Abstract
X-ray magnetic circular dichroism (XMCD) is the difference in X-ray absorption between left and right circularly polarized light in magnetic materials. It is the X-ray counterpart of the magneto-optic effect for visible light but shows a magnetic contrast up to three orders of magnitude higher. The exploration of XMCD using high-flux, monochromatic and polarization-variable synchrotron sources has advanced the understanding of magnetism and magnetic materials, in particular, when combined with spectral analysis based on powerful sum rules that enable the quantification of spin and orbital moments with elemental, even chemical, selectivity and high sensitivity. As an essential cornerstone of techniques to probe magnetic nanostructures and spin textures as well as their dynamics, XMCD has become an indispensable tool for the study of magnetism at the nanoscale and atomic scale. This Primer provides an overview of the principles and physics underlying XMCD, the experimental techniques used to measure it and its application to the study and understanding of fundamental and technologically relevant magnetic phenomena.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Fernandez, V. et al. Observation of orbital moment in NiO. Phys. Rev. B 57, 7870 (1998).
Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130 (2003).
van der Laan, G. & Figueroa, A. I. X-ray magnetic circular dichroism — a versatile tool to study magnetism. Coord. Chem. Rev. 277–278, 95–129 (2014). An advanced-level text on theoretical and experimental aspects of X-ray magnetic circular dichroism.
van der Laan, G. et al. Experimental proof of magnetic X-ray dichroism. Phys. Rev. B 34, 6529–6531 (1986). To our knowledge, this is the first experimental report of X-ray magnetic dichroism.
Schütz, G. et al. Absorption of circularly polarized X rays in iron. Phys. Rev. Lett. 58, 737 (1987). This paper reports the observation of X-ray magnetic circular dichroism at the Fe K edge.
Rogalev, A., Wilhelm, F., Jaouen, N., Goulon, J. & Kappler, J.-P. in Magnetism: A Synchrotron Radiation Approach (eds Beaurepaire, E. et al.) (Springer-Verlag, 2006).
van der Laan, G. in Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources, Springer Proceedings in Physics Vol. 151 (eds Beaurepaire, E. et al.) 257–288 (Springer, 2013).
Fano, U. Spin orientation of photoelectrons ejected by circularly polarized light. Phys. Rev. 178, 131 (1969).
van der Laan, G. & Thole, B. T. Magnetic dichroism in the X-ray absorption branching ratio. Phys. Rev. B 42, 6670 (1990).
Stohr, J. & Siegmann, H. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, 2006). A reference book on magnetism and the interaction of polarized photons with matter, including ultrafast dynamics.
Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444 (2016). This article reports the application of X-ray magnetic circular dichroism with microscopy to image skyrmion structures in asymmetric metallic multilayers with a net Dzyaloshinskii–Moriya interaction.
Wintz, S. et al. Magnetic vortex cores as tunable spin-wave emitters. Nat. Nanotechnol. 11, 948 (2026).
Beardsley, R. P. et al. Deterministic control of magnetic vortex wall chirality by electric field. Sci. Rep. 7, 7613 (2017).
Donnelly, C. et al. Three-dimensional magnetization structures revealed with X-ray vector nanotomography. Nature 547, 328 (2017).
Kent, N. et al. Creation and observation of hopfions in magnetic multilayer systems. Nat. Commun. 12, 1562 (2021).
Pizzini, S., Vogel, J., Bonfim, M. & Fontaine, A. Time-resolved X-ray magnetic circular dichroism — a selective probe of magnetization dynamics on nanosecond timescales, in spin dynamics in confined magnetic structures II. Top. Appl. Phys. 87, 155–185 (2003).
Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225 (2015).
Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat. Mater. 6, 516–520 (2007).
Frisk, A., Duffy, L. B., Zhang, S., van der Laan, G. & Hesjedal, T. Magnetic X-ray spectroscopy of two-dimensional CrI3 layers. Mater. Lett. 231, 5–7 (2018).
Herper, H. C. et al. Molecular Nanomagnets: Fundamental Understanding (Springer Nature Singapore, 2020).
Bedoya-Pinto, A. et al. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374, 616 (2021).
Suzuki, M. et al. Magnetic anisotropy of the van der Waals ferromagnet Cr2Ge2Te6 studied by angular-dependent X-ray magnetic circular dichroism. Phys. Rev. Res. 4, 013139 (2022).
Fujita, R. et al. Layer-dependent magnetic domains in atomically thin Fe5GeTe2. ACS Nano 16, 10545–10553 (2022).
Mawass, M.-A. et al. Switching by domain-wall automotion in asymmetric ferromagnetic rings. Phys. Rev. Appl. 7, 044009 (2017).
Luo, Z. et al. Current-driven magnetic domain-wall logic. Nature 579, 214 (2020).
Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nat. Phys. 7, 68 (2010).
Rana, A. et al. Three-dimensional topological magnetic monopoles and their interactions in a ferromagnetic meta-lattice. Nat. Nanotechnol. 18, 227 (2023).
Samant, M. G. et al. Induced spin polarization in Cu spacer layers in Co/Cu multilayers. Phys. Rev. Lett. 72, 1112 (1994).
Figueroa, A. I. et al. Structural and magnetic properties of granular Co–Pt multilayers with perpendicular magnetic anisotropy. Phys. Rev. B 90, 174421 (2014).
Liu, Y. et al. Induced Ti magnetization at La0.7Sr0.3MnO3 and BaTiO3 interfaces. APL Mater. 4, 046105 (2016).
Yamamoto, K. et al. Ultrafast demagnetization of Pt magnetic moment in L10-FePt probed by magnetic circular dichroism at a hard X-ray free electron laser. N. J. Phys. 21, 123010 (2019).
Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).
Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin–orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57 (2014).
van Veenendaal, M. et al. Electronic structure of Co 3d states in the Kitaev material candidate honeycomb cobaltate Na3Co2SbO6 probed with X-ray dichroism. Phys. Rev. B 107, 214443 (2023).
Manchon, A. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).
Xue, F. et al. Field-free spin–orbit torque switching assisted by in-plane unconventional spin torque in ultrathin Pt/CoN. Nat. Commun. 14, 3932 (2023).
Wilhelm, F. Magnetic materials probed with polarized X-ray spectroscopies. Synchrotron Radiat. N. 26, 2–5 (2013).
