023).

    Article  Google Scholar 

  60. Goetz, K. P. & Vaynzof, Y. The challenge of making the same device twice in perovskite photovoltaics. ACS Energy Lett. 7, 1750–1757 (2022).

    Article  MATH  Google Scholar 

  61. Ahn, N., Kang, S. M., Lee, J.-W., Choi, M. & Park, N.-G. Thermodynamic regulation of CH3NH3PbI3 crystal growth and its effect on photovoltaic performance of perovskite solar cells. J. Mater. Chem. A Mater. 3, 19901–19906 (2015).

    Article  MATH  Google Scholar 

  62. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  ADS  MATH  Google Scholar 

  63. Xie, L. et al. Efficient and stable low-bandgap perovskite solar cells enabled by a CsPbBr3-cluster assisted bottom-up crystallization approach. J. Am. Chem. Soc. 141, 20537–20546 (2019).

    Article  Google Scholar 

  64. Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

    Article  ADS  MATH  Google Scholar 

  65. Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016). This article is one of the first pioneering works demonstrating the potential of perovskite quantum dot solar cells.

    Article  ADS  MATH  Google Scholar 

  66. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    Article  ADS  MATH  Google Scholar 

  67. Tan, S. et al. Steric impediment of ion migration contributes to improved operational stability of perovskite solar cells. Adv. Mater. 2, e1906995 (2020).

    Article  Google Scholar 

  68. Park, K. et al. Atmospheric humidity underlies irreproducibility of formamidinium lead iodide perovskites. Adv. Mater. 36, e2307265 (2024).

    Article  Google Scholar 

  69. Tan, S. et al. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule 4, 2426–2442 (2020).

    Article  MATH  Google Scholar 

  70. Tan, S. et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268–273 (2022).

    Article  ADS  MATH  Google Scholar 

  71. Huang, T., Tan, S. & Yang, Y. Material, phase, and interface stability of photovoltaic perovskite: a perspective. J. Phys. Chem. C 125, 19088–19096 (2021).

    Article  MATH  Google Scholar 

  72. Han, T. et al. Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv. Mater. 31, e1803515 (2019).

    Article  ADS  Google Scholar 

  73. Tan, S. et al. Surface reconstruction of halide perovskites during post-treatment. J. Am. Chem. Soc. 143, 6781–6786 (2021).

    Article  MATH  Google Scholar 

  74. Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).

    Article  ADS  MATH  Google Scholar 

  75. Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  ADS  MATH  Google Scholar 

  76. Zhou, P. et al. Ultrasonic spray-coating of large-scale TiO2 compact layer for efficient flexible perovskite solar cells. Micromachines 8, 55 (2017).

    Article  MATH  Google Scholar 

  77. Das, S. et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photon. 2, 680–686 (2015).

    Article  MATH  Google Scholar 

  78. Wang, Z. et al. Rational interface design and morphology control for blade‐coating efficient flexible perovskite solar cells with a record fill factor of 81%. Adv. Funct. Mater. 30, 2001240 (2020).

    Article  Google Scholar 

  79. Wilk, B. et al. Green solvent-based perovskite precursor development for ink-jet printed flexible solar cells. ACS Sustain. Chem. Eng. 9, 3920–3930 (2021).

    Article  MATH  Google Scholar 

  80. Xing, Z. et al. A highly tolerant printing for scalable and flexible perovskite solar cells. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202107726 (2021).

  81. Li, H. et al. Fully roll-to-roll processed efficient perovskite solar cells via precise control on the morphology of PbI2:CsI layer. Nanomicro Lett. 14, 79 (2022).

    ADS  MATH  Google Scholar 

  82. Krechetnikov, R. & Homsy, G. M. Surfactant effects in the Landau–Levich problem. J. Fluid Mech. 559, 429 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Parvazian, E., Abdollah-zadeh, A., Dehghani, M. & Taghavinia, N. Photovoltaic performance improvement in vacuum-assisted meniscus printed triple-cation mixed-halide perovskite films by surfactant engineering. ACS Appl. Energy Mater. 2, 6209–6217 (2019).

    Article  Google Scholar 

  84. Li, C. et al. Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with >18% efficiency. J. Am. Chem. Soc. 141, 6345–6351 (2019).

    Article  MATH  Google Scholar 

  85. Lee, S. & Nam, J. Analysis of slot coating flow under tilted die. AIChE J. 61, 1745–1758 (2015).

    Article  ADS  MATH  Google Scholar 

  86. Krebs, F. C. Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cell 93, 394–412 (2009).

    Article  MATH  Google Scholar 

  87. Cotella, G. et al. One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cell 159, 362–369 (2017).

    Article  Google Scholar 

  88. Heo, J. H., Lee, M. H., Jang, M. H. & Im, S. H. Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. A Mater. 4, 17636–17642 (2016).

    Article  Google Scholar 

  89. Yu, Y.-T. et al. One-step spray-coated all-inorganic CsPbI2Br perovskite solar cells. ACS Appl. Energy Mater. 4, 5466–5474 (2021).

    Article  Google Scholar 

  90. Bishop, J. E., Read, C. D., Smith, J. A., Routledge, T. J. & Lidzey, D. G. Fully spray-coated triple-cation perovskite solar cells. Sci. Rep. 10, 6610 (2020).

    Article  ADS  Google Scholar 

  91. Barrows, A. T. et al. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7, 2944–2950 (2014).

    Article  MATH  Google Scholar 

  92. Zhang, L. et al. Ambient inkjet‐printed high‐efficiency perovskite solar cells: manipulating the spreading and crystallization behaviors of picoliter perovskite droplets. Sol. RRL https://doi.org/10.1002/solr.202100106 (2021).

  93. Duan, Y., Huang, Y., Yin, Z., Bu, N. & Dong, W. Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. Nanoscale 6, 3289 (2014).

    Article  ADS  Google Scholar 

  94. Fromm, J. E. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28, 322–333 (1984).

    Article  MATH  Google Scholar 

  95. Vaynzof, Y. The future of perovskite photovoltaics — thermal evaporation or solution processing? Adv. Energy Mater. https://doi.org/10.1002/aenm.202003073 (2020).

  96. Ji, R. et al. Perovskite phase heterojunction solar cells. Nat. Energy 7, 1170–1179 (2022).

    Article  ADS  MATH  Google Scholar 

  97. Kottokkaran, R., Gaonkar, H. A., Abbas, H. A., Noack, M. & Dalal, V. Performance and stability of co-evaporated vapor deposited perovskite solar cells. J. Mater. Sci. Mater. Electron. 30, 5487–5494 (2019).

    Article  Google Scholar 

  98. Wang, S. et al. Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. J. Mater. Chem. A Mater. 3, 14631–14641 (2015).

    Article  MATH  Google Scholar 

  99. Kim, B.-S., Choi, M.-H., Choi, M.-S. & Kim, J.-J. Composition-controlled organometal halide perovskite via CH3NH3I pressure in a vacuum co-deposition process. J. Mater. Chem. A Mater. 4, 5663–5668 (2016).

    Article  MATH  Google Scholar 

  100. Teuscher, J., Ulianov, A., Müntener, O., Grätzel, M. & Tétreault, N. Control and study of the stoichiometry in evaporated perovskite solar cells. ChemSusChem 8, 3847–3852 (2015).

    Article  Google Scholar 

  101. Kim, B.-S., Gil-Escrig, L., Sessolo, M. & Bolink, H. J. Deposition kinetics and compositional control of vacuum-processed CH3NH3PbI3 perovskite. J. Phys. Chem. Lett. 11, 6852–6859 (2020).