Willmott, P. An Introduction to Synchrotron Radiation: Techniques and Applications (John Wiley & Sons Ltd, 2019).
Hwu, Y. & Margaritondo, G. Synchrotron radiation and X-ray free-electron lasers (X-FELs) explained to all users, active and potential. J. Synchrotron Rad. 28, 1014 (2021).
Englisch, U. et al. The elliptical undulator UE46 and its monochromator beam-line for structural research on nanomagnets at BESSY-II. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 467, 541 (2001).
Pellegrini, C., Marinelli, A. & Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016).
Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287 (2012).
Borchert, M. et al. X-ray magnetic circular dichroism spectroscopy at the Fe L edges with a picosecond laser-driven plasma source. Optica 10, 450–455 (2020).
Rogalev, A. & Wilhelm, F. Magnetic circular dichroism in the hard X-ray range. Phys. Met. Metallogr. 116, 1285 (2015).
Petersen, H., Jung, C., Hellwig, C., Peatman, W. B. & Gudat, W. Review of plane grating focusing for soft X‐ray monochromators. Rev. Sci. Instr. 66, 1 (1995).
Brzhezinskaya, M. A novel monochromator for experiments with ultrashort X-ray pulses. J. Synchrotron Rad. 20, 522 (2013).
Holldack, K. et al. Flipping the helicity of X-rays from an undulator at unprecedented speed. Commun. Phys. 3, 61 (2020).
Elleaume, P. Helios: a new type of linear/helical undulator. J. Synchrotron Rad. 1, 19–26 (1994).
Sasaki, S. et al. Design of a new type of planar undulator for generating variably polarized radiation. Nucl. Inst. Meth. A 331, 763–767 (1993).
Belyakov, V. & Dmitrienko, V. Polarization phenomena in X-ray optics. Sov. Phys. Usp. 32, 697–719 (1989).
Hirano, K., Izumi, K., Ishikawa, T., Annaka, S. & Kikuta, S. An X-ray phase plate using Bragg-case diffraction. Jpn. J. Appl. Phys. 30, L407 (1991).
Bouchenoire, L., Morris, R. J. H. & Hase, T. P. A. A silicon <111> phase retarder for producing circularly polarized X-rays in the 2.1–3 keV energy range. Appl. Phys. Lett. 101, 064107 (2012).
Suzuki, M. et al. Helicity-modulation technique using diffractive phase retarder for measurements of X-ray magnetic circular dichroism. Jpn. J. Appl. Phys. 37, L1488–L1490 (1998).
Mathon, O. et al. XMCD under pressure at the Fe K edge on the energy-dispersive beamline of the ESRF. J. Synchrotron Rad. 11, 423–427 (2004).
Baudelet, F., Kong, Q., Nataf, L. & Cafun, J.-D. ODE: a new beam line for high-pressure XAS and XMCD studies at SOLEIL. High Press. Res. 31, 136–139 (2011).
Pascarelli, S. et al. The time-resolved and extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24. J. Synchrotron Rad. 23, 353 (2016).
Yasumura, H. et al. 40 T soft X-ray spectroscopies on magnetic-field-induced valence transition in Eu(Rh1−xIrx)2Si2 (x = 0.3). J. Phys. Soc. Jpn. 86, 054706 (2017).
Yamamoto, S. et al. Field-induced magnetic transitions in the highly anisotropic ferrimagnet ErFe5Al7 studied by high-field X-ray magnetic dichroism. Phys. Rev. B 109, 094404 (2024).
Matsuda, Y. H. et al. XMCD spectroscopy on valence fluctuating and heavy fermion compounds in very high magnetic fields up to 40 T. J. Phys. Conf. Ser. 190, 012019 (2009).
Wilhelm, F. et al. High pressure XANES and XMCD in the tender X-ray energy range. High Press. Res. 36, 445 (2016).
Wilhelm, F. et al. Investigating the electronic states of UTe2 using X-ray spectroscopy. Commun. Phys. 6, 96 (2023).
Itie, J.-P., Baudelet, F. & Rueff, J.-P. in X-ray Absorption and X-ray Emission Spectroscopy: Theory and Applications 1st edn (eds van Bokhoven, J. A. & Lamberti, C.) (John Wiley & Sons, Ltd, 2016).
Liu, H. et al. Soft X-ray spectroscopic endstation at beamline 08U1A of Shanghai Synchrotron Radiation Facility. Rev. Sci. Instrum. 90, 043103 (2019).
Jafri, S. F. et al. Atomic scale evidence of the switching mechanism in a photomagnetic CoFe dinuclear Prussian Blue analogue. J. Am. Chem. Soc. 141, 3470–3479 (2019).
Kappler, J.-P. et al. Ultralow-temperature device dedicated to soft X-ray magnetic circular dichroism experiments. J. Synchrotron Rad. 25, 1727–1735 (2018).
Serrano, G. et al. Quantum dynamics of a single molecule magnet on superconducting Pb(111). Nat. Mater. 19, 546–551 (2020).
Serrano, G. et al. Magnetic molecules as local sensors of topological hysteresis of superconductors. Nat. Commun. 13, 3838 (2022).
Aubert, A. et al. Simultaneous multi-property probing during magneto-structural phase transitions: an element-specific and macroscopic hysteresis characterization at ID12 of the ESRF. IEEE Trans. Instrum. Meas. 71, 6002409 (2022).
Haskel, D. et al. Stability of the ferromagnetic ground state of La2MnNiO6 against large compressive stress. Phys. Rev. B 84, 100403 (2011).
Ishimatsu, N. et al. Hydrogen-induced modification of the electronic structure and magnetic states in Fe, Co, and Ni monohydrides. Phys. Rev. B 86, 104430 (2012).
Kawamura, N., Ishimatsu, N., Isshiki, M., Komatsu, Y. & Maruyama, H. Ga magnetic polarization in Mn3GaC under high pressure probed by Ga K-edge XMCD. Phys. Scr. T115, 591–593 (2005).
Ding, Y. et al. Novel pressure-induced magnetic transition in magnetite (Fe3O4). Phys. Rev. Lett. 100, 045508 (2008).
Baudelet, F. et al. Absence of abrupt pressure-induced magnetic transitions in magnetite. Phys. Rev. B 82, 140412 (2010).