    Article  MATH  Google Scholar 

  102. Kroll, M. et al. Insights into the evaporation behaviour of FAI: material degradation and consequences for perovskite solar cells. Sustain. Energy Fuels 6, 3230–3239 (2022).

    Article  MATH  Google Scholar 

  103. Lee, J., Kim, B. S., Park, J., Lee, J. & Kim, K. Opportunities and challenges for perovskite solar cells based on vacuum thermal evaporation. Adv. Mater. Technol. 8, 2200928 (2023).

    Article  MATH  Google Scholar 

  104. Zhou, J. et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule 8, 1691–1706 (2024).

    Article  MATH  Google Scholar 

  105. Li, H. et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8, eabo7422 (2022).

    Article  Google Scholar 

  106. Zhang, W. et al. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 6, 10030 (2015).

    Article  ADS  MATH  Google Scholar 

  107. Zhao, Y. & Zhu, K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412–9418 (2014).

    Article  ADS  MATH  Google Scholar 

  108. Soltanpoor, W. et al. Hybrid vapor-solution sequentially deposited mixed-halide perovskite solar cells. ACS Appl. Energy Mater. 3, 8257–8265 (2020).

    Article  MATH  Google Scholar 

  109. Wang, S. et al. Over 24% efficient MA-free CsxFA1−xPbX3 perovskite solar cells. Joule 6, 1344–1356 (2022).

    Article  MATH  Google Scholar 

  110. Aqoma, H. et al. Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells. Nat. Energy 9, 324–332 (2024).

    Article  ADS  Google Scholar 

  111. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  ADS  Google Scholar 

  112. Zhang, F. et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015).

    Article  MATH  Google Scholar 

  113. Lignos, I. et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Lett. 16, 1869–1877 (2016).

    Article  ADS  MATH  Google Scholar 

  114. Wheeler, L. M. et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140, 10504–10513 (2018).

    Article  MATH  Google Scholar 

  115. Xue, J. et al. Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2, 1866–1878 (2018).

    Article  MATH  Google Scholar 

  116. Akkerman, Q. A. et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015).

    Article  MATH  Google Scholar 

  117. Shi, J. et al. In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high‐performance photovoltaics and red light‐emitting diodes. Angew. Chem. Int. Ed. 59, 22230–22237 (2020).

    Article  Google Scholar 

  118. Bi, C., Kershaw, S. V., Rogach, A. L. & Tian, J. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201902446 (2019).

  119. Sanehira, E. M. et al. Enhanced mobility CsPb3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017).

    Article  Google Scholar 

  120. Flora, G., Gupta, D. & Tiwari, A. Toxicity of lead: a review with recent updates. Interdiscip. Toxicol. 5, 47–58 (2012).

    Article  MATH  Google Scholar 

  121. Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

    Article  ADS  MATH  Google Scholar 

  122. Chen, S. et al. Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells. Nat. Sustain. 4, 636–643 (2021).

    Article  MATH  Google Scholar 

  123. Wu, P., Wang, S., Li, X. & Zhang, F. Beyond efficiency fever: preventing lead leakage for perovskite solar cells. Matter 5, 1137–1161 (2022).

    Article  MATH  Google Scholar 

  124. Liang, Y. et al. Lead leakage preventable fullerene–porphyrin dyad for efficient and stable perovskite solar cells. Adv. Funct. Mater. 32, 2110139 (2022).

    Article  Google Scholar 

  125. Jiang, X. et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 11, 1245 (2020).

    Article  ADS  MATH  Google Scholar 

  126. López‐Fernández, I. et al. Lead‐free halide perovskite materials and optoelectronic devices: progress and prospective. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202307896 (2024).

  127. Jeon, I. et al. Environmentally compatible lead-free perovskite solar cells and their potential as light harvesters in energy storage systems. Nanomaterials 11, 2066 (2021).

    Article  MATH  Google Scholar 

  128. Yu, B. et al. Heterogeneous 2D/3D tin‐halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. https://doi.org/10.1002/adma.202102055 (2021).

  129. Xiao, Z., Song, Z. & Yan, Y. From lead halide perovskites to lead‐free metal halide perovskites and perovskite derivatives. Adv. Mater. 31, e1803792 (2019).

    Article  Google Scholar 

  130. Jokar, E. et al. Mixing of azetidinium in formamidinium tin triiodide perovskite solar cells for enhanced photovoltaic performance and high stability in air. ChemSusChem 14, 4415–4421 (2021).

    Article  MATH  Google Scholar 

  131. Kuan, C.-H. et al. Additive engineering with triple cations and bifunctional sulfamic acid for tin perovskite solar cells attaining a PCE value of 12.5% without hysteresis. ACS Energy Lett. 7, 4436–4442 (2022).

    Article  MATH  Google Scholar 

  132. Jokar, E., Chien, C., Tsai, C., Fathi, A. & Diau, E. W. Robust tin‐based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. https://doi.org/10.1002/adma.201804835 (2019).

  133. Jokar, E. et al. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 11, 2353–2362 (2018). This article is one of the earliest works contributing to efficiency and stability improvements in lead-free perovskite solar cells.

    Article  MATH  Google Scholar 

  134. Shahbazi, S., Li, M.-Y., Fathi, A. & Diau, E. W.-G. Realizing a cosolvent system for stable tin-based perovskite solar cells using a two-step deposition approach. ACS Energy Lett. 5, 2508–2511 (2020).

    Article  Google Scholar 

  135. Kuan, C.-H., Ko, Y.-A. & Wei-Guang Diau, E. Surface and interfacial passivations for FASnI3 solar cells with co-cations. ACS Energy Lett. 8, 2423–2425 (2023).

    Article  Google Scholar 

  136. Jokar, E. et al. Enhanced performance and stability of 3D/2D tin perovskite solar cells fabricated with a sequential solution deposition. ACS Energy Lett. 6, 485–492 (2021).

    Article  MATH  Google Scholar 

  137. Kuan, C.-H. et al. How can a hydrophobic polymer PTAA serve as a hole-transport layer for an inverted tin perovskite solar cell? Chem. Eng. J. 450, 138037 (2022).

    Article  Google Scholar 

  138. Kuan, C. et al. Dopant‐free pyrrolopyrrole‐based (PPr) polymeric hole‐transporting materials for efficient tin‐based perovskite solar cells with stability over 6000 h. Adv. Mater. 35, e2300681 (2023).

    Article  Google Scholar 

  139. Balasaravanan, R. et al. Triphenylamine (TPA)‐functionalized structural isomeric polythiophenes as dopant free hole‐transporting materials for tin perovskite solar cells. Adv. Energy Mater. https://doi.org/10.1002/aenm.202302047 (2023).

  140. Afraj, S. N. et al. Quinoxaline‐based X‐shaped sensitizers as self‐assembled monolayer for tin perovskite solar cells. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202213939 (2023).

  141. Song, D., Narra, S., Li, M.-Y., Lin, J.-S. & Diau, E. W.-G. Interfacial engineering with a hole-selective self-assembled monolayer for tin perovskite solar cells via a two-step fabrication. ACS Energy Lett. 6, 4179–4186 (2021).

    Article  ADS  Google Scholar 

  142. Abid, A., Rajamanickam, P. & Wei-Guang Diau, E. Design of a simple bifunctional system as a self-assembled monolayer (SAM) for inverted tin-based perovskite solar cells. Chem. Eng. J. 477, 146755 (2023).