Subías, G. et al. Investigation of pressure-induced magnetic transitions in CoxFe3−xO4 spinels. Phys. Rev. B 87, 094408 (2013).
Law, J. Y., Moreno-Ramirez, L. M., Díaz-García, Á. & Franco, V. Current perspective in magnetocaloric materials research. J. Appl. Phys. 133, 040903 (2023).
Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993).
Shaw, J. M. et al. Quantifying spin-mixed states in ferromagnets. Phys. Rev. Lett. 127, 207201 (2021).
Piamonteze, C., Windsor, Y. W., Avula, S. R. V., Kirk, E. & Staub, U. Soft X-ray absorption of thin films detected using substrate luminescence: a performance analysis. J. Synchrotron Rad. 27, 1289–1296 (2020).
Gudat, W. & Kunz, C. Close similarity between photoelectric yield and photoabsorption spectra in the soft-X-ray range. Phys. Rev. Lett. 29, 169 (1972).
Blobner, F., Neppl, S. & Feulner, P. A versatile partial electron yield detector with large acceptance angle and well-defined threshold energy and gain. J. Electron. Spectrosc. Relat. Phenom. 184, 483 (2011).
Stöhr, J. X-ray magnetic circular dichroism spectroscopy of transition metal thin films. J. Electron Spectrosc. Relat. Phenom. 75, 253 (1995).
de Groot, F. M. F., Arrio, M. A., Sainctavit, Ph., Cartier, C. & Chen, C. T. Fluorescence yield detection: why it does not measure the X-ray absorption cross-section. Solid State Commun. 92, 991–995 (1994).
de Groot, F. Dips and peaks in fluorescence yield X-ray absorption are due to state-dependent decay. Nat. Chem. 4, 766 (2012).
Nakajima, R., Stohr, J. & Idzerda, Y. U. Electron-yield saturation effects in L-edge X-ray magnetic circular dichroism spectra of Fe, Co, and Ni. Phys. Rev. B 59, 642 (1999). This paper highlights the impact of measurement and sample geometry on X-ray magnetic circular dichroism.
Boyko, T. D., Green, R. J., Moewes, A. & Regier, T. Z. Measuring partial fluorescence yield using filtered detectors. J. Synchrotron Rad. 21, 716 (2014).
Achkar, A. J., Regier, T. Z., Monkman, E. J., Shen, K. M. & Hawthorn, D. G. Determination of total X-ray absorption coefficient using non-resonant X-ray emission. Sci. Rep. 1, 182 (2011).
Kuch, W. in Magnetic Microscopy of Nanostructures (eds Hopster, H. & Oepen, H. P.) (Springer-Verlag, 2005).
Hitchcock, A. P. Soft X-ray spectromicroscopy and ptychography. J. Electron Spectrosc. Relat. Phenom. 200, 49–63 (2015).
Rhensius, J. et al. Control of spin configuration in half-metallic La0.7Sr0.3MnO3 nano-structures. Appl. Phys. Lett. 99, 062508 (2011).
Nichols, C. I. O. et al. Microstructural and paleomagnetic insight into the cooling history of the IAB parent body. Geochim. Cosmochim. Acta 229, 1–19 (2018).
Kuch, W., Gilles, J., Kang, S., Imada, S. & Suga, S. Magnetic-circular-dichroism microspectroscopy at the spin reorientation transition in Ni(001) films. Phys. Rev. B 62, 3824 (2000).
Baldasseroni, C. et al. Temperature-driven nucleation of ferromagnetic domains in FeRh thin films. Appl. Phys. Lett. 100, 262401 (2012).
Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478 (2008).
Ruiz-Gómez, S. et al. Direct X-ray detection of the spin Hall effect in CuBi. Phys. Rev. X 12, 031032 (2022).
Bryson, J. F. J. et al. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature 517, 472 (2015).
Hermann, S. et al. Imaging spin dynamics on the nanoscale using X-ray microscopy. Front. Phys. 3, 25 (2015).
Sluka, V. et al. Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures. Nat. Nanotechnol. 14, 328–333 (2019).
Foerster, M. et al. Quantification of propagating and standing surface acoustic waves by stroboscopic X-ray photoemission electron microscopy. J. Synchrotron Rad. 26, 184–193 (2019).
Ünal, A. A. et al. Laser-driven formation of transient local ferromagnetism in FeRh thin films. Ultramicroscopy 183, 104–108 (2017).
Witte, K. et al. From 2D STXM to 3D imaging: soft X-ray laminography of thin specimens. Nano Lett. 20, 1305–1314 (2020).
Bukin, N. et al. Time-resolved imaging of magnetic vortex dynamics using holography with extended reference autocorrelation by linear differential operator. Sci. Rep. 6, 36307 (2016).
Martinez, M. D. P. et al. Three-dimensional tomographic imaging of the magnetization vector field using Fourier transform holography. Phys. Rev. B 107, 094425 (2023).
Tromp, R. M. et al. A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design. Ultramicroscopy 110, 852–861 (2010).
Menteş, T. O. & Locatelli, A. Angle-resolved X-ray photoemission electron microscopy. J. Electron Spectrosc. Relat. Phenom. 185, 323–329 (2012).
Weigand, M. et al. TimeMaxyne: a shot-noise limited, time-resolved pump-and-probe acquisition system capable of 50 GHz frequencies for synchrotron-based X-ray microscopy. Crystals 12, 1029 (2022).
Rösner, B. et al. Soft X-ray microscopy with 7 nm resolution. Optica 7, 1602 (2020).
Butcher, T. A. et al. Ptychographic nanoscale imaging of the magnetoelectric coupling in freestanding BiFeO3. Adv. Mater. 36, 2311157 (2024).
van der Laan, G. Time-resolved X-ray detected ferromagnetic resonance of spin currents. J. Electron Spectrosc. Relat. Phenom. 220, 137–146 (2017).
van der Laan, G. & Hesjedal, T. X-ray detected ferromagnetic resonance techniques for the study of magnetization dynamics. Nucl. Instrum. Meth. B 540, 85–93 (2023).
Cheshire, D. M. et al. Increased Gilbert damping in yttrium iron garnet by low temperature vacuum annealing. Appl. Phys. Lett. 126, 112405 (2025).
Swindells, C. et al. Magnetic damping in ferromagnetic/heavy-metal systems: the role of interfaces and the relation to proximity-induced magnetism. Phys. Rev. B 105, 094433 (2022).
Mendil, J. et al. Magnetic properties and domain structure of ultrathin yttrium iron garnet/Pt bilayers. Phys. Rev. Mater. 3, 034403 (2019).
Cheshire, D. et al. Absence of spin-mixed states in ferrimagnet ttrium iron garnet. J. Appl. Phys. 132, 103902 (2022).
Vlachos, D., Craven, A. J. & McComb, D. W. Specimen charging in X-ray absorption spectroscopy: correction of total electron yield data from stabilized zirconia in the energy range 250–915 eV. J. Synchrotron Rad. 12, 224–233 (2005).
Lebens-Higgins, Z. W. et al. Distinction between intrinsic and X-ray-induced oxidized oxygen states in Li-rich 3d layered oxides and LiAlO2. J. Phys. Chem. C 123, 13201 (2019).
Yang, J. et al. Soft X-ray induced photoreduction of organic Cu(II) compounds probed by X-ray absorption near-edge (XANES) spectroscopy. Anal. Chem. 83, 7856 (2011).
Cowan, R. D. The Theory of Atomic Structure and Spectra (Univ. California Press, 1981).
van der Laan, G. Hitchhiker’s guide to multiplet calculations. Lect. Notes Phys. 697, 143–200 (2006).
Caciuffo, R., Lander, G. H. & van der Laan, G. X-ray synchrotron radiation techniques and their applications to actinide materials. Rev. Mod. Phys. 95, 015001 (2023).
Thole, B. T., van der Laan, G. & Butler, P. H. Spin-mixed ground state of Fe phthalocyanine and the temperature dependent branching ratio in X-ray absorption spectroscopy. Chem. Phys. Lett. 149, 295–299 (1988).
Stavitski, E. & de Groot, F. M. F. The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 41, 687 (2010).
Haverkort, M. W. Quanty for core level spectroscopy — excitons, resonances and band excitations in time and frequency domain. J. Phys. Conf. Ser. 712, 012001 (2016).
de Groot, F. M. F. et al. 2p X-ray absorption spectroscopy of 3d transition metal systems. J. Electron Spectrosc. Relat. Phenom. 249, 147061 (2021).
Thole, B. T., van der Laan, G. & Sawatzky, G. A. Strong magnetic dichroism predicted in the M4,5 X-ray absorption spectra of magnetic rare earth materials. Phys. Rev. Lett. 55, 2086–2088 (1985).
van der Laan, G. & Thole, B. T. Strong magnetic X-ray dichroism in 2p absorption spectra of 3d transition metal ions. Phys. Rev. B 43, 13401–13411 (1991).
Thole, B. T., Carra, P., Sette, F. & van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943–1946 (1992). This paper presents the sum rules linking the X-ray magnetic circular dichroism spectra and magnetic orbital moments.
Carra, P., Thole, B. T., Altarelli, M. & Wang, X. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 70, 694–697 (1993).
Rehr, J. J. et al. Ab initio theory and calculations of X-ray spectra. Comptes Rendus Phys. 10, 548–559 (2009).
Joly, Y., Ramos, A. Y. & Bunău O. in International Tables for Crystallography, Vol. I, X-ray Absorption Spectroscopy and Related Techniques (eds Chantler, C. et al.) Ch. 2.11, 114–120 (International Union of Crystallography, 2024).
van der Laan, G. & Thole, B. T. Electronic correlations in Ni 2p and 3p magnetic X-ray dichroism and X-ray photoemission of ferromagnetic nickel. J. Phys. Condens. Matter 4, 4181–4188 (1992).
Dresselhauset, J. et al. Antiferromagnetic coupling of Mn adsorbates to Fe(100). Phys. Rev. B 56, 5461–5467 (1997).
Pearce, C. I. et al. Direct determination of cation site occupancies in natural ferrite spinels by L2,3 X-ray absorption spectroscopy and X-ray magnetic circular dichroism. Am. Mineral. 91, 880–893 (2006).
Gaudry, E. et al. From the green color of Eskolaite to the red color of Ruby: an X-ray absorption spectroscopy study. Phys. Chem. Miner. 32, 710–720 (2006).
Mannini, M. et al. XAS and XMCD investigation of Mn12 monolayers on gold. Chem. Eur. J. 14, 7530–7535 (2008).
Chen, C. T. et al. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152 (1995).
Chen, C. T., Sette, F., Ma, Y. & Modesti, S. Soft-X-ray magnetic circular dichroism at the L2,3 edges of nickel. Phys. Rev. B 42, 7262 (1990).
Stepanow, S. et al. Giant spin and orbital moment anisotropies of a Cu-phthalocyanine monolayer. Phys. Rev. B 82, 014405 (2010).
Arrio, M.-A. et al. Photoinduced magnetization on Mo ion in copper octacyanomolybdate: an X-ray magnetic circular dichroism investigation. J. Phys. Chem. C 114, 593–600 (2010).
Agrestini, S. et al. Electronic and spin states of SrRuO3 thin films: an X-ray magnetic circular dichroism study. Phys. Rev. B 91, 075127 (2015).
Wilhelm, F. et al. Orbital and spin moments in the ferromagnetic superconductor URhGe by X-ray magnetic circular dichroism. Phys. Rev. B 95, 235147 (2017).
Chaboy, J. et al. X-ray magnetic circular dichroism probe of the Rh magnetic moment instability in Fe1−xRhx alloys near the equiatomic concentration. Phys. Rev. B 59, 3306 (1999).
Vogel, J. et al. Structure and magnetism of Pd in Pd/Fe multilayers studied by X-ray magnetic circular dichroism at the Pd L(2,3) edges. Phys. Rev. B 55, 3663–3669 (1997).
Jaouen, N. et al. Electronic and magnetic interfacial states of Ag in an Ni. J. Phys. Condens. Matter 20, 095005 (2008).
Figueroa, A. I. et al. Breakdown of Hund’s third rule in amorphous Co-W nanoparticles and crystalline Co3W alloys. Phys. Rev. B 86, 064428 (2012).