    Article  Google Scholar 

  143. Wu, T. et al. Lead-free tin perovskite solar cells. Joule 5, 863–886 (2021).

    Article  Google Scholar 

  144. Song, T.-B. et al. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J. Am. Chem. Soc. 139, 836–842 (2017).

    Article  MATH  Google Scholar 

  145. Macdonald, T. J., Lanzetta, L., Liang, X., Ding, D. & Haque, S. A. Engineering stable lead‐free tin halide perovskite solar cells: lessons from materials chemistry. Adv. Mater. 35, e2206684 (2023).

    Article  Google Scholar 

  146. Kim, G. et al. Sustainable and environmentally viable perovskite solar cells. EcoMat https://doi.org/10.1002/eom2.12319 (2023).

  147. Jokar, E., Cai, L., Han, J., Nacpil, E. J. C. & Jeon, I. Emerging opportunities in lead-free and lead–tin perovskites for environmentally viable photodetector applications. Chem. Mater. 35, 3404–3426 (2023).

    Article  Google Scholar 

  148. Byranvand, M. M., Zuo, W., Imani, R., Pazoki, M. & Saliba, M. Tin-based halide perovskite materials: properties and applications. Chem. Sci. 13, 6766–6781 (2022).

    Article  MATH  Google Scholar 

  149. Aktas, E. et al. Challenges and strategies toward long-term stability of lead-free tin-based perovskite solar cells. Commun. Mater. 3, 104 (2022).

    Article  MATH  Google Scholar 

  150. Slavney, A. H., Hu, T., Lindenberg, A. M. & Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016).

    Article  Google Scholar 

  151. Chu, L. et al. Lead-free halide double perovskite materials: a new superstar toward green and stable optoelectronic applications. Nanomicro Lett. 11, 16 (2019).

    ADS  MATH  Google Scholar 

  152. McClure, E. T., Ball, M. R., Windl, W. & Woodward, P. M. Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28, 1348–1354 (2016).

    Article  Google Scholar 

  153. Khalfin, S. & Bekenstein, Y. Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability. Nanoscale 11, 8665–8679 (2019).

    Article  MATH  Google Scholar 

  154. Diao, X. et al. High-throughput screening of stable and efficient double inorganic halide perovskite materials by DFT. Sci. Rep. 12, 12633 (2022).

    Article  ADS  MATH  Google Scholar 

  155. Tong, J. et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article  ADS  MATH  Google Scholar 

  156. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  ADS  MATH  Google Scholar 

  157. Xu, J. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    Article  ADS  MATH  Google Scholar 

  158. Abdollahi Nejand, B. et al. Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nat. Energy 7, 620–630 (2022).

    Article  ADS  Google Scholar 

  159. Ghosh, S., Shankar, H. & Kar, P. Recent developments of lead-free halide double perovskites: a new superstar in the optoelectronic field. Mater. Adv. 3, 3742–3765 (2022).

    Article  MATH  Google Scholar 

  160. Ahn, N. et al. Carbon-sandwiched perovskite solar cell. J. Mater. Chem. A Mater. 6, 1382–1389 (2018).

    Article  MATH  Google Scholar 

  161. Kogo, A., Sanehira, Y., Numata, Y., Ikegami, M. & Miyasaka, T. Amorphous metal oxide blocking layers for highly efficient low-temperature brookite TiO2-based perovskite solar cells. ACS Appl. Mater. Interfaces 10, 2224–2229 (2018).

    Article  Google Scholar 

  162. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  ADS  MATH  Google Scholar 

  163. Jiang, Q., Zhang, X. & You, J. SnO2: a wonderful electron transport layer for perovskite solar cells. Small 14, e1801154 (2018).

    Article  Google Scholar 

  164. Hu, W., Yang, S. & Yang, S. Surface modification of TiO2 for perovskite solar cells. Trends Chem. 2, 148–162 (2020).

    Article  MATH  Google Scholar 

  165. Park, M. et al. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy 26, 208–215 (2016).

    Article  MATH  Google Scholar 

  166. Jiang, Q. et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016).

    Article  ADS  Google Scholar 

  167. Wang, D., He, T., Li, S., Jiang, Y. & Yuan, M. Li-doped chemical bath deposited SnO2 enables efficient perovskite photovoltaics. ACS Appl. Energy Mater. 5, 5340–5347 (2022).

    Article  Google Scholar 

  168. Long, W., He, A., Xie, S., Yang, X. & Wu, L. Prospect of SnO2 electron transport layer deposited by ultrasonic spraying. Energies 15, 3211 (2022).

    Article  MATH  Google Scholar 

  169. Thote, A. et al. High-working-pressure sputtering of ZnO for stable and efficient perovskite solar cells. ACS Appl. Electron. Mater. 1, 389–396 (2019).

    Article  Google Scholar 

  170. Ciro, J. et al. Self-functionalization behind a solution-processed NiOx film used as hole transporting layer for efficient perovskite solar cells. ACS Appl. Mater. Interfaces 9, 12348–12354 (2017).

    Article  MATH  Google Scholar 

  171. Liu, M.-H. et al. p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells. Opt. Express 24, A1349 (2016).

    Article  MATH  Google Scholar 

  172. Yin, X., Guo, Y., Xie, H., Que, W. & Kong, L. B. Nickel oxide as efficient hole transport materials for perovskite solar cells. Solar RRL https://doi.org/10.1002/solr.201900001 (2019).

  173. Zhu, Z. et al. High‐performance hole‐extraction layer of sol–gel‐processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 12571–12575 (2014).

    Article  MATH  Google Scholar 

  174. Liu, Z. et al. High‐performance planar perovskite solar cells using low temperature, solution–combustion‐based nickel oxide hole transporting layer with efficiency exceeding 20%. Adv. Energy Mater. 8, 1703432 (2018).

    Article  ADS  Google Scholar 

  175. Ye, F. et al. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy Environ. Sci. 9, 2295–2301 (2016).

    Article  MATH  Google Scholar 

  176. Sun, J. et al. Inverted perovskite solar cells with high fill-factors featuring chemical bath deposited mesoporous NiO hole transporting layers. Nano Energy 49, 163–171 (2018).

    Article  Google Scholar 

  177. Park, I. J. et al. Highly efficient and uniform 1 cm2 perovskite solar cells with an electrochemically deposited NiOx hole‐extraction layer. ChemSusChem 10, 2660–2667 (2017).

    Article  MATH  Google Scholar 

  178. Seo, S. et al. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale 8, 11403–11412 (2016).

    Article  ADS  MATH  Google Scholar 

  179. Zheng, X. et al. Interface modification of sputtered NiOx as the hole-transporting layer for efficient inverted planar perovskite solar cells. J. Mater. Chem. C Mater. 8, 1972–1980 (2020).

    Article  MATH  Google Scholar 

  180. Qiu, Z. et al. Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency. J. Mater. Chem. C. Mater, 5, 7084–7094 (2017).

    Article  ADS  MATH  Google Scholar 

  181. Abzieher, T. et al. Electron‐beam‐evaporated nickel oxide hole transport layers for perovskite‐based photovoltaics. Adv. Energy Mater. 9, 1802995 (2019).

    Article  Google Scholar 

  182. Guo, R. et al. Significant performance enhancement of all‐inorganic CsPbBr3 perovskite solar cells enabled by Nb‐doped SnO2 as effective electron transport layer. Energy Environ. Mater. 4, 671–680 (2021).

    Article  ADS  MATH  Google Scholar 

  183. Lee, Y. et al. Efficient planar perovskite solar cells using passivated tin oxide as an electron transport layer. Adv. Sci. 5, 1800130 (2018).