Sikora, M. et al. Field-induced magnetostructural phase transition in double perovskite Ca2FeReO6 studied via X-ray magnetic circular dichroism. Phys. Rev. B 79, 220402 (2009).
Agrestini, S. et al. Nature of the magnetism of iridium in the double perovskite Sr2CoIrO6. Phys. Rev. B 100, 014443 (2019).
Grange, W. et al. Experimental and theoretical X-ray magnetic-circular-dichroism study of the magnetic properties of Co50Pt50 thin films. Phys. Rev. B 62, 1157 (2000).
Yamamoto, Y. et al. Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys. Rev. Lett. 93, 116801 (2004).
Yamamoto, Y. et al. X-ray magnetic circular dichroism study of gold nanoparticles protected by polymer. J. Magn. Magn. Mater. 272–276, e1183–e1184 (2004).
Elnaggar, H. et al. Noncollinear ordering of the orbital magnetic moments in magnetite. Phys. Rev. Lett. 123, 207201 (2019).
Goedkoop, J. B. et al. Calculations of magnetic X-ray dichroism in the 3d absorption spectra of rare earth compounds. Phys. Rev. B 37, 2086–2095 (1988).
Giorgetti, C. et al. Quadrupolar effect in X-ray magnetic circular dichroism. Phys. Rev. Lett. 75, 3186 (1995).
Detlefs, C. et al. Evidence for quadrupolar contributions to the circular magnetic-X-ray dichroism of rare-earths. J. Phys. Chem. Solids 65, 1517 (1995).
Giorgetti, C., Dartyge, E., Baudelet, F. & Brouder, C. XMCD at LII,III edges of rare-earths: electric quadrupolar and dipolar effects. Appl. Phys. A 73, 703–706 (2001).
Love, C. et al. Elucidation of orbital moment, anisotropy, and magnetic damping in epitaxial Fe3O4 films. Phys. Rev. B 107, 064414 (2023).
Thakur, P. et al. Direct observation of oxygen induced room temperature ferromagnetism in thin films by X-ray magnetic circular dichroism characterizations. Appl. Phys. Lett. 94, 062501 (2009).
Sassi, M., Pearce, C. I., Bagus, P. S., Arenholz, E. & Rosso, K. M. First-principles Fe L2,3-edge and O K-edge XANES and XMCD spectra for iron oxides. J. Phys. Chem. A 121, 7613–7618 (2017).
Guillou, F. et al. Electronic and magnetic properties of phosphorus across the first-order ferromagnetic transition of (Mn,Fe)2(P,Si,B) giant magnetocaloric materials. Phys. Rev. B 92, 224427 (2015).
Letard, I., Sainctavit, Ph. & Deudon, C. XMCD at Fe L2,3 edges, Fe and S K edges on Fe7S8. Phys. Chem. Miner. 34, 113–120 (2007).
Takahashi, M. & Igarashi, J. X-ray magnetic circular dichroism at the K edge of Mn3GaC. Phys. Rev. B 67, 245104 (2003).
Duffy, L. B. et al. Magnetic proximity coupling to Cr-doped Sb2Te3 thin films. Phys. Rev. B 95, 224422 (2017).
Choi, Y. et al. Iodine orbital moment and chromium anisotropy contributions to CrI3 magnetism. Appl. Phys. Lett. 117, 022411 (2020).
Yamagami, K. et al. Itinerant ferromagnetism mediated by giant spin polarization of the metallic ligand band in the van der Waals magnet Fe5GeTe2. Phys. Rev. B 103, L060403 (2021).
Marangolo, M. et al. Tails of near-edges X-ray absorption spectra as a fingerprint of magnetic and structural phase transitions. Application to metallic 3d ultra thin films. J. Appl. Phys. 93, 5151–5155 (2003).
Liu, B. et al. Sum rule distortions in fluorescence-yield X-ray magnetic circular dichroism. Phys. Rev. B 96, 054446 (2017).
Carra, P., König, H., Thole, B. T. & Altarelli, M. Magnetic X-ray dichroism: general features of dipolar and quadrupolar spectra. Phys. B 192, 182–190 (1993).
Goulon, J. et al. X-ray optical activity: applications of sum rules. J. Exp. Theor. Phys. 97, 402–431 (2003).
Piamonteze, C., Miedema, P. & de Groot, F. M. F. Accuracy of the spin sum rule in XMCD for the transition-metal L edges from manganese to copper. Phys. Rev. B 80, 184410 (2009).
Goulon, J., Goulon-Ginet, C., Cortès, R. & Dubois, J. M. On experimental attenuation factors of the amplitude of the EXAFS oscillations in absorption, reflectivity and luminescence measurements. J. Phys. 43, 539–548 (1982).
Thole, B. T. et al. 3d X-ray-absorption lines and the 3d9 4fn+1 multiplets of the lanthanides. Phys. Rev. B 32, 8 (1985).
Frazer, B. H., Gilbert, B., Sonderegger, B. R. & De Stasio, G. The probing depth of total electron yield in the sub-keV range: TEY-XAS and X-PEEM. Surf. Sci. 537, 161–167 (2003).
Aksoy, F., Akgül, G., Ufuktepe, Y. & Nordlund, D. Thickness dependence of the L2,3 branching ratio of Cr thin films. J. Alloy. Compd 508, 233–237 (2010).
Henneken, H., Scholze, F. & Ulm, G. Lack of proportionality of total electron yield and soft X-ray absorption coefficient. J. Appl. Phys. 87, 257–268 (2000).
Hayes, T. M. & Boyce, J. B. Extended X-ray absorption fine-structure spectroscopy. Solid State Phys. 37, 173–351 (1982).
Goulon, J. et al. Advanced detection systems for X-ray fluorescence excitation spectroscopy. J. Synchrotron Rad. 12, 57–69 (2005).
Thole, B. T., van der Laan, G. & Fabrizio, M. Magnetic ground-state properties and spectral distributions. I. X-ray-absorption spectra. Phys. Rev. B 50, 11466 (1994).
van der Laan, G., Hesjedal, T. & Bencok, P. Polarization analysis by means of individual X-ray absorption spectra of rare earths. Phys. Rev. B 106, 214423 (2022).