    Article  Google Scholar 

  184. George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).

    Article  MATH  Google Scholar 

  185. Profijt, H. B., Potts, S. E., van de Sanden, M. C. M. & Kessels, W. M. M. Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. J. Vac. Sci. Technol. A Vac. Surf. Films 29, 050801 (2011).

    Article  ADS  Google Scholar 

  186. Zardetto, V. et al. Opportunities of atomic layer deposition for perovskite solar cells. ECS Trans. 69, 15–22 (2015).

    Article  MATH  Google Scholar 

  187. Zardetto, V. et al. Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustain. Energy Fuels 1, 30–55 (2017).

    Article  MATH  Google Scholar 

  188. Du, M. et al. Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule 6, 1931–1943 (2022).

    Article  MATH  Google Scholar 

  189. Son, M.-K. et al. A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes. Energy Environ. Sci. 10, 912–918 (2017).

    Article  MATH  Google Scholar 

  190. Kim, J. H. et al. High‐performance and environmentally stable planar heterojunction perovskite solar cells based on a solution‐processed copper‐doped nickel oxide hole‐transporting layer. Adv. Mater. 27, 695–701 (2015).

    Article  MATH  Google Scholar 

  191. Chen, W. et al. Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 7, 1700722 (2017).

    Article  ADS  Google Scholar 

  192. Ru, P. et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. https://doi.org/10.1002/aenm.201903487 (2020).

  193. Li, C. et al. Efficient inverted perovskite solar cells with a fill factor over 86% via surface modification of the nickel oxide hole contact. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202214774 (2023).

  194. Eggers, H. et al. Inkjet‐printed micrometer‐thick perovskite solar cells with large columnar grains. Adv. Energy Mater. 10, 1903184 (2020).

    Article  MATH  Google Scholar 

  195. Kavan, L., Steier, L. & Grätzel, M. Ultrathin buffer layers of SnO2 by atomic layer deposition: perfect blocking function and thermal stability. J. Phys. Chem. C 121, 342–350 (2017).

    Article  Google Scholar 

  196. Jeong, S., Seo, S., Park, H. & Shin, H. Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chem. Commun. 55, 2433–2436 (2019).

    Article  MATH  Google Scholar 

  197. Yang, G. et al. Effective carrier‐concentration tuning of SnO2 quantum dot electron‐selective layers for high‐performance planar perovskite solar cells. Adv. Mater. https://doi.org/10.1002/adma.201706023 (2018).

  198. Qiu, L. et al. Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201806779 (2019).

  199. Ke, W. et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730–6733 (2015).

    Article  MATH  Google Scholar 

  200. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  ADS  MATH  Google Scholar 

  201. Correa Baena, J. P. et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928–2934 (2015).

    Article  MATH  Google Scholar 

  202. Hill, R. B. M. et al. Phosphonic acid modification of the electron selective contact: interfacial effects in perovskite solar cells. ACS Appl. Energy Mater. 2, 2402–2408 (2019).

    Article  MATH  Google Scholar 

  203. Ren, N. et al. 50 °C low-temperature ALD SnO2 driven by H2O2 for efficient perovskite and perovskite/silicon tandem solar cells. Appl. Phys. Lett. 121, 033502 (2022).

    Article  ADS  MATH  Google Scholar 

  204. Lee, S.-U., Park, H., Shin, H. & Park, N.-G. Atomic layer deposition of SnO2 using hydrogen peroxide improves the efficiency and stability of perovskite solar cells. Nanoscale 15, 5044–5052 (2023).

    Article  MATH  Google Scholar 

  205. Scalon, L., Vaynzof, Y., Nogueira, A. F. & Oliveira, C. C. How organic chemistry can affect perovskite photovoltaics. Cell Rep. Phys. Sci. 4, 101358 (2023).

    Article  Google Scholar 

  206. Saragi, T. P. I., Spehr, T., Siebert, A., Fuhrmann-Lieker, T. & Salbeck, J. Spiro compounds for organic optoelectronics. Chem. Rev. 107, 1011–1065 (2007).

    Article  Google Scholar 

  207. Raza, E., Aziz, F. & Ahmad, Z. Stability of organometal halide perovskite solar cells and role of HTMs: recent developments and future directions. RSC Adv. 8, 20952–20967 (2018).

    Article  ADS  MATH  Google Scholar 

  208. Xu, B. et al. Efficient solid state dye-sensitized solar cells based on an oligomer hole transport material and an organic dye. J. Mater. Chem. A Mater. 1, 14467 (2013).

    Article  MATH  Google Scholar 

  209. Wang, S. et al. Role of 4-tert-butylpyridine as a hole transport layer morphological controller in perovskite solar cells. Nano Lett. 16, 5594–5600 (2016).

    Article  ADS  MATH  Google Scholar 

  210. Habisreutinger, S. N., Noel, N. K., Snaith, H. J. & Nicholas, R. J. Investigating the role of 4‐tert butylpyridine in perovskite solar cells. Adv. Energy Mater. https://doi.org/10.1002/aenm.201601079 (2017).

  211. Jena, A. K., Ikegami, M. & Miyasaka, T. Severe morphological deformation of spiro-OMeTAD in (CH3NH3)PbI3 solar cells at high temperature. ACS Energy Lett. 2, 1760–1761 (2017).

    Article  Google Scholar 

  212. Lee, I., Yun, J. H., Son, H. J. & Kim, T.-S. Accelerated degradation due to weakened adhesion from Li-TFSI additives in perovskite solar cells. ACS Appl. Mater. Interfaces 9, 7029–7035 (2017).

    Article  Google Scholar 

  213. Malinauskas, T. et al. Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS Appl. Mater. Interfaces 7, 11107–11116 (2015).

    Article  MATH  Google Scholar 

  214. Zhao, X., Kim, H.-S., Seo, J.-Y. & Park, N.-G. Effect of selective contacts on the thermal stability of perovskite solar cells. ACS Appl. Mater. Interfaces 9, 7148–7153 (2017).

    Article  MATH  Google Scholar 

  215. Yue, Y. et al. Enhanced stability of perovskite solar cells through corrosion‐free pyridine derivatives in hole‐transporting materials. Adv. Mater. 28, 10738–10743 (2016).

    Article  MATH  Google Scholar 

  216. Jeon, I. et al. Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett. 15, 6665–6671 (2015).

    Article  ADS  MATH  Google Scholar 

  217. Nam, J.-S. et al. A facile and effective ozone exposure method for wettability and energy-level tuning of hole-transporting layers in lead-free tin perovskite solar cells. ACS Appl. Mater. Interfaces 13, 42935–42943 (2021).

    Article  ADS  Google Scholar 

  218. Kim, N. et al. Highly conductive PEDOT:PSS nanofibrils induced by solution‐processed crystallization. Adv. Mater. 26, 2268–2272 (2014).

    Article  MATH  Google Scholar 

  219. Wang, M. et al. Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. J. Mater. Chem. A Mater. 7, 26421–26428 (2019).

    Article  Google Scholar 

  220. Chen, C. et al. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 7, 35819–35826 (2017).

    Article  ADS  Google Scholar 

  221. Shibayama, N., Kanda, H., Kim, T. W., Segawa, H. & Ito, S. Design of BCP buffer layer for inverted perovskite solar cells using ideal factor. APL Mater. 7, 031117 (2019).

    Article  ADS  Google Scholar 

  222. Zhang, X. et al. Improved fill factor in inverted planar perovskite solar cells with zirconium acetate as the hole-and-ion-blocking layer. Phys. Chem. Chem. Phys. 20, 7395–7400 (2018).

    Article  MATH  Google Scholar 

  223. Zhao, Z. Q. et al. Molecular modulator for stable inverted planar perovskite solar cells with efficiency enhanced by interface engineering. J. Mater. Chem. C Mater. 7, 9735–9742 (2019).

    Article  MATH  Google Scholar 

  224. Chen, L. et al. Improving the electrical performance of inverted perovskite solar cell with LiF anode buffer layer. Org. Electron. 101, 106401 (2022).

    Article  MATH  Google Scholar 

  225. Jeng, J. et al. CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013).

    Article  MATH  Google Scholar 

  226. Xiao, Z. et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7, 2619–2623 (2014).

    Article  MATH  Google Scholar 

  227. Liang, P. et al. Additive enhanced crystallization of solution‐processed perovskite for highly efficient planar‐heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014).

    Article  MATH  Google Scholar 

  228. Xie, J. et al. A ternary organic electron transport layer for efficient and photostable perovskite solar cells under full spectrum illumination. J. Mater. Chem. A Mater. 6, 5566–5573 (2018).

    Article  MATH  Google Scholar 

  229. You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016).

    Article  ADS  MATH  Google Scholar 

  230. Liu, X. et al. Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells. ACS Appl. Mater. Interfaces 7, 6230–6237 (2015).

    Article  MATH  Google Scholar 

  231. Chang, C.-Y., Huang, W.-K., Chang, Y.-C., Lee, K.-T. & Chen, C.-T. A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells. J. Mater. Chem. A Mater. 4, 640–648 (2016).

    Article  MATH  Google Scholar 

  232. Wolff, C. M. et al. Reduced interface‐mediated recombination for high open‐circuit voltages in CH3NH3PbI3 solar cells. Adv. Mater. https://doi.org/10.1002/adma.201700159 (2017).

  233. Lin, H.-S. et al. Achieving high efficiency in solution-processed perovskite solar cells using C60/C70 mixed fullerenes. ACS Appl. Mater. Interfaces 10, 39590–39598 (2018).

    Article  ADS  Google Scholar 

  234. Ueno, H. et al. Li@C60 endohedral fullerene as a supraatomic dopant for C60 electron-transporting layers promoting the efficiency of perovskite solar cells. Chem. Commun. 55, 11837–11839 (2019).

    Article  MATH  Google Scholar 

  235. Lee, C., Seo, Y., Han, J., Hwang, J. & Jeon, I. Perspectives on critical properties of fullerene derivatives for rechargeable battery applications. Carbon 210, 118041 (2023).

    Article  MATH  Google Scholar 

  236. Li, Y. et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 137, 15540–15547 (2015).

    Article  Google Scholar 

  237. Zhang, M. et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10, 4593 (2019).

    Article  ADS  MATH  Google Scholar 

  238. Jia, L., Chen, M. & Yang, S. Functionalization of fullerene materials toward applications in perovskite solar cells. Mater. Chem. Front. 4, 2256–2282 (2020).

    Article  MATH  Google Scholar 

  239. Zhang, F. et al. Isomer‐pure bis‐PCBM‐assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability. Adv. Mater. https://doi.org/10.1002/adma.201606806 (2017).

  240. Lin, H.-S. et al. Highly selective and scalable fullerene-cation-mediated synthesis accessing cyclo[60]fullerenes with five-membered carbon ring and their application to perovskite solar cells. Chem. Mater. 31, 8432–8439 (2019).

    Article  ADS  MATH  Google Scholar 

  241. Jeon, I. et al. Controlled redox of lithium-ion endohedral fullerene for efficient and stable metal electrode-free perovskite solar cells. J. Am. Chem. Soc. 141, 16553–16558 (2019).

    Article  MATH  Google Scholar 

  242. Jeon, I. et al. Lithium‐ion endohedral fullerene (Li+@C60) dopants in stable perovskite solar cells induce instant doping and anti‐oxidation. Angew. Chem. Int. Ed. 57, 4607–4611 (2018).

    Article  Google Scholar 

  243. Mandler, D. & Kraus-Ophir, S. Self-assembled monolayers (SAMs) for electrochemical sensing. J. Solid State Electrochem. 15, 1535–1558 (2011).

    Article  MATH  Google Scholar 

  244. Gooding, J. J., Mearns, F., Yang, W. & Liu, J. Self‐assembled monolayers into the 21st century: recent advances and applications. Electroanalysis 15, 81–96 (2003).

    Article  Google Scholar 

  245. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    Article  MATH  Google Scholar 

  246. Ali, F., Roldán‐Carmona, C., Sohail, M. & Nazeeruddin, M. K. Applications of self‐assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. https://doi.org/10.1002/aenm.202002989 (2020).

  247. Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).

    Article  MATH  Google Scholar 

  248. Yehye, W. A. et al. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. Eur. J. Med. Chem. 101, 295–312 (2015).

    Article  Google Scholar 

  249. Reche-Tamayo, M., Moral, M., Pérez-Jiménez, A. J. & Sancho-García, J. C. Theoretical determination of interaction and cohesive energies of weakly bound cycloparaphenylene molecules. J. Phys. Chem. C 120, 22627–22634 (2016).

    Article  Google Scholar 

  250. Cacciuto, A., Auer, S. & Frenkel, D. Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature 428, 404–406 (2004).

    Article  ADS  MATH  Google Scholar 

  251. Adil Afroz, M. et al. Thermal stability and performance enhancement of perovskite solar cells through oxalic acid-induced perovskite formation. ACS Appl. Energy Mater. 3, 2432–2439 (2020).

    Article  MATH  Google Scholar 

  252. Afroz, M. A., Garai, R., Gupta, R. K. & Iyer, P. K. Additive-assisted defect passivation for minimization of open-circuit voltage loss and improved perovskite solar cell performance. ACS Appl. Energy Mater. 4, 10468–10476 (2021).

    Article  Google Scholar 

  253. Borges, R. et al. Understanding the molecular aspects of tetrahydrocannabinol and cannabidiol as antioxidants. Molecules 18, 12663–12674 (2013).

    Article  MATH  Google Scholar 

  254. Kumar, S. et al. Multifaceted role of a dibutylhydroxytoluene processing additive in enhancing the efficiency and stability of planar perovskite solar cells. ACS Appl. Mater. Interfaces 11, 38828–38837 (2019).

    Article  Google Scholar 

  255. Liang, P., Chueh, C., Williams, S. T. & Jen, A. K.-Y. Roles of fullerene‐based interlayers in enhancing the performance of organometal perovskite thin‐film solar cells. Adv. Energy Mater. https://doi.org/10.1002/aenm.201402321 (2015).

  256. Ruoff, R. S., Tse, D. S., Malhotra, R. & Lorents, D. C. Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 97, 3379–3383 (1993).

    Article  Google Scholar 

  257. Tajima, Y. et al. Surface free energy and wettability determination of various fullerene derivative films on amorphous carbon wafer. Jpn. J. Appl. Phys. 47, 5730 (2008).

    Article  ADS  MATH  Google Scholar 

  258. Kwiatkowski, J. J., Frost, J. M. & Nelson, J. The effect of morphology on electron field-effect mobility in disordered C60 thin films. Nano Lett. 9, 1085–1090 (2009).

    Article  ADS  Google Scholar 

  259. Akers, K. L., Douketis, C., Haslett, T. L. & Moskovits, M. Raman spectroscopy of C60 solid films: a tale of two spectra. J. Phys. Chem. 98, 10824–10831 (1994).