Sainctavit, Ph., Moulin, C. C. & Arrio, M. A. in Magnetism: Molecules to Materials I: Models and Experiments Vol. 131 (eds Miller, J. S. & Drillon, M.) (Wiley-VCH, 2002).
van der Laan, G. et al. Comparison of X-ray absorption with X-ray photoemission of nickel dihalides and NiO. Phys. Rev. B 33, 4253–4263 (1986).
Natoli, C. R. et al. Calculation of X-ray natural circular dichroism. Eur. Phys. J. B 4, 1–11 (1998).
Lee, J. et al. A direct test of X-ray magnetic circular dichroism sum rules for strained Ni films using polarized neutron reflection. J. Phys. Condens. Matter 9, L137–L143 (1997).
van der Laan, G. et al. Orbital polarization in NiFe2O4 measured by Ni−2p X-ray magnetic circular dichroism. Phys. Rev. B 59, 4314 (1999).
Lovesey, S. W. & Collins, S. P. X-Ray Scattering and Absorption by Magnetic Materials (Oxford Univ. Press, 1996).
Stöhr, J. Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. J. Magn. Magn. Mater. 200, 470–497 (1999). This article gives a brief review of the principles of X-ray magnetic circular dichroism, which are then applied to the study of the thickness-dependent electronic and magnetic properties of a Co film sandwiched between Au.
de Groot, F. M. F. & Kotani, A. Core Level Spectroscopy of Solids (CRC Press, 2008).
van der Laan, G. Applications of soft X-ray magnetic dichroism. J. Phys. Conf. Ser. 430, 012127 (2013).
van der Laan, G. in International Tables for Crystallography, Vol. I, X-ray Absorption Spectroscopy and Related Techniques (eds Chantler, C. et al.) Ch. 3.33 508–515 (International Union of Crystallography, 2024).
van der Laan, G. in International Tables for Crystallography, Vol. I, X-ray Absorption Spectroscopy and Related Techniques (eds Chantler, C. et al.) Ch. 2.18 169–176 (International Union of Crystallography, 2024).
van der Laan, G. & Figueroa, A. I. in International Tables for Crystallography, Vol. I, X-ray Absorption Spectroscopy and Related Techniques (eds Chantler, C. et al.) Ch. 2.17 163–168 (International Union of Crystallography, 2024).
Dürr, H. A. et al. Element-specific magnetic anisotropy determined by transverse magnetic circular X-ray dichroism. Science 277, 213 (1997).
van der Laan, G. Microscopic origin of magnetocrystalline anisotropy in transition metal thin films. J. Phys. Condens. Matter 10, 3239–3253 (1998).
Weller, D. et al. Microscopic origin of magnetic anisotropy in Au/Co/Au probed with X-ray magnetic circular dichroism. Phys. Rev. Lett. 75, 3752 (1995).
Bruno, P. Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. Phys. Rev. B 39, 865 (1989).
Pizzini, S. et al. Evidence for the spin polarization of copper in Co/Cu and Fe/Cu multilayers. Phys. Rev. Lett. 74, 1470 (1995).
Held, G. A. et al. X-ray magnetic circular dichroism study of the induced spin polarization of Cu in Co/Cu and Fe/Cu multilayers. Z. für Phys. B 100, 335 (1996).
Kuch, W. et al. Artificially ordered FeCu alloy superlattices on Cu(001). II. Spin-resolved electronic properties and magnetic dichroism. Phys. Rev. B 58, 8556 (1998).
Offi, F. et al. Induced Fe and Mn magnetic moments in Co-FeMn bilayers on Cu(001). Phys. Rev. B 67, 094419 (2003).
Abrudan, R. et al. Structural and magnetic properties of epitaxial Fe/CoxO bilayers on Ag(001). Phys. Rev. B 77, 014411 (2008).
Ebert, H. & Man’kovsky, S. Field-induced magnetic circular X-ray dichroism in paramagnetic solids: a new magneto-optical effect. Phys. Rev. Lett. 90, 077404 (2003).
Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301 (2002).
Gambardella, P. et al. Localized magnetic states of Fe, Co, and Ni impurities on alkali metal films. Phys. Rev. Lett. 88, 047202 (2002).
Donati, F. et al. Magnetic remanence in single atoms. Science 352, 318–321 (2016). An X-ray magnetic circular dichroism study towards single atomic memory.
Vaz, C. A. F. et al. Multiplicity of magnetic domain states in circular elements probed by photoemission electron microscopy. Phys. Rev. B 72, 224426 (2005).
Kronast, F. et al. Element-specific magnetic hysteresis of individual 18 nm Fe nanocubes. Nano Lett. 11, 1710–1715 (2011).
Balan, A. et al. Direct observation of magnetic metastability in individual iron nanoparticles. Phys. Rev. Lett. 112, 107201 (2014).
Kleibert, A. et al. Direct observation of enhanced magnetism in individual size- and shape-selected 3d transition metal nanoparticles. Phys. Rev. B 95, 195404 (2017).
Vijayakumar, J. et al. Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles. Nat. Commun. 14, 174 (2023).
Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449 (2016).
Woo, S. et al. Spin–orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy. Nat. Commun. 8, 15573 (2017).
Hierro-Rodriguez, A. et al. Revealing 3D magnetization of thin films with soft X-ray tomography: magnetic singularities and topological charges. Nat. Commun. 11, 6382 (2020).
van der Laan, G. Determination of spin chirality using X-ray magnetic circular dichroism. Phys. Rev. B 104, 094414 (2021).
Herguedas-Alonso, A. E. et al. A fast magnetic vector characterization method for quasi two-dimensional systems and heterostructures. Sci. Rep. 13, 9639 (2023).
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).
Hariki et al. X-ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett. 132, 176701 (2024).
Amin, O. J. et al. Nanoscale imaging and control of altermagnetism in MnTe. Nature 636, 348 (2024).
Abdeldaim, A. H. et al. Kitaev interactions through extended superexchange pathways in the jeff = 1/2 Ru3+ honeycomb magnet RuP3SiO11. Nat. Commun. 15, 9778 (2024).
Qi, X.-L. & Qi, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).
Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602 (2014).
Qin Liu, Q., Liu, C. X., Xu, C., Qi, X.-L. & Zhang, S.-C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009).
Figueroa, A. I. et al. X-ray magnetic circular dichroism study of Dy-doped Bi2Te3 topological insulator thin films. J. Magn. Magn. Mater. 422, 93–99 (2017).
Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513 (2016).
Liu, V. Y. et al. Coherent epitaxial semiconductor−ferromagnetic insulator InAs/EuS interfaces: band alignment and magnetic structure. ACS Appl. Mater. Interfaces 12, 8780 (2019).
Scheybal, A. et al. Induced magnetic ordering in a molecular monolayer. Chem. Phys. Lett. 411, 214–220 (2005).
Sanvito, S. The rise of spinterface science. Nat. Phys. 6, 562–564 (2010).
Cinchetti, M., Dediu, V. A. & Hueso, L. E. Activating the molecular spinterface. Nat. Mater. 16, 507–515 (2017).
Bernien, M. et al. Tailoring the nature of magnetic coupling of Fe-porphyrin molecules to ferromagnetic substrates. Phys. Rev. Lett. 102, 047202 (2009).
Hermanns, C. F. et al. Magnetic coupling of porphyrin molecules through graphene. Adv. Mater. 25, 3473 (2013).
Wäckerlin, C. et al. Giant hysteresis of single-molecule magnets adsorbed on a nonmagnetic insulator. Adv. Mater. 28, 5195 (2016).
Marocchi, S. et al. Relay-like exchange mechanism through a spin radical between TbPc2 molecules and graphene/Ni(111) substrates. ACS Nano 10, 9353–9360 (2016).
Candini, A. et al. Spin-communication channels between Ln(III) bis-phthalocyanines molecular nanomagnets and a magnetic substrate. Sci. Rep. 6, 21740 (2016).
Huttmann, F. et al. Europium cyclooctatetraene nanowire carpets: a low-dimensional, organometallic, and ferromagnetic insulator. Phys. Chem. Lett. 10, 911–917 (2019).
Kumar, K. S. & Ruben, M. Sublimable spin-crossover complexes: from spin-state switching to molecular devices. Angew. Chem. Int. Ed. 60, 7502–7521 (2021).
Grunwald, J. et al. Defying the inverse energy gap law: a vacuum-evaporable Fe(II) low-spin complex with a long-lived LIESST state. Chem. Sci. 14, 7361–7380 (2023).
Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).
Bonetti, S. et al. Direct observation and imaging of a spin-wave soliton with p-like symmetry. Nat. Commun. 6, 8889 (2015).
Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731 (2010).
Stamm, C. et al. Femtosecond modification of electron localization and exchange of angular momentum in Ni. Nat. Mater. 6, 740 (2007).
Boeglin, C. et al. Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458 (2010).
Dornes, C. et al. The ultrafast Einstein–de Haas effect. Nature 565, 209–212 (2019).
Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205 (2011).
Pontius, N., Holldack, K., Schüßler-Langeheine, C., Kachel, T. & Mitzner, R. The FemtoSpeX facility at BESSY II. J. Large-Scale Res. Facilities 2, A46 (2016).
Higley, D. J. et al. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser. Rev. Sci. Instrum. 87, 033110 (2016).
Lutman, A. A. et al. Polarization control in an X-ray free-electron laser. Nat. Photon. 10, 468 (2016).
Wang, T. et al. Femtosecond single-shot X-ray imaging of nanoscale ferromagnetic order. Phys. Rev. Lett. 108, 267403 (2012).
Graves, C. E. et al. Nanoscale spin reversal by nonlocal angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nat. Mater. 12, 293 (2013).
Le Guyader, L. et al. State-resolved ultrafast charge and spin dynamics in Co/Pd multilayers. Appl. Phys. Lett. 120, 032401 (2022).
Willems, F. et al. Optical inter-site spin transfer probed by energy and spin-resolved transient absorption spectroscopy. Nat. Commun. 11, 871 (2020).
van der Laan, G. Sum rule practise. J. Synchrotron Rad. 6, 694–695 (1999).
Altarelli, M. & Sainctavit, Ph. in Magnetism and Synchrotron Radiation (eds Beaurepaire, E. et al.) 65–74 (Éditions de physique, Les Ulis, 1997).
Nesvizhskii, A. I., Ankudinov, A. L. & Rehr, J. J. Normalization and convergence of X-ray absorption sum rules. Phys. Rev. B 63, 094412 (2001).
Altarelli, M. Sum rules for X-ray magnetic circular dichroism. Il Nuovo Cimento 20D, 1067 (1998).
Kowalik, I. A. Element specific magnetometry combining X-ray circular with linear dichroism: fundamentals and applications. Acta Phys. Pol. A 127, 831 (2015).
Wende, H. Recent advances in X-ray absorption spectroscopy. Rep. Prog. Phys. 67, 2105 (2004). An advanced-level review of X-ray absorption spectroscopy and its applications to a wide class of materials systems.
Funk, T., Deb, A., George, S. J., Wang, H. X. & Cramer, S. P. X-ray magnetic circular dichroism — a high energy probe of magnetic properties. Coord. Chem. Rev. 249, 3 (2005).
de Groot, F. M. F. J. X-ray absorption and dichroism of transition metals and their compounds. J. Electron Spectrosc. Relat. Phenom. 67, 529 (1994).
Wu, R. Q., Wang, X. D. & Freeman, A. J. First principles investigation of the validity and range of applicability of the X-ray magnetic circular dichroism sum rule. Phys. Rev. Lett. 71, 3581 (1993).
van Veenendaal, M., Goedkoop, J. B. & Thole, B. T. Branching ratios of the circular dichroism at rare earth L23 edges. Phys. Rev. Lett. 78, 1162 (1997).
Figueroa, A. I. et al. Magnetic Cr doping of Bi2Se3: evidence for divalent Cr from X-ray spectroscopy. Phys. Rev. B 90, 134402 (2014).
Wu, R. Q. & Freeman, A. J. Limitation of the magnetic-circular-dichroism spin sum rule for transition metals and importance of the magnetic dipole term. Phys. Rev. Lett. 73, 1994 (1994).
Miura, Y. & Okabayashi, J. Understanding magnetocrystalline anisotropy based on orbital and quadrupole moments. J. Phys. Condens. Matter 34, 473001 (2022).
Stohr, J. & Konig, H. Determination of spin-moment and orbital-moment anisotropies in transition-metals by angle-dependent X-ray magnetic circular-dichroism. Phys. Rev. Lett. 75, 3748–3751 (1995).
Arvanitis, D. et al. in Spin-Orbit Influenced Spectroscopies of Magnetic Solids (eds Ebert, H. & Schutz, G.) (Springer Verlag, 1996).
Sainctavit, Ph., Arrio, M. A. & Brouder, C. Analytic calculation of the spin sum-rule at the L2,3 edges of Cu2+. Phys. Rev. B 52, 12766–12769 (1995).
Sainctavit, Ph. Magnetic operators for Ti3+ and Cu2+ ground states. J. Electron Spectrosc. Relat. Phenom. 86, 133–138 (1997).
Edmonds, K. W. et al. Ferromagnetic moment and antiferromagnetic coupling in (Ga,Mn)As thin films. Phys. Rev. B 71, 064418 (2005).
van der Laan, G. & Thole, B. T. X-ray-absorption sum rules in jj-coupled operators and ground-state moments of actinide ions. Phys. Rev. B 53, 14458–14469 (1996).
van der Laan, G. & Thole, B. T. Angular dependent photoelectric yield. Measurement of the La 3d Auger and autoionization lifetime widths. J. Electron Spectrosc. Relat. Phenom. 46, 123–129 (1988).
Fauth, K. How well does total electron yield measure X-ray absorption in nanoparticles? Appl. Phys. Lett. 85, 3271–3273 (2004).
Noma, A. I. Correction of the self-absorption effect in fluorescence X-ray absorption fine structure. Jpn. J. Appl. Phys. 32, 2899–2902 (1993).
Tröger, L. et al. Full correction of the self-absorption in soft-fluorescence extended X-ray-absorption fine structure. Phys. Rev. B 46, 3283–3289 (1992).
Vaz, C. A. F., Moutafis, C., Quitmann, C. & Raabe, J. Luminescence-based magnetic imaging with scanning X-ray transmission microscopy. Appl. Phys. Lett. 101, 083114 (2012).
Vaz, C. A. F., Moutafis, C., Buzzi, M. & Raabe, J. X-ray excited optical luminescence of metal oxide single crystals. J. Electron Spectrosc. Relat. Phenom. 189, 1–4 (2013).
Kallmayer, M. et al. Interface magnetization of ultrathin epitaxial Co2FeSi(110)/Al2O3 films. J. Phys. D Appl. Phys. 40, 1552–1557 (2007).
Stenning, G. B. G. et al. Transverse magnetic exchange springs in a DyFe2/YFe2 superlattice. Phys. Rev. B 86, 174420 (2012).
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
Tokura, Y. & Kanazawa, N. Magnetic skyrmion materials. Chem. Rev. 121, 2857–2897 (2021).
Ajayi, T. M. et al. Characterization of just one atom using synchrotron X-rays. Nature 618, 69 (2023).
Zhu, X. et al. Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography. Proc. Natl Acad. Sci. USA 113, E8219 (2016).
Moyer, J. A. et al. Magnetic structure of Fe-doped CoFe2O4 probed by X-ray magnetic spectroscopies. Phys. Rev. B 84, 054447 (2011).
Acknowledgements
A.F.R. acknowledges financial support from the Spanish MICIIN (PID2021-127397NB-I00), Catalan AGAUR (2021SGR00328) and EU FEDER funds.
Author information
Authors and Affiliations
Contributions
Introduction (C.A.F.V., G.v.d.L. and G.S.); Experimentation (G.v.d.L., S.A.C., F.K., E.W. and F.W.); Results (G.v.d.L. and Ph.S.); Applications (C.A.F.V., H.A.D., W.K. and H.W.); Reproducibility and data deposition (C.A.F.V.); Limitations and optimizations (C.A.F.V., G.v.d.L., A.F.R. and Ph.S.); Outlook (C.A.F.V., G.v.d.L., A.F.R. and G.S.); overview of the Primer (all authors).
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks Daniel Haskel, Javier Herrero-Martin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Database of X-ray interactions with matter: https://henke.lbl.gov/optical_constants/
FDMNES: https://fdmnes.neel.cnrs.fr/
FEFF: https://feff.phys.washington.edu/
Quanty: http://www.quanty.org/
Supplementary information
Glossary
- Absorption edges
-
Sudden increase in X-ray absorption at photon energies that correspond to electron transitions from core level to empty states.
- Circularly polarized photon
-
A quantum of light whose electric field rotates in a circular pattern, as the wave moves forward.
- E1 electric-dipole
-
Quantum processes in which an electron moves between energy levels in an atom or molecule by absorbing or emitting a photon, resulting in a change in the dipole moment.
- E2 electric-quadrupole
-
Quantum processes involving the movement of an electron between energy levels in an atom or molecule that causes a change in the electric quadrupole moment. These transitions typically have lower probability than E1 transitions.
- Hard X-ray
-
High-energy X-ray radiation with short wavelengths. Hard X-rays can penetrate dense materials, making them useful for imaging and analysis in various fields, including medical and industrial applications.
- Magnetic solitons
-
Stable, wave-like structure in a magnetized material; the magnetic spins twist in a specific pattern and move without changing shape over time.
- Magneto-optical effect
-
Magneto-optical effects describe the changes in the optical properties of a material — such as how it absorbs or reflects light — in the presence of a magnetic field.
- Soft X-rays
-
A type of X-ray radiation with lower energy and longer wavelengths, compared with tender or hard X-rays, making them useful for studying materials at shallow depths or with delicate structures.
- Spin-polarized electron
-
An electron whose spin — a quantum property similar to magnetic orientation — is aligned in a specific direction, either up or down, rather than in a random direction.
- Tender X-rays
-
A type of X-ray radiation with energy between soft and hard X-rays, which hence penetrates deeper than soft X-rays.
- X-ray helicity
-
The direction of rotation — left (negative helicity) or right (positive helicity) — of the electric field of circularly polarized X-rays.
- X-ray magnetic cross-section
-
Quantifies the probability of X-rays interacting with the magnetic electrons of a material, providing insights into its magnetic properties.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Vaz, C.A.F., van der Laan, G., Cavill, S.A. et al. X-ray magnetic circular dichroism. Nat Rev Methods Primers 5, 27 (2025). https://doi.org/10.1038/s43586-025-00397-9
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-025-00397-9