    Article  Google Scholar 

  260. Zang, Z., Nakamura, A. & Temmyo, J. Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Opt. Express 21, 11448 (2013).

    Article  ADS  MATH  Google Scholar 

  261. Zang, Z., Nakamura, A. & Temmyo, J. Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature. Mater. Lett. 92, 188–191 (2013).

    Article  ADS  Google Scholar 

  262. Yoon, H., Kang, S. M., Lee, J.-K. & Choi, M. Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ. Sci. 9, 2262–2266 (2016).

    Article  MATH  Google Scholar 

  263. Ke, W. et al. Efficient planar perovskite solar cells using room-temperature vacuum-processed C60 electron selective layers. J. Mater. Chem. A Mater. 3, 17971–17976 (2015).

    Article  Google Scholar 

  264. Jeon, I. et al. Direct and dry deposited single-walled carbon nanotube films doped with MoOx as electron-blocking transparent electrodes for flexible organic solar cells. J. Am. Chem. Soc. 137, 7982–7985 (2015).

    Article  MATH  Google Scholar 

  265. Jeon, I. et al. Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells. J. Phys. Chem. Lett. 8, 5395–5401 (2017).

    Article  MATH  Google Scholar 

  266. Jinno, H. et al. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2, 780–785 (2017).

    Article  ADS  MATH  Google Scholar 

  267. Yoon, J. et al. Foldable perovskite solar cells using carbon nanotube‐embedded ultrathin polyimide conductor. Adv. Sci. https://doi.org/10.1002/advs.202170033 (2021).

  268. Lee, G. et al. Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy Environ. Sci. 12, 3182–3191 (2019).

    Article  MATH  Google Scholar 

  269. Ongaro, C. et al. Integration of metal meshes as transparent conducting electrodes into perovskite solar cells. Adv. Mater. Interfaces https://doi.org/10.1002/admi.202300923 (2024).

  270. De, S. et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3, 1767–1774 (2009).

    Article  MATH  Google Scholar 

  271. Lee, P. et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326–3332 (2012).

    Article  MATH  Google Scholar 

  272. Han, S. et al. Fast plasmonic laser nanowelding for a Cu‐nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 26, 5808–5814 (2014).

    Article  MATH  Google Scholar 

  273. Ravi Kumar, D. V., Woo, K. & Moon, J. Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications. Nanoscale 7, 17195–17210 (2015).

    Article  ADS  Google Scholar 

  274. Critchley, K. et al. Near‐bulk conductivity of gold nanowires as nanoscale interconnects and the role of atomically smooth interface. Adv. Mater. 22, 2338–2342 (2010).

    Article  MATH  Google Scholar 

  275. Kim, J., da Silva, W. J., bin Mohd Yusoff, Abd, R. & Jang, J. Organic devices based on nickel nanowires transparent electrode. Sci. Rep. 6, 19813 (2016).

    Article  ADS  Google Scholar 

  276. Li, Z. et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8, 6797–6804 (2014). To our knowledge, this article reports the first carbon nanotube-based, metal-electrode-free perovskite solar cell.

    Article  MATH  Google Scholar 

  277. Yoon, J. et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10, 337–345 (2017).

    Article  Google Scholar 

  278. Jeon, I. et al. Perovskite solar cells using carbon nanotubes both as cathode and as anode. J. Phys. Chem. C 121, 25743–25749 (2017).

    Article  MATH  Google Scholar 

  279. Jeon, I., Xiang, R., Shawky, A., Matsuo, Y. & Maruyama, S. Single‐walled carbon nanotubes in emerging solar cells: synthesis and electrode applications. Adv. Energy Mater. 9, 1801312 (2019).

    Article  Google Scholar 

  280. Choi, J. et al. Overview and outlook on graphene and carbon nanotubes in perovskite photovoltaics from single‐junction to tandem applications. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202204594 (2022). This review provides an overview of all nanocarbon-based perovskite solar cells.

  281. Huang, Y. et al. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2, 1485 (2010).

    Article  ADS  MATH  Google Scholar 

  282. Utsumi, S. et al. Giant nanomechanical energy storage capacity in twisted single-walled carbon nanotube ropes. Nat. Nanotechnol. 19, 1007–1015 (2024).

    Article  MATH  Google Scholar 

  283. Zhang, Q. et al. Large‐diameter carbon nanotube transparent conductor overcoming performance–yield tradeoff. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202103397 (2022).

  284. Kim, U. et al. Enhanced performance of solution‐processed carbon nanotube transparent electrodes in foldable perovskite solar cells through vertical separation of binders by using eco‐friendly parylene substrate. Carbon Energy https://doi.org/10.1002/cey2.471 (2024).

  285. Shawky, A. et al. Controlled removal of surfactants from double‐walled carbon nanotubes for stronger p‐doping effect and its demonstration in perovskite solar cells. Small Methods 5, e2100080 (2021).

    Article  Google Scholar 

  286. Jeon, I. et al. High‐performance solution‐processed double‐walled carbon nanotube transparent electrode for perovskite solar cells. Adv. Energy Mater. 9, 1901204 (2019).

    Article  MATH  Google Scholar 

  287. Yu, L., Shearer, C. & Shapter, J. Recent development of carbon nanotube transparent conductive films. Chem. Rev. 116, 13413–13453 (2016).

    Article  Google Scholar 

  288. Zhang, Q., Wei, N., Laiho, P. & Kauppinen, E. I. Recent developments in single-walled carbon nanotube thin films fabricated by dry floating catalyst chemical vapor deposition. Top. Curr. Chem. 375, 90 (2017).

    Article  Google Scholar 

  289. Sun, L. et al. All-solution-processed ultraflexible wearable sensor enabled with universal trilayer structure for organic optoelectronic devices. Sci. Adv. 10, eadk9460 (2024).

    Article  Google Scholar 

  290. Kim, J. et al. Liquid metal‐based perovskite solar cells: in situ formed gallium oxide interlayer improves stability and efficiency. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202311597 (2024).

  291. Mahmood, K. et al. Solution processed high performance perovskite solar cells based on a silver nanowire-titanium dioxide hybrid top electrode. RSC Adv. 12, 35350–35357 (2022).

    Article  ADS  Google Scholar 

  292. Han, K. et al. Fully solution processed semi-transparent perovskite solar cells with spray-coated silver nanowires/ZnO composite top electrode. Sol. Energy Mater. Sol. Cell 185, 399–405 (2018).

    Article  Google Scholar 

  293. Jeon, I. et al. Carbon nanotubes to outperform metal electrodes in perovskite solar cells via dopant engineering and hole-selectivity enhancement. J. Mater. Chem. A Mater. 8, 11141–11147 (2020). To our knowledge, this article reports the first instance of carbon nanotube electrodes outperforming metal electrodes in perovskite solar cells.

    Article  MATH  Google Scholar 

  294. Seo, S. et al. Multi‐functional MoO3 doping of carbon‐nanotube top electrodes for highly transparent and efficient semi‐transparent perovskite solar cells. Adv. Mater. Interfaces 9, 2101595 (2022).

    Article  Google Scholar 

  295. Fagiolari, L. & Bella, F. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ. Sci. 12, 3437–3472 (2019).

    Article  MATH  Google Scholar 

  296. Bogachuk, D. et al. Low-temperature carbon-based electrodes in perovskite solar cells. Energy Environ. Sci. 13, 3880–3916 (2020).

    Article  MATH  Google Scholar 

  297. Lee, C. et al. Carbon nanotube electrode‐based perovskite–silicon tandem solar cells. Solar RRL 4, 2000353 (2020).

    Article  Google Scholar 

  298. Lee, J., Menamparambath, M. M., Hwang, J. & Baik, S. Hierarchically structured hole transport layers of spiro‐OMeTAD and multiwalled carbon nanotubes for perovskite solar cells. ChemSusChem 8, 2358–2362 (2015).

    Article  Google Scholar 

  299. Zheng, X. et al. Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells. Nano Lett. 17, 2496–2505 (2017).

    Article  ADS  MATH  Google Scholar 

  300. Yu, Y., Hoang, M. T., Yang, Y. & Wang, H. Critical assessment of carbon pastes for carbon electrode-based perovskite solar cells. Carbon 205, 270–293 (2023).

    Article  MATH  Google Scholar 

  301. Wagner, L., Mastroianni, S. & Hinsch, A. Reverse manufacturing enables perovskite photovoltaics to reach the carbon footprint limit of a glass substrate. Joule 4, 882–901 (2020).

    Article  Google Scholar 

  302. Xiao, C. et al. Mechanisms of electron-beam-induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy. J. Phys. Chem. C 119, 26904–26911 (2015).

    Article  Google Scholar 

  303. Lee, J.-H. & Lee, J.-W. van der Waals metal contacts for characterization and optoelectronic application of metal halide perovskite thin films. ACS Energy Lett. 7, 3780–3787 (2022).

    Article  MATH  Google Scholar 

  304. Paek, S. et al. Dopant‐free hole‐transporting materials for stable and efficient perovskite solar cells. Adv. Mater. https://doi.org/10.1002/adma.201606555 (2017).

  305. Unger, E. L. et al. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014).

    Article  MATH  Google Scholar 

  306. Wang, Y. et al. Reliable measurement of perovskite solar cells. Adv. Mater. https://doi.org/10.1002/adma.201803231 (2019).

  307. Tang, H. et al. Interface engineering for highly efficient organic solar cells. Adv. Mater. 36, e2212236 (2024).

    Article  Google Scholar 

  308. Xiao, Y., Yang, X., Zhu, R. & Snaith, H. J. Unlocking interfaces in photovoltaics. Science 384, 846–848 (2024).

    Article  ADS  MATH  Google Scholar 

  309. Dong, Q. et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973 (2021).

    Article  ADS  MATH  Google Scholar 

  310. Yang, S., Fu, W., Zhang, Z., Chen, H. & Li, C.-Z. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A Mater. 5, 11462–11482 (2017).

    Article  MATH  Google Scholar 

  311. Li, Y. et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 7, 10214 (2016).

    Article  ADS  MATH  Google Scholar 

  312. Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  ADS  MATH  Google Scholar 

  313. Romano, V., Agresti, A., Verduci, R. & D’Angelo, G. Advances in perovskites for photovoltaic applications in space. ACS Energy Lett. 7, 2490–2514 (2022).

    Article  Google Scholar 

  314. Tu, Y. et al. Perovskite solar cells for space applications: progress and challenges. Adv. Mater. 33, 2006545 (2021).

    Article  MATH  Google Scholar 

  315. Aydin, E. et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383, eadh3849 (2024).

    Article  Google Scholar 

  316. Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 381, 63–69 (2023).

    Article  ADS  MATH  Google Scholar 

  317. Chin, X. Y. et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381, 59–63 (2023).

    Article  ADS  MATH  Google Scholar 

  318. Shi, Y., Berry, J. J. & Zhang, F. Perovskite/silicon tandem solar cells: insights and outlooks. ACS Energy Lett. 9, 1305–1330 (2024).

    Article  MATH  Google Scholar 

  319. Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016).

    Article  MATH  Google Scholar 

  320. Calado, P. et al. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016).

    Article  ADS  MATH  Google Scholar 

  321. Lee, J.-W., Kim, S.-G., Yang, J.-M., Yang, Y. & Park, N.-G. Verification and mitigation of ion migration in perovskite solar cells. APL Mater. 7, 41111 (2019).

    Article  MATH  Google Scholar 

  322. Yoon, S. J. et al. Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Lett. 1, 290–296 (2016).

    Article  MATH  Google Scholar 

  323. Knight, A. J. et al. Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett. 4, 75–84 (2019).

    Article  MATH  Google Scholar 

  324. Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    Article  ADS  Google Scholar 

  325. Liu, K. et al. Reducing sputter induced stress and damage for efficient perovskite/silicon tandem solar cells. J. Mater. Chem. A Mater. 10, 1343–1349 (2022).

    Article  MATH  Google Scholar 

  326. Liu, K., Wang, Z., Qu, S. & Ding, L. Stress and strain in perovskite/silicon tandem solar cells. Nanomicro Lett. 15, 59 (2023).

    ADS  MATH  Google Scholar 

  327. Holzhey, P. & Saliba, M. A full overview of international standards assessing the long-term stability of perovskite solar cells. J. Mater. Chem. A Mater. 6, 21794–21808 (2018).

    Article  MATH  Google Scholar 

  328. Duan, L. et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).

    Article  ADS  MATH  Google Scholar 

  329. Repins, I. L., Kersten, F., Hallam, B., VanSant, K. & Koentopp, M. B. Stabilization of light-induced effects in Si modules for IEC 61215 design qualification. Sol. Energy 208, 894–904 (2020).

    Article  ADS  Google Scholar 

  330. Rosenthal, A. L., Thomas, M. G. & Durand, S. J. A ten year review of performance of photovoltaic systems. In Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conf. — (Cat. No. 93CH3283-9) 1289–1291 (IEEE, 1993).

  331. Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. & Tress, W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018).

    Article  ADS  Google Scholar 

  332. Saliba, M., Stolterfoht, M., Wolff, C. M., Neher, D. & Abate, A. Measuring aging stability of perovskite solar cells. Joule 2, 1019–1024 (2018).

    Article  Google Scholar 

  333. Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).

    Article  ADS  MATH  Google Scholar 

  334. Perovskite Solar Cell Market Size, Share & Trends Analysis Report By Product (Flexible, Rigid), By Vertical, By Application (Smart Glass, BIPV, Solar Panel), By Region, And Segment Forecasts, 2024 - 2030. Grand View Research https://www.grandviewresearch.com/industry-analysis/perovskite-solar-cell-market-report (2024).

  335. John, R. A. et al. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13, 2074 (2022).

    Article  ADS  MATH  Google Scholar 

  336. Nam, J. et al. Enhanced photodetection and air stability of lead‐free tin perovskite photodiodes via germanium incorporation and organic cation‐mediated dimensionality control. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202407299 (2024).

  337. Sakhatskyi, K. et al. Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity. Nat. Photon. 17, 510–517 (2023).

    Article  ADS  MATH  Google Scholar 

  338. Tian, X., Stranks, S. D. & You, F. Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells. Sci. Adv. 6, eabb0055 (2020).

    Article  ADS  Google Scholar 

  339. Kadro, J. M. & Hagfeldt, A. The end-of-life of perovskite PV. Joule 1, 634 (2017).

    Article  MATH  Google Scholar 

  340. Hailegnaw, B., Kirmayer, S., Edri, E., Hodes, G. & Cahen, D. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543–1547 (2015).

    Article  Google Scholar 

  341. Vidal, R. et al. Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nat. Sustain. 4, 277–285 (2020).

    Article  MATH  Google Scholar 

  342. Kim, H. J., Han, G. S. & Jung, H. S. Managing the lifecycle of perovskite solar cells: addressing stability and environmental concerns from utilization to end-of-life. eScience 4, 100243 (2024).

    Article  Google Scholar 

  343. Rosales, B. A., Schutt, K., Berry, J. J. & Wheeler, L. M. Leveraging low-energy structural thermodynamics in halide perovskites. ACS Energy Lett. 8, 1705–1715 (2023).

    Article  Google Scholar 

  344. Zhang, J. et al. Optimizing perovskite thin‐film parameter spaces with machine learning‐guided robotic platform for high‐performance perovskite solar cells. Adv. Energy Mater. https://doi.org/10.1002/aenm.202302594 (2023).

  345. Xu, Z. et al. Advancing perovskite solar cell commercialization: bridging materials, vacuum deposition, and AI-assisted automation. Next Mater. 3, 100103 (2024).

    Google Scholar 

  346. Wang, R. et al. A review of perovskites solar cell stability. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201808843 (2019).

Download references

Acknowledgements

J.H., K.P. and S.T contributed equally to this study. J.H. and I.J. acknowledge support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) under numbers 2023R1A2C3007358, RS-2023-00228994, RS-2023-00243849 and RS-2024-00459908. J.-W.L. acknowledges support from an NRF grant funded by the Korean government (Ministry of Science and ICT) under contract numbers 2022R1C1C1011975 and 2022M3J1A1064315. S.T. was supported by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office under award number DE-EE0010503. Large Language Models (LLMs), namely, ChatGPT 4o and Claude 3.5 Sonnet, were used for copyediting purposes. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Grant Agreement no. 101087679, PEROVAP) and the Deutsche Forschungsgemeinschaft (DFG) in the framework of the Special Priority Program (SPP 2196) project PERFECT PVs (no. 424216076).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.-W.L. and I.J.); Experimentation (J.H., K.P., S.T., Y.V., J.X., E.W.-G.D., M.G.B., J.-W.L. and I.J.); Results (J.H., K.P., S.T., Y.V., J.X., E.W.-G.D., M.G.B., J.-W.L. and I.J.); Applications (J.H., K.P., J.-W.L. and I.J.); Reproducibility and data deposition (J.H., K.P., S.T., J.-W.L. and I.J.); Limitations and optimizations (J.H., K.P., S.T., J.-W.L. and I.J.); Outlook (M.G.B., J.-W.L. and I.J.); overview of the Primer (all authors).

Corresponding authors

Correspondence to Moungi G. Bawendi, Jin-Wook Lee or Il Jeon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Yi Hou, Antonio Abate and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

National Renewable Energy Laboratory: https://www.nrel.gov/pv/cell-efficiency.html

Glossary

Antisolvent

A solvent used during fabrication to control crystallization and improve the quality of the perovskite layer. The antisolvent is typically immiscible or partially miscible with the perovskite precursor solution and helps induce rapid crystallization, leading to better film formation.

Building-integrated photovoltaics

(BIPV). Photovoltaic materials that can replace conventional building materials in parts of the building envelope such as the roof, skylights or façades.

Charge-selective layers

Materials that facilitate the extraction and transport of specific charge carriers (electrons or holes) to their respective electrodes while blocking the opposite charge carriers. The two main types of charge-selective layers are the electron transport layer and hole transport layer.

Electron transport layer

(ETL). A material that selectively transports electrons from the active layer, where light is absorbed and generates electron–hole pairs, to the electron-collecting electrode, usually the cathode. It also blocks holes from reaching the cathode, preventing recombination of electrons and holes.

External quantum efficiency

The ratio of the number of charge carriers (electrons or holes) generated by the solar cell to the number of incident photons of a given wavelength, expressed as a percentage.

Frank–van der Merwe

Also known as layer-by-layer growth. Describes a thin film growth process in which the adsorbate forms a continuous, smooth layer on the substrate. This mode occurs when the interaction between the adsorbate and substrate is stronger than the interaction between adsorbate atoms.

Goldschmidt tolerance factor

An indicator for the stability and distortion of crystal structures. It was originally only used to describe the perovskite ABO3 structure, but now tolerance factors are also used for ilmenite.

Hole transport layer

(HTL). A material that selectively transports holes from the active layer to the hole-collecting electrode, usually the anode. It also blocks electrons from reaching the anode, preventing recombination of electrons and holes.

Hysteresis

The presence of different IV curves for forward and reverse voltage sweeps, indicating a memory effect in the response of the solar cell to voltage changes.

Incident photon-to-electron conversion efficiency

The percentage of incident photons of a particular wavelength that are converted into electrical charge carriers (electrons or holes) and collected by the solar cell.

Marangoni flow

Also called the Gibbs–Marangoni effect. Describes the mass transfer along an interface between two phases owing to a gradient of the surface tension.

Maximum power point

The point on the IV curve where the product of current and voltage (the power) is at its highest. It represents the optimal operating condition in which the solar cell generates the maximum power output under given illumination conditions.

Metal halide perovskite

A class of crystalline materials with the general formula ABX, in which A is a monovalent cation, for example, methylammonium, formamidinium or caesium; B is a divalent metal cation, commonly lead or tin; and X is a halide anion, such as chloride, bromide or iodide.

Non-radiative recombination

A process in which electron–hole pairs (excitons) recombine without emitting photons. Instead, the energy is dissipated as heat or transferred to lattice vibrations as phonons.

Open-circuit voltage

The potential difference between the positive and negative terminals of the solar cell when the circuit is not connected to an external load.

Organometal halides

A class of compounds in which an organic group is bonded to a metal atom that is bonded to a halide ion, either chloride, bromide, iodide or fluoride.

Passivation

The process of reducing or eliminating defects and trap states in the perovskite layer or at its interfaces.

Photoactive layer

The central layer responsible for absorbing light and generating charge carriers in the form of electrons and holes. This layer is typically made of metal halide perovskite materials, which have the general formula ABX.

Power conversion efficiency

(PCE). The PCE of a solar cell is expressed as the percentage ratio of electrical power produced to optical power impinging on the cell. PCE of a solar cell is calculated from its current–voltage characteristics as follows: PCE = IscVocFF/(EtotA); FF = Pmax/(IscVoc), in which Isc is the short circuit current, Voc is the open circuit voltage, Etot is the total irradiance density, A is the illuminated area, FF is the fill factor and Pmax is the electrical peak power.

Quantum dot

Semiconductor particles of a few nanometres in size with optical and electronic properties that differ from larger particles owing to quantum mechanical effects.

Stranski–Krastanov

A combined growth mode characterized by initial layer-by-layer growth followed by the formation of islands or clusters. This occurs when the adsorbate–substrate interaction is strong enough to support initial layer growth, but later interaction between adsorbate atoms becomes more favourable, leading to island formation.

Tandem solar cells

Photovoltaic devices that stack multiple layers or cells on top of each other. Each layer is designed to absorb different parts of the solar spectrum. This configuration allows for more efficient use of sunlight compared with single-junction solar cells, as each layer captures and converts different wavelengths.

Volmer–Weber

Also known as island growth. A mode of thin film growth where the adsorbate, the material being deposited, forms discrete islands or clusters on a substrate rather than creating a continuous, smooth film. This occurs when there is strong adsorbate–adsorbate interaction compared with adsorbate–substrate interaction.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Park, K., Tan, S. et al. Perovskite solar cells. Nat Rev Methods Primers 5, 3 (2025). https://doi.org/10.1038/s43586-024-00373-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00373-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing