Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

X-ray magnetic circular dichroism

Abstract

X-ray magnetic circular dichroism (XMCD) is the difference in X-ray absorption between left and right circularly polarized light in magnetic materials. It is the X-ray counterpart of the magneto-optic effect for visible light but shows a magnetic contrast up to three orders of magnitude higher. The exploration of XMCD using high-flux, monochromatic and polarization-variable synchrotron sources has advanced the understanding of magnetism and magnetic materials, in particular, when combined with spectral analysis based on powerful sum rules that enable the quantification of spin and orbital moments with elemental, even chemical, selectivity and high sensitivity. As an essential cornerstone of techniques to probe magnetic nanostructures and spin textures as well as their dynamics, XMCD has become an indispensable tool for the study of magnetism at the nanoscale and atomic scale. This Primer provides an overview of the principles and physics underlying XMCD, the experimental techniques used to measure it and its application to the study and understanding of fundamental and technologically relevant magnetic phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: X-ray magnetic circular dichroism.
Fig. 2: Experimental set-up and various detection modes.
Fig. 3: Imaging and dynamical techniques related to X-ray magnetic circular dichroism.
Fig. 4: Examples of spectra from X-ray absorption spectroscopy and X-ray magnetic dichroism.
Fig. 5: X-ray magnetic circular dichroism for the study of magnetic molecular systems, and ultrafast charge and spin dynamics.

Similar content being viewed by others

References

  1. Fernandez, V. et al. Observation of orbital moment in NiO. Phys. Rev. B 57, 7870 (1998).

    Article  ADS  Google Scholar 

  2. Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130 (2003).

    Article  ADS  Google Scholar 

  3. van der Laan, G. & Figueroa, A. I. X-ray magnetic circular dichroism — a versatile tool to study magnetism. Coord. Chem. Rev. 277–278, 95–129 (2014). An advanced-level text on theoretical and experimental aspects of X-ray magnetic circular dichroism.

    Article  Google Scholar 

  4. van der Laan, G. et al. Experimental proof of magnetic X-ray dichroism. Phys. Rev. B 34, 6529–6531 (1986). To our knowledge, this is the first experimental report of X-ray magnetic dichroism.

    Article  ADS  Google Scholar 

  5. Schütz, G. et al. Absorption of circularly polarized X rays in iron. Phys. Rev. Lett. 58, 737 (1987). This paper reports the observation of X-ray magnetic circular dichroism at the Fe K edge.

    Article  ADS  Google Scholar 

  6. Rogalev, A., Wilhelm, F., Jaouen, N., Goulon, J. & Kappler, J.-P. in Magnetism: A Synchrotron Radiation Approach (eds Beaurepaire, E. et al.) (Springer-Verlag, 2006).

  7. van der Laan, G. in Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources, Springer Proceedings in Physics Vol. 151 (eds Beaurepaire, E. et al.) 257–288 (Springer, 2013).

  8. Fano, U. Spin orientation of photoelectrons ejected by circularly polarized light. Phys. Rev. 178, 131 (1969).

    Article  ADS  Google Scholar 

  9. van der Laan, G. & Thole, B. T. Magnetic dichroism in the X-ray absorption branching ratio. Phys. Rev. B 42, 6670 (1990).

    Article  ADS  Google Scholar 

  10. Stohr, J. & Siegmann, H. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, 2006). A reference book on magnetism and the interaction of polarized photons with matter, including ultrafast dynamics.

  11. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444 (2016). This article reports the application of X-ray magnetic circular dichroism with microscopy to image skyrmion structures in asymmetric metallic multilayers with a net Dzyaloshinskii–Moriya interaction.

    Article  ADS  Google Scholar 

  12. Wintz, S. et al. Magnetic vortex cores as tunable spin-wave emitters. Nat. Nanotechnol. 11, 948 (2026).

    Article  ADS  Google Scholar 

  13. Beardsley, R. P. et al. Deterministic control of magnetic vortex wall chirality by electric field. Sci. Rep. 7, 7613 (2017).

    Article  ADS  Google Scholar 

  14. Donnelly, C. et al. Three-dimensional magnetization structures revealed with X-ray vector nanotomography. Nature 547, 328 (2017).

    Article  ADS  Google Scholar 

  15. Kent, N. et al. Creation and observation of hopfions in magnetic multilayer systems. Nat. Commun. 12, 1562 (2021).

    Article  ADS  Google Scholar 

  16. Pizzini, S., Vogel, J., Bonfim, M. & Fontaine, A. Time-resolved X-ray magnetic circular dichroism — a selective probe of magnetization dynamics on nanosecond timescales, in spin dynamics in confined magnetic structures II. Top. Appl. Phys. 87, 155–185 (2003).

    ADS  Google Scholar 

  17. Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225 (2015).

    Article  Google Scholar 

  18. Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat. Mater. 6, 516–520 (2007).

    Article  ADS  Google Scholar 

  19. Frisk, A., Duffy, L. B., Zhang, S., van der Laan, G. & Hesjedal, T. Magnetic X-ray spectroscopy of two-dimensional CrI3 layers. Mater. Lett. 231, 5–7 (2018).

    Article  ADS  Google Scholar 

  20. Herper, H. C. et al. Molecular Nanomagnets: Fundamental Understanding (Springer Nature Singapore, 2020).

  21. Bedoya-Pinto, A. et al. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374, 616 (2021).

    Article  ADS  Google Scholar 

  22. Suzuki, M. et al. Magnetic anisotropy of the van der Waals ferromagnet Cr2Ge2Te6 studied by angular-dependent X-ray magnetic circular dichroism. Phys. Rev. Res. 4, 013139 (2022).

    Article  Google Scholar 

  23. Fujita, R. et al. Layer-dependent magnetic domains in atomically thin Fe5GeTe2. ACS Nano 16, 10545–10553 (2022).

    Article  Google Scholar 

  24. Mawass, M.-A. et al. Switching by domain-wall automotion in asymmetric ferromagnetic rings. Phys. Rev. Appl. 7, 044009 (2017).

    Article  ADS  Google Scholar 

  25. Luo, Z. et al. Current-driven magnetic domain-wall logic. Nature 579, 214 (2020).

    Article  ADS  Google Scholar 

  26. Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nat. Phys. 7, 68 (2010).

    Article  Google Scholar 

  27. Rana, A. et al. Three-dimensional topological magnetic monopoles and their interactions in a ferromagnetic meta-lattice. Nat. Nanotechnol. 18, 227 (2023).

    Article  ADS  Google Scholar 

  28. Samant, M. G. et al. Induced spin polarization in Cu spacer layers in Co/Cu multilayers. Phys. Rev. Lett. 72, 1112 (1994).

    Article  ADS  Google Scholar 

  29. Figueroa, A. I. et al. Structural and magnetic properties of granular Co–Pt multilayers with perpendicular magnetic anisotropy. Phys. Rev. B 90, 174421 (2014).

    Article  ADS  Google Scholar 

  30. Liu, Y. et al. Induced Ti magnetization at La0.7Sr0.3MnO3 and BaTiO3 interfaces. APL Mater. 4, 046105 (2016).

    Article  ADS  Google Scholar 

  31. Yamamoto, K. et al. Ultrafast demagnetization of Pt magnetic moment in L10-FePt probed by magnetic circular dichroism at a hard X-ray free electron laser. N. J. Phys. 21, 123010 (2019).

    Article  Google Scholar 

  32. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    Article  ADS  Google Scholar 

  33. Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin–orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57 (2014).

    Article  ADS  Google Scholar 

  34. van Veenendaal, M. et al. Electronic structure of Co 3d states in the Kitaev material candidate honeycomb cobaltate Na3Co2SbO6 probed with X-ray dichroism. Phys. Rev. B 107, 214443 (2023).

    Article  ADS  Google Scholar 

  35. Manchon, A. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  36. Xue, F. et al. Field-free spin–orbit torque switching assisted by in-plane unconventional spin torque in ultrathin Pt/CoN. Nat. Commun. 14, 3932 (2023).

    Article  ADS  Google Scholar 

  37. Wilhelm, F. Magnetic materials probed with polarized X-ray spectroscopies. Synchrotron Radiat. N. 26, 2–5 (2013).

    Article  ADS  Google Scholar 

  38. Willmott, P. An Introduction to Synchrotron Radiation: Techniques and Applications (John Wiley & Sons Ltd, 2019).

  39. Hwu, Y. & Margaritondo, G. Synchrotron radiation and X-ray free-electron lasers (X-FELs) explained to all users, active and potential. J. Synchrotron Rad. 28, 1014 (2021).

    Article  Google Scholar 

  40. Englisch, U. et al. The elliptical undulator UE46 and its monochromator beam-line for structural research on nanomagnets at BESSY-II. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 467, 541 (2001).

    Article  ADS  Google Scholar 

  41. Pellegrini, C., Marinelli, A. & Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016).

    Article  ADS  Google Scholar 

  42. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  43. Borchert, M. et al. X-ray magnetic circular dichroism spectroscopy at the Fe L edges with a picosecond laser-driven plasma source. Optica 10, 450–455 (2020).

    Article  ADS  Google Scholar 

  44. Rogalev, A. & Wilhelm, F. Magnetic circular dichroism in the hard X-ray range. Phys. Met. Metallogr. 116, 1285 (2015).

    Article  ADS  Google Scholar 

  45. Petersen, H., Jung, C., Hellwig, C., Peatman, W. B. & Gudat, W. Review of plane grating focusing for soft X‐ray monochromators. Rev. Sci. Instr. 66, 1 (1995).

    Article  ADS  Google Scholar 

  46. Brzhezinskaya, M. A novel monochromator for experiments with ultrashort X-ray pulses. J. Synchrotron Rad. 20, 522 (2013).

    Article  Google Scholar 

  47. Holldack, K. et al. Flipping the helicity of X-rays from an undulator at unprecedented speed. Commun. Phys. 3, 61 (2020).

    Article  Google Scholar 

  48. Elleaume, P. Helios: a new type of linear/helical undulator. J. Synchrotron Rad. 1, 19–26 (1994).

    Article  Google Scholar 

  49. Sasaki, S. et al. Design of a new type of planar undulator for generating variably polarized radiation. Nucl. Inst. Meth. A 331, 763–767 (1993).

    Article  ADS  Google Scholar 

  50. Belyakov, V. & Dmitrienko, V. Polarization phenomena in X-ray optics. Sov. Phys. Usp. 32, 697–719 (1989).

    Article  ADS  Google Scholar 

  51. Hirano, K., Izumi, K., Ishikawa, T., Annaka, S. & Kikuta, S. An X-ray phase plate using Bragg-case diffraction. Jpn. J. Appl. Phys. 30, L407 (1991).

    Article  ADS  Google Scholar 

  52. Bouchenoire, L., Morris, R. J. H. & Hase, T. P. A. A silicon <111> phase retarder for producing circularly polarized X-rays in the 2.1–3 keV energy range. Appl. Phys. Lett. 101, 064107 (2012).

    Article  ADS  Google Scholar 

  53. Suzuki, M. et al. Helicity-modulation technique using diffractive phase retarder for measurements of X-ray magnetic circular dichroism. Jpn. J. Appl. Phys. 37, L1488–L1490 (1998).

    Article  Google Scholar 

  54. Mathon, O. et al. XMCD under pressure at the Fe K edge on the energy-dispersive beamline of the ESRF. J. Synchrotron Rad. 11, 423–427 (2004).

    Article  Google Scholar 

  55. Baudelet, F., Kong, Q., Nataf, L. & Cafun, J.-D. ODE: a new beam line for high-pressure XAS and XMCD studies at SOLEIL. High Press. Res. 31, 136–139 (2011).

    Article  ADS  Google Scholar 

  56. Pascarelli, S. et al. The time-resolved and extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24. J. Synchrotron Rad. 23, 353 (2016).

    Article  Google Scholar 

  57. Yasumura, H. et al. 40 T soft X-ray spectroscopies on magnetic-field-induced valence transition in Eu(Rh1−xIrx)2Si2 (x = 0.3). J. Phys. Soc. Jpn. 86, 054706 (2017).

    Article  ADS  Google Scholar 

  58. Yamamoto, S. et al. Field-induced magnetic transitions in the highly anisotropic ferrimagnet ErFe5Al7 studied by high-field X-ray magnetic dichroism. Phys. Rev. B 109, 094404 (2024).

    Article  ADS  Google Scholar 

  59. Matsuda, Y. H. et al. XMCD spectroscopy on valence fluctuating and heavy fermion compounds in very high magnetic fields up to 40 T. J. Phys. Conf. Ser. 190, 012019 (2009).

    Article  Google Scholar 

  60. Wilhelm, F. et al. High pressure XANES and XMCD in the tender X-ray energy range. High Press. Res. 36, 445 (2016).

    Article  ADS  Google Scholar 

  61. Wilhelm, F. et al. Investigating the electronic states of UTe2 using X-ray spectroscopy. Commun. Phys. 6, 96 (2023).

    Article  Google Scholar 

  62. Itie, J.-P., Baudelet, F. & Rueff, J.-P. in X-ray Absorption and X-ray Emission Spectroscopy: Theory and Applications 1st edn (eds van Bokhoven, J. A. & Lamberti, C.) (John Wiley & Sons, Ltd, 2016).

  63. Liu, H. et al. Soft X-ray spectroscopic endstation at beamline 08U1A of Shanghai Synchrotron Radiation Facility. Rev. Sci. Instrum. 90, 043103 (2019).

    Article  ADS  Google Scholar 

  64. Jafri, S. F. et al. Atomic scale evidence of the switching mechanism in a photomagnetic CoFe dinuclear Prussian Blue analogue. J. Am. Chem. Soc. 141, 3470–3479 (2019).

    Article  Google Scholar 

  65. Kappler, J.-P. et al. Ultralow-temperature device dedicated to soft X-ray magnetic circular dichroism experiments. J. Synchrotron Rad. 25, 1727–1735 (2018).

    Article  Google Scholar 

  66. Serrano, G. et al. Quantum dynamics of a single molecule magnet on superconducting Pb(111). Nat. Mater. 19, 546–551 (2020).

    Article  ADS  Google Scholar 

  67. Serrano, G. et al. Magnetic molecules as local sensors of topological hysteresis of superconductors. Nat. Commun. 13, 3838 (2022).

    Article  ADS  Google Scholar 

  68. Aubert, A. et al. Simultaneous multi-property probing during magneto-structural phase transitions: an element-specific and macroscopic hysteresis characterization at ID12 of the ESRF. IEEE Trans. Instrum. Meas. 71, 6002409 (2022).

    Article  Google Scholar 

  69. Haskel, D. et al. Stability of the ferromagnetic ground state of La2MnNiO6 against large compressive stress. Phys. Rev. B 84, 100403 (2011).

    Article  ADS  Google Scholar 

  70. Ishimatsu, N. et al. Hydrogen-induced modification of the electronic structure and magnetic states in Fe, Co, and Ni monohydrides. Phys. Rev. B 86, 104430 (2012).

    Article  ADS  Google Scholar 

  71. Kawamura, N., Ishimatsu, N., Isshiki, M., Komatsu, Y. & Maruyama, H. Ga magnetic polarization in Mn3GaC under high pressure probed by Ga K-edge XMCD. Phys. Scr. T115, 591–593 (2005).

    Article  Google Scholar 

  72. Ding, Y. et al. Novel pressure-induced magnetic transition in magnetite (Fe3O4). Phys. Rev. Lett. 100, 045508 (2008).

    Article  ADS  Google Scholar 

  73. Baudelet, F. et al. Absence of abrupt pressure-induced magnetic transitions in magnetite. Phys. Rev. B 82, 140412 (2010).

    Article  ADS  Google Scholar 

  74. Subías, G. et al. Investigation of pressure-induced magnetic transitions in CoxFe3−xO4 spinels. Phys. Rev. B 87, 094408 (2013).

    Article  ADS  Google Scholar 

  75. Law, J. Y., Moreno-Ramirez, L. M., Díaz-García, Á. & Franco, V. Current perspective in magnetocaloric materials research. J. Appl. Phys. 133, 040903 (2023).

    Article  ADS  Google Scholar 

  76. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    Article  ADS  Google Scholar 

  77. Shaw, J. M. et al. Quantifying spin-mixed states in ferromagnets. Phys. Rev. Lett. 127, 207201 (2021).

    Article  ADS  Google Scholar 

  78. Piamonteze, C., Windsor, Y. W., Avula, S. R. V., Kirk, E. & Staub, U. Soft X-ray absorption of thin films detected using substrate luminescence: a performance analysis. J. Synchrotron Rad. 27, 1289–1296 (2020).

    Article  Google Scholar 

  79. Gudat, W. & Kunz, C. Close similarity between photoelectric yield and photoabsorption spectra in the soft-X-ray range. Phys. Rev. Lett. 29, 169 (1972).

    Article  ADS  Google Scholar 

  80. Blobner, F., Neppl, S. & Feulner, P. A versatile partial electron yield detector with large acceptance angle and well-defined threshold energy and gain. J. Electron. Spectrosc. Relat. Phenom. 184, 483 (2011).

    Article  ADS  Google Scholar 

  81. Stöhr, J. X-ray magnetic circular dichroism spectroscopy of transition metal thin films. J. Electron Spectrosc. Relat. Phenom. 75, 253 (1995).

    Article  ADS  Google Scholar 

  82. de Groot, F. M. F., Arrio, M. A., Sainctavit, Ph., Cartier, C. & Chen, C. T. Fluorescence yield detection: why it does not measure the X-ray absorption cross-section. Solid State Commun. 92, 991–995 (1994).

    Article  ADS  Google Scholar 

  83. de Groot, F. Dips and peaks in fluorescence yield X-ray absorption are due to state-dependent decay. Nat. Chem. 4, 766 (2012).

    Article  Google Scholar 

  84. Nakajima, R., Stohr, J. & Idzerda, Y. U. Electron-yield saturation effects in L-edge X-ray magnetic circular dichroism spectra of Fe, Co, and Ni. Phys. Rev. B 59, 642 (1999). This paper highlights the impact of measurement and sample geometry on X-ray magnetic circular dichroism.

    Article  ADS  Google Scholar 

  85. Boyko, T. D., Green, R. J., Moewes, A. & Regier, T. Z. Measuring partial fluorescence yield using filtered detectors. J. Synchrotron Rad. 21, 716 (2014).

    Article  Google Scholar 

  86. Achkar, A. J., Regier, T. Z., Monkman, E. J., Shen, K. M. & Hawthorn, D. G. Determination of total X-ray absorption coefficient using non-resonant X-ray emission. Sci. Rep. 1, 182 (2011).

    Article  Google Scholar 

  87. Kuch, W. in Magnetic Microscopy of Nanostructures (eds Hopster, H. & Oepen, H. P.) (Springer-Verlag, 2005).

  88. Hitchcock, A. P. Soft X-ray spectromicroscopy and ptychography. J. Electron Spectrosc. Relat. Phenom. 200, 49–63 (2015).

    Article  ADS  Google Scholar 

  89. Rhensius, J. et al. Control of spin configuration in half-metallic La0.7Sr0.3MnO3 nano-structures. Appl. Phys. Lett. 99, 062508 (2011).

    Article  ADS  Google Scholar 

  90. Nichols, C. I. O. et al. Microstructural and paleomagnetic insight into the cooling history of the IAB parent body. Geochim. Cosmochim. Acta 229, 1–19 (2018).

    Article  ADS  Google Scholar 

  91. Kuch, W., Gilles, J., Kang, S., Imada, S. & Suga, S. Magnetic-circular-dichroism microspectroscopy at the spin reorientation transition in Ni(001) films. Phys. Rev. B 62, 3824 (2000).

    Article  ADS  Google Scholar 

  92. Baldasseroni, C. et al. Temperature-driven nucleation of ferromagnetic domains in FeRh thin films. Appl. Phys. Lett. 100, 262401 (2012).

    Article  ADS  Google Scholar 

  93. Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478 (2008).

    Article  ADS  Google Scholar 

  94. Ruiz-Gómez, S. et al. Direct X-ray detection of the spin Hall effect in CuBi. Phys. Rev. X 12, 031032 (2022).

    Google Scholar 

  95. Bryson, J. F. J. et al. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature 517, 472 (2015).

    Article  ADS  Google Scholar 

  96. Hermann, S. et al. Imaging spin dynamics on the nanoscale using X-ray microscopy. Front. Phys. 3, 25 (2015).

    Google Scholar 

  97. Sluka, V. et al. Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures. Nat. Nanotechnol. 14, 328–333 (2019).

    Article  ADS  Google Scholar 

  98. Foerster, M. et al. Quantification of propagating and standing surface acoustic waves by stroboscopic X-ray photoemission electron microscopy. J. Synchrotron Rad. 26, 184–193 (2019).

    Article  Google Scholar 

  99. Ünal, A. A. et al. Laser-driven formation of transient local ferromagnetism in FeRh thin films. Ultramicroscopy 183, 104–108 (2017).

    Article  Google Scholar 

  100. Witte, K. et al. From 2D STXM to 3D imaging: soft X-ray laminography of thin specimens. Nano Lett. 20, 1305–1314 (2020).

    Article  ADS  Google Scholar 

  101. Bukin, N. et al. Time-resolved imaging of magnetic vortex dynamics using holography with extended reference autocorrelation by linear differential operator. Sci. Rep. 6, 36307 (2016).

    Article  ADS  Google Scholar 

  102. Martinez, M. D. P. et al. Three-dimensional tomographic imaging of the magnetization vector field using Fourier transform holography. Phys. Rev. B 107, 094425 (2023).

    Article  ADS  Google Scholar 

  103. Tromp, R. M. et al. A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design. Ultramicroscopy 110, 852–861 (2010).

    Article  Google Scholar 

  104. Menteş, T. O. & Locatelli, A. Angle-resolved X-ray photoemission electron microscopy. J. Electron Spectrosc. Relat. Phenom. 185, 323–329 (2012).

    Article  ADS  Google Scholar 

  105. Weigand, M. et al. TimeMaxyne: a shot-noise limited, time-resolved pump-and-probe acquisition system capable of 50 GHz frequencies for synchrotron-based X-ray microscopy. Crystals 12, 1029 (2022).

    Article  Google Scholar 

  106. Rösner, B. et al. Soft X-ray microscopy with 7 nm resolution. Optica 7, 1602 (2020).

    Article  ADS  Google Scholar 

  107. Butcher, T. A. et al. Ptychographic nanoscale imaging of the magnetoelectric coupling in freestanding BiFeO3. Adv. Mater. 36, 2311157 (2024).

    Article  Google Scholar 

  108. van der Laan, G. Time-resolved X-ray detected ferromagnetic resonance of spin currents. J. Electron Spectrosc. Relat. Phenom. 220, 137–146 (2017).

    Article  ADS  Google Scholar 

  109. van der Laan, G. & Hesjedal, T. X-ray detected ferromagnetic resonance techniques for the study of magnetization dynamics. Nucl. Instrum. Meth. B 540, 85–93 (2023).

    Article  ADS  Google Scholar 

  110. Cheshire, D. M. et al. Increased Gilbert damping in yttrium iron garnet by low temperature vacuum annealing. Appl. Phys. Lett. 126, 112405 (2025).

    Article  Google Scholar 

  111. Swindells, C. et al. Magnetic damping in ferromagnetic/heavy-metal systems: the role of interfaces and the relation to proximity-induced magnetism. Phys. Rev. B 105, 094433 (2022).

    Article  ADS  Google Scholar 

  112. Mendil, J. et al. Magnetic properties and domain structure of ultrathin yttrium iron garnet/Pt bilayers. Phys. Rev. Mater. 3, 034403 (2019).

    Article  Google Scholar 

  113. Cheshire, D. et al. Absence of spin-mixed states in ferrimagnet ttrium iron garnet. J. Appl. Phys. 132, 103902 (2022).

    Article  ADS  Google Scholar 

  114. Vlachos, D., Craven, A. J. & McComb, D. W. Specimen charging in X-ray absorption spectroscopy: correction of total electron yield data from stabilized zirconia in the energy range 250–915 eV. J. Synchrotron Rad. 12, 224–233 (2005).

    Article  Google Scholar 

  115. Lebens-Higgins, Z. W. et al. Distinction between intrinsic and X-ray-induced oxidized oxygen states in Li-rich 3d layered oxides and LiAlO2. J. Phys. Chem. C 123, 13201 (2019).

    Article  Google Scholar 

  116. Yang, J. et al. Soft X-ray induced photoreduction of organic Cu(II) compounds probed by X-ray absorption near-edge (XANES) spectroscopy. Anal. Chem. 83, 7856 (2011).

    Article  Google Scholar 

  117. Cowan, R. D. The Theory of Atomic Structure and Spectra (Univ. California Press, 1981).

  118. van der Laan, G. Hitchhiker’s guide to multiplet calculations. Lect. Notes Phys. 697, 143–200 (2006).

    Article  ADS  Google Scholar 

  119. Caciuffo, R., Lander, G. H. & van der Laan, G. X-ray synchrotron radiation techniques and their applications to actinide materials. Rev. Mod. Phys. 95, 015001 (2023).

    Article  ADS  Google Scholar 

  120. Thole, B. T., van der Laan, G. & Butler, P. H. Spin-mixed ground state of Fe phthalocyanine and the temperature dependent branching ratio in X-ray absorption spectroscopy. Chem. Phys. Lett. 149, 295–299 (1988).

    Article  ADS  Google Scholar 

  121. Stavitski, E. & de Groot, F. M. F. The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 41, 687 (2010).

    Article  Google Scholar 

  122. Haverkort, M. W. Quanty for core level spectroscopy — excitons, resonances and band excitations in time and frequency domain. J. Phys. Conf. Ser. 712, 012001 (2016).

    Article  Google Scholar 

  123. de Groot, F. M. F. et al. 2p X-ray absorption spectroscopy of 3d transition metal systems. J. Electron Spectrosc. Relat. Phenom. 249, 147061 (2021).

    Article  Google Scholar 

  124. Thole, B. T., van der Laan, G. & Sawatzky, G. A. Strong magnetic dichroism predicted in the M4,5 X-ray absorption spectra of magnetic rare earth materials. Phys. Rev. Lett. 55, 2086–2088 (1985).

    Article  ADS  Google Scholar 

  125. van der Laan, G. & Thole, B. T. Strong magnetic X-ray dichroism in 2p absorption spectra of 3d transition metal ions. Phys. Rev. B 43, 13401–13411 (1991).

    Article  ADS  Google Scholar 

  126. Thole, B. T., Carra, P., Sette, F. & van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943–1946 (1992). This paper presents the sum rules linking the X-ray magnetic circular dichroism spectra and magnetic orbital moments.

    Article  ADS  Google Scholar 

  127. Carra, P., Thole, B. T., Altarelli, M. & Wang, X. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 70, 694–697 (1993).

    Article  ADS  Google Scholar 

  128. Rehr, J. J. et al. Ab initio theory and calculations of X-ray spectra. Comptes Rendus Phys. 10, 548–559 (2009).

    Article  ADS  Google Scholar 

  129. Joly, Y., Ramos, A. Y. & Bunău O. in International Tables for Crystallography, Vol. I, X-ray Absorption Spectroscopy and Related Techniques (eds Chantler, C. et al.) Ch. 2.11, 114–120 (International Union of Crystallography, 2024).

  130. van der Laan, G. & Thole, B. T. Electronic correlations in Ni 2p and 3p magnetic X-ray dichroism and X-ray photoemission of ferromagnetic nickel. J. Phys. Condens. Matter 4, 4181–4188 (1992).

    Article  ADS  Google Scholar 

  131. Dresselhauset, J. et al. Antiferromagnetic coupling of Mn adsorbates to Fe(100). Phys. Rev. B 56, 5461–5467 (1997).

    Article  ADS  Google Scholar 

  132. Pearce, C. I. et al. Direct determination of cation site occupancies in natural ferrite spinels by L2,3 X-ray absorption spectroscopy and X-ray magnetic circular dichroism. Am. Mineral. 91, 880–893 (2006).

    Article  ADS  Google Scholar 

  133. Gaudry, E. et al. From the green color of Eskolaite to the red color of Ruby: an X-ray absorption spectroscopy study. Phys. Chem. Miner. 32, 710–720 (2006).

    Article  ADS  Google Scholar 

  134. Mannini, M. et al. XAS and XMCD investigation of Mn12 monolayers on gold. Chem. Eur. J. 14, 7530–7535 (2008).

    Article  Google Scholar 

  135. Chen, C. T. et al. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152 (1995).

    Article  ADS  Google Scholar 

  136. Chen, C. T., Sette, F., Ma, Y. & Modesti, S. Soft-X-ray magnetic circular dichroism at the L2,3 edges of nickel. Phys. Rev. B 42, 7262 (1990).

    Article  ADS  Google Scholar 

  137. Stepanow, S. et al. Giant spin and orbital moment anisotropies of a Cu-phthalocyanine monolayer. Phys. Rev. B 82, 014405 (2010).

    Article  ADS  Google Scholar 

  138. Arrio, M.-A. et al. Photoinduced magnetization on Mo ion in copper octacyanomolybdate: an X-ray magnetic circular dichroism investigation. J. Phys. Chem. C 114, 593–600 (2010).

    Article  Google Scholar 

  139. Agrestini, S. et al. Electronic and spin states of SrRuO3 thin films: an X-ray magnetic circular dichroism study. Phys. Rev. B 91, 075127 (2015).

    Article  ADS  Google Scholar 

  140. Wilhelm, F. et al. Orbital and spin moments in the ferromagnetic superconductor URhGe by X-ray magnetic circular dichroism. Phys. Rev. B 95, 235147 (2017).

    Article  ADS  Google Scholar 

  141. Chaboy, J. et al. X-ray magnetic circular dichroism probe of the Rh magnetic moment instability in Fe1−xRhx alloys near the equiatomic concentration. Phys. Rev. B 59, 3306 (1999).

    Article  ADS  Google Scholar 

  142. Vogel, J. et al. Structure and magnetism of Pd in Pd/Fe multilayers studied by X-ray magnetic circular dichroism at the Pd L(2,3) edges. Phys. Rev. B 55, 3663–3669 (1997).

    Article  ADS  Google Scholar 

  143. Jaouen, N. et al. Electronic and magnetic interfacial states of Ag in an Ni. J. Phys. Condens. Matter 20, 095005 (2008).

    Article  ADS  Google Scholar 

  144. Figueroa, A. I. et al. Breakdown of Hund’s third rule in amorphous Co-W nanoparticles and crystalline Co3W alloys. Phys. Rev. B 86, 064428 (2012).

    Article  ADS  Google Scholar 

  145. Sikora, M. et al. Field-induced magnetostructural phase transition in double perovskite Ca2FeReO6 studied via X-ray magnetic circular dichroism. Phys. Rev. B 79, 220402 (2009).

    Article  ADS  Google Scholar 

  146. Agrestini, S. et al. Nature of the magnetism of iridium in the double perovskite Sr2CoIrO6. Phys. Rev. B 100, 014443 (2019).

    Article  ADS  Google Scholar 

  147. Grange, W. et al. Experimental and theoretical X-ray magnetic-circular-dichroism study of the magnetic properties of Co50Pt50 thin films. Phys. Rev. B 62, 1157 (2000).

    Article  ADS  Google Scholar 

  148. Yamamoto, Y. et al. Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys. Rev. Lett. 93, 116801 (2004).

    Article  ADS  Google Scholar 

  149. Yamamoto, Y. et al. X-ray magnetic circular dichroism study of gold nanoparticles protected by polymer. J. Magn. Magn. Mater. 272–276, e1183–e1184 (2004).

    Article  Google Scholar 

  150. Elnaggar, H. et al. Noncollinear ordering of the orbital magnetic moments in magnetite. Phys. Rev. Lett. 123, 207201 (2019).

    Article  ADS  Google Scholar 

  151. Goedkoop, J. B. et al. Calculations of magnetic X-ray dichroism in the 3d absorption spectra of rare earth compounds. Phys. Rev. B 37, 2086–2095 (1988).

    Article  ADS  Google Scholar 

  152. Giorgetti, C. et al. Quadrupolar effect in X-ray magnetic circular dichroism. Phys. Rev. Lett. 75, 3186 (1995).

    Article  ADS  Google Scholar 

  153. Detlefs, C. et al. Evidence for quadrupolar contributions to the circular magnetic-X-ray dichroism of rare-earths. J. Phys. Chem. Solids 65, 1517 (1995).

    Article  ADS  Google Scholar 

  154. Giorgetti, C., Dartyge, E., Baudelet, F. & Brouder, C. XMCD at LII,III edges of rare-earths: electric quadrupolar and dipolar effects. Appl. Phys. A 73, 703–706 (2001).

    Article  ADS  Google Scholar 

  155. Love, C. et al. Elucidation of orbital moment, anisotropy, and magnetic damping in epitaxial Fe3O4 films. Phys. Rev. B 107, 064414 (2023).

    Article  ADS  Google Scholar 

  156. Thakur, P. et al. Direct observation of oxygen induced room temperature ferromagnetism in thin films by X-ray magnetic circular dichroism characterizations. Appl. Phys. Lett. 94, 062501 (2009).

    Article  ADS  Google Scholar 

  157. Sassi, M., Pearce, C. I., Bagus, P. S., Arenholz, E. & Rosso, K. M. First-principles Fe L2,3-edge and O K-edge XANES and XMCD spectra for iron oxides. J. Phys. Chem. A 121, 7613–7618 (2017).

    Article  Google Scholar 

  158. Guillou, F. et al. Electronic and magnetic properties of phosphorus across the first-order ferromagnetic transition of (Mn,Fe)2(P,Si,B) giant magnetocaloric materials. Phys. Rev. B 92, 224427 (2015).

    Article  ADS  Google Scholar 

  159. Letard, I., Sainctavit, Ph. & Deudon, C. XMCD at Fe L2,3 edges, Fe and S K edges on Fe7S8. Phys. Chem. Miner. 34, 113–120 (2007).

    Article  ADS  Google Scholar 

  160. Takahashi, M. & Igarashi, J. X-ray magnetic circular dichroism at the K edge of Mn3GaC. Phys. Rev. B 67, 245104 (2003).

    Article  ADS  Google Scholar 

  161. Duffy, L. B. et al. Magnetic proximity coupling to Cr-doped Sb2Te3 thin films. Phys. Rev. B 95, 224422 (2017).

    Article  ADS  Google Scholar 

  162. Choi, Y. et al. Iodine orbital moment and chromium anisotropy contributions to CrI3 magnetism. Appl. Phys. Lett. 117, 022411 (2020).

    Article  ADS  Google Scholar 

  163. Yamagami, K. et al. Itinerant ferromagnetism mediated by giant spin polarization of the metallic ligand band in the van der Waals magnet Fe5GeTe2. Phys. Rev. B 103, L060403 (2021).

    Article  ADS  Google Scholar 

  164. Marangolo, M. et al. Tails of near-edges X-ray absorption spectra as a fingerprint of magnetic and structural phase transitions. Application to metallic 3d ultra thin films. J. Appl. Phys. 93, 5151–5155 (2003).

    Article  ADS  Google Scholar 

  165. Liu, B. et al. Sum rule distortions in fluorescence-yield X-ray magnetic circular dichroism. Phys. Rev. B 96, 054446 (2017).

    Article  ADS  Google Scholar 

  166. Carra, P., König, H., Thole, B. T. & Altarelli, M. Magnetic X-ray dichroism: general features of dipolar and quadrupolar spectra. Phys. B 192, 182–190 (1993).

    Article  ADS  Google Scholar 

  167. Goulon, J. et al. X-ray optical activity: applications of sum rules. J. Exp. Theor. Phys. 97, 402–431 (2003).

    Article  ADS  Google Scholar 

  168. Piamonteze, C., Miedema, P. & de Groot, F. M. F. Accuracy of the spin sum rule in XMCD for the transition-metal L edges from manganese to copper. Phys. Rev. B 80, 184410 (2009).

    Article  ADS  Google Scholar 

  169. Goulon, J., Goulon-Ginet, C., Cortès, R. & Dubois, J. M. On experimental attenuation factors of the amplitude of the EXAFS oscillations in absorption, reflectivity and luminescence measurements. J. Phys. 43, 539–548 (1982).

    Article  Google Scholar 

  170. Thole, B. T. et al. 3d X-ray-absorption lines and the 3d9 4fn+1 multiplets of the lanthanides. Phys. Rev. B 32, 8 (1985).

    Article  Google Scholar 

  171. Frazer, B. H., Gilbert, B., Sonderegger, B. R. & De Stasio, G. The probing depth of total electron yield in the sub-keV range: TEY-XAS and X-PEEM. Surf. Sci. 537, 161–167 (2003).

    Article  ADS  Google Scholar 

  172. Aksoy, F., Akgül, G., Ufuktepe, Y. & Nordlund, D. Thickness dependence of the L2,3 branching ratio of Cr thin films. J. Alloy. Compd 508, 233–237 (2010).

    Article  Google Scholar 

  173. Henneken, H., Scholze, F. & Ulm, G. Lack of proportionality of total electron yield and soft X-ray absorption coefficient. J. Appl. Phys. 87, 257–268 (2000).

    Article  ADS  Google Scholar 

  174. Hayes, T. M. & Boyce, J. B. Extended X-ray absorption fine-structure spectroscopy. Solid State Phys. 37, 173–351 (1982).

    Article  Google Scholar 

  175. Goulon, J. et al. Advanced detection systems for X-ray fluorescence excitation spectroscopy. J. Synchrotron Rad. 12, 57–69 (2005).

    Article  ADS  Google Scholar 

  176. Thole, B. T., van der Laan, G. & Fabrizio, M. Magnetic ground-state properties and spectral distributions. I. X-ray-absorption spectra. Phys. Rev. B 50, 11466 (1994).

    Article  ADS  Google Scholar 

  177. van der Laan, G., Hesjedal, T. & Bencok, P. Polarization analysis by means of individual X-ray absorption spectra of rare earths. Phys. Rev. B 106, 214423 (2022).

    Article  ADS  Google Scholar 

  178. Sainctavit, Ph., Moulin, C. C. & Arrio, M. A. in Magnetism: Molecules to Materials I: Models and Experiments Vol. 131 (eds Miller, J. S. & Drillon, M.) (Wiley-VCH, 2002).

  179. van der Laan, G. et al. Comparison of X-ray absorption with X-ray photoemission of nickel dihalides and NiO. Phys. Rev. B 33, 4253–4263 (1986).

    Article  ADS  Google Scholar 

  180. Natoli, C. R. et al. Calculation of X-ray natural circular dichroism. Eur. Phys. J. B 4, 1–11 (1998).

    Article  ADS  Google Scholar 

  181. Lee, J. et al. A direct test of X-ray magnetic circular dichroism sum rules for strained Ni films using polarized neutron reflection. J. Phys. Condens. Matter 9, L137–L143 (1997).

    Article  Google Scholar 

  182. van der Laan, G. et al. Orbital polarization in NiFe2O4 measured by Ni−2p X-ray magnetic circular dichroism. Phys. Rev. B 59, 4314 (1999).

    Article  ADS  Google Scholar 

  183. Lovesey, S. W. & Collins, S. P. X-Ray Scattering and Absorption by Magnetic Materials (Oxford Univ. Press, 1996).

  184. Stöhr, J. Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. J. Magn. Magn. Mater. 200, 470–497 (1999). This article gives a brief review of the principles of X-ray magnetic circular dichroism, which are then applied to the study of the thickness-dependent electronic and magnetic properties of a Co film sandwiched between Au.

    Article  ADS  Google Scholar 

  185. de Groot, F. M. F. & Kotani, A. Core Level Spectroscopy of Solids (CRC Press, 2008).

  186. van der Laan, G. Applications of soft X-ray magnetic dichroism. J. Phys. Conf. Ser. 430, 012127 (2013).

    Article  Google Scholar 

  187. van der Laan, G. in International Tables for Crystallography, Vol. I, X-ray Absorption Spectroscopy and Related Techniques (eds Chantler, C. et al.) Ch. 3.33 508–515 (International Union of Crystallography, 2024).

  188. van der Laan, G. in International Tables for Crystallography, Vol. I, X-ray Absorption Spectroscopy and Related Techniques (eds Chantler, C. et al.) Ch. 2.18 169–176 (International Union of Crystallography, 2024).

  189. van der Laan, G. & Figueroa, A. I. in International Tables for Crystallography, Vol. I, X-ray Absorption Spectroscopy and Related Techniques (eds Chantler, C. et al.) Ch. 2.17 163–168 (International Union of Crystallography, 2024).

  190. Dürr, H. A. et al. Element-specific magnetic anisotropy determined by transverse magnetic circular X-ray dichroism. Science 277, 213 (1997).

    Article  Google Scholar 

  191. van der Laan, G. Microscopic origin of magnetocrystalline anisotropy in transition metal thin films. J. Phys. Condens. Matter 10, 3239–3253 (1998).

    Article  ADS  Google Scholar 

  192. Weller, D. et al. Microscopic origin of magnetic anisotropy in Au/Co/Au probed with X-ray magnetic circular dichroism. Phys. Rev. Lett. 75, 3752 (1995).

    Article  ADS  Google Scholar 

  193. Bruno, P. Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. Phys. Rev. B 39, 865 (1989).

    Article  ADS  Google Scholar 

  194. Pizzini, S. et al. Evidence for the spin polarization of copper in Co/Cu and Fe/Cu multilayers. Phys. Rev. Lett. 74, 1470 (1995).

    Article  ADS  Google Scholar 

  195. Held, G. A. et al. X-ray magnetic circular dichroism study of the induced spin polarization of Cu in Co/Cu and Fe/Cu multilayers. Z. für Phys. B 100, 335 (1996).

    Article  ADS  Google Scholar 

  196. Kuch, W. et al. Artificially ordered FeCu alloy superlattices on Cu(001). II. Spin-resolved electronic properties and magnetic dichroism. Phys. Rev. B 58, 8556 (1998).

    Article  ADS  Google Scholar 

  197. Offi, F. et al. Induced Fe and Mn magnetic moments in Co-FeMn bilayers on Cu(001). Phys. Rev. B 67, 094419 (2003).

    Article  ADS  Google Scholar 

  198. Abrudan, R. et al. Structural and magnetic properties of epitaxial Fe/CoxO bilayers on Ag(001). Phys. Rev. B 77, 014411 (2008).

    Article  ADS  Google Scholar 

  199. Ebert, H. & Man’kovsky, S. Field-induced magnetic circular X-ray dichroism in paramagnetic solids: a new magneto-optical effect. Phys. Rev. Lett. 90, 077404 (2003).

    Article  ADS  Google Scholar 

  200. Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301 (2002).

    Article  ADS  Google Scholar 

  201. Gambardella, P. et al. Localized magnetic states of Fe, Co, and Ni impurities on alkali metal films. Phys. Rev. Lett. 88, 047202 (2002).

    Article  ADS  Google Scholar 

  202. Donati, F. et al. Magnetic remanence in single atoms. Science 352, 318–321 (2016). An X-ray magnetic circular dichroism study towards single atomic memory.

    Article  ADS  Google Scholar 

  203. Vaz, C. A. F. et al. Multiplicity of magnetic domain states in circular elements probed by photoemission electron microscopy. Phys. Rev. B 72, 224426 (2005).

    Article  ADS  Google Scholar 

  204. Kronast, F. et al. Element-specific magnetic hysteresis of individual 18 nm Fe nanocubes. Nano Lett. 11, 1710–1715 (2011).

    Article  ADS  Google Scholar 

  205. Balan, A. et al. Direct observation of magnetic metastability in individual iron nanoparticles. Phys. Rev. Lett. 112, 107201 (2014).

    Article  ADS  Google Scholar 

  206. Kleibert, A. et al. Direct observation of enhanced magnetism in individual size- and shape-selected 3d transition metal nanoparticles. Phys. Rev. B 95, 195404 (2017).

    Article  ADS  Google Scholar 

  207. Vijayakumar, J. et al. Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles. Nat. Commun. 14, 174 (2023).

    Article  ADS  Google Scholar 

  208. Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449 (2016).

    Article  ADS  Google Scholar 

  209. Woo, S. et al. Spin–orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy. Nat. Commun. 8, 15573 (2017).

    Article  ADS  Google Scholar 

  210. Hierro-Rodriguez, A. et al. Revealing 3D magnetization of thin films with soft X-ray tomography: magnetic singularities and topological charges. Nat. Commun. 11, 6382 (2020).

    Article  ADS  Google Scholar 

  211. van der Laan, G. Determination of spin chirality using X-ray magnetic circular dichroism. Phys. Rev. B 104, 094414 (2021).

    Article  ADS  Google Scholar 

  212. Herguedas-Alonso, A. E. et al. A fast magnetic vector characterization method for quasi two-dimensional systems and heterostructures. Sci. Rep. 13, 9639 (2023).

    Article  ADS  Google Scholar 

  213. Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).

    Google Scholar 

  214. Hariki et al. X-ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett. 132, 176701 (2024).

    Article  ADS  Google Scholar 

  215. Amin, O. J. et al. Nanoscale imaging and control of altermagnetism in MnTe. Nature 636, 348 (2024).

    Article  Google Scholar 

  216. Abdeldaim, A. H. et al. Kitaev interactions through extended superexchange pathways in the jeff = 1/2 Ru3+ honeycomb magnet RuP3SiO11. Nat. Commun. 15, 9778 (2024).

    Article  Google Scholar 

  217. Qi, X.-L. & Qi, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  218. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602 (2014).

    Article  ADS  Google Scholar 

  219. Qin Liu, Q., Liu, C. X., Xu, C., Qi, X.-L. & Zhang, S.-C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009).

    Article  ADS  Google Scholar 

  220. Figueroa, A. I. et al. X-ray magnetic circular dichroism study of Dy-doped Bi2Te3 topological insulator thin films. J. Magn. Magn. Mater. 422, 93–99 (2017).

    Article  ADS  Google Scholar 

  221. Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513 (2016).

    Article  ADS  Google Scholar 

  222. Liu, V. Y. et al. Coherent epitaxial semiconductor−ferromagnetic insulator InAs/EuS interfaces: band alignment and magnetic structure. ACS Appl. Mater. Interfaces 12, 8780 (2019).

    Article  Google Scholar 

  223. Scheybal, A. et al. Induced magnetic ordering in a molecular monolayer. Chem. Phys. Lett. 411, 214–220 (2005).

    Article  ADS  Google Scholar 

  224. Sanvito, S. The rise of spinterface science. Nat. Phys. 6, 562–564 (2010).

    Article  Google Scholar 

  225. Cinchetti, M., Dediu, V. A. & Hueso, L. E. Activating the molecular spinterface. Nat. Mater. 16, 507–515 (2017).

    Article  ADS  Google Scholar 

  226. Bernien, M. et al. Tailoring the nature of magnetic coupling of Fe-porphyrin molecules to ferromagnetic substrates. Phys. Rev. Lett. 102, 047202 (2009).

    Article  ADS  Google Scholar 

  227. Hermanns, C. F. et al. Magnetic coupling of porphyrin molecules through graphene. Adv. Mater. 25, 3473 (2013).

    Article  Google Scholar 

  228. Wäckerlin, C. et al. Giant hysteresis of single-molecule magnets adsorbed on a nonmagnetic insulator. Adv. Mater. 28, 5195 (2016).

    Article  Google Scholar 

  229. Marocchi, S. et al. Relay-like exchange mechanism through a spin radical between TbPc2 molecules and graphene/Ni(111) substrates. ACS Nano 10, 9353–9360 (2016).

    Article  Google Scholar 

  230. Candini, A. et al. Spin-communication channels between Ln(III) bis-phthalocyanines molecular nanomagnets and a magnetic substrate. Sci. Rep. 6, 21740 (2016).

    Article  ADS  Google Scholar 

  231. Huttmann, F. et al. Europium cyclooctatetraene nanowire carpets: a low-dimensional, organometallic, and ferromagnetic insulator. Phys. Chem. Lett. 10, 911–917 (2019).

    Article  Google Scholar 

  232. Kumar, K. S. & Ruben, M. Sublimable spin-crossover complexes: from spin-state switching to molecular devices. Angew. Chem. Int. Ed. 60, 7502–7521 (2021).

    Article  Google Scholar 

  233. Grunwald, J. et al. Defying the inverse energy gap law: a vacuum-evaporable Fe(II) low-spin complex with a long-lived LIESST state. Chem. Sci. 14, 7361–7380 (2023).

    Article  Google Scholar 

  234. Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  235. Bonetti, S. et al. Direct observation and imaging of a spin-wave soliton with p-like symmetry. Nat. Commun. 6, 8889 (2015).

    Article  ADS  Google Scholar 

  236. Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731 (2010).

    Article  ADS  Google Scholar 

  237. Stamm, C. et al. Femtosecond modification of electron localization and exchange of angular momentum in Ni. Nat. Mater. 6, 740 (2007).

    Article  ADS  Google Scholar 

  238. Boeglin, C. et al. Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458 (2010).

    Article  ADS  Google Scholar 

  239. Dornes, C. et al. The ultrafast Einstein–de Haas effect. Nature 565, 209–212 (2019).

    Article  ADS  Google Scholar 

  240. Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205 (2011).

    Article  ADS  Google Scholar 

  241. Pontius, N., Holldack, K., Schüßler-Langeheine, C., Kachel, T. & Mitzner, R. The FemtoSpeX facility at BESSY II. J. Large-Scale Res. Facilities 2, A46 (2016).

    Article  Google Scholar 

  242. Higley, D. J. et al. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser. Rev. Sci. Instrum. 87, 033110 (2016).

    Article  ADS  Google Scholar 

  243. Lutman, A. A. et al. Polarization control in an X-ray free-electron laser. Nat. Photon. 10, 468 (2016).

    Article  ADS  Google Scholar 

  244. Wang, T. et al. Femtosecond single-shot X-ray imaging of nanoscale ferromagnetic order. Phys. Rev. Lett. 108, 267403 (2012).

    Article  ADS  Google Scholar 

  245. Graves, C. E. et al. Nanoscale spin reversal by nonlocal angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nat. Mater. 12, 293 (2013).

    Article  ADS  Google Scholar 

  246. Le Guyader, L. et al. State-resolved ultrafast charge and spin dynamics in Co/Pd multilayers. Appl. Phys. Lett. 120, 032401 (2022).

    Article  ADS  Google Scholar 

  247. Willems, F. et al. Optical inter-site spin transfer probed by energy and spin-resolved transient absorption spectroscopy. Nat. Commun. 11, 871 (2020).

    Article  ADS  Google Scholar 

  248. van der Laan, G. Sum rule practise. J. Synchrotron Rad. 6, 694–695 (1999).

    Article  Google Scholar 

  249. Altarelli, M. & Sainctavit, Ph. in Magnetism and Synchrotron Radiation (eds Beaurepaire, E. et al.) 65–74 (Éditions de physique, Les Ulis, 1997).

  250. Nesvizhskii, A. I., Ankudinov, A. L. & Rehr, J. J. Normalization and convergence of X-ray absorption sum rules. Phys. Rev. B 63, 094412 (2001).

    Article  ADS  Google Scholar 

  251. Altarelli, M. Sum rules for X-ray magnetic circular dichroism. Il Nuovo Cimento 20D, 1067 (1998).

    Article  ADS  Google Scholar 

  252. Kowalik, I. A. Element specific magnetometry combining X-ray circular with linear dichroism: fundamentals and applications. Acta Phys. Pol. A 127, 831 (2015).

    Article  ADS  Google Scholar 

  253. Wende, H. Recent advances in X-ray absorption spectroscopy. Rep. Prog. Phys. 67, 2105 (2004). An advanced-level review of X-ray absorption spectroscopy and its applications to a wide class of materials systems.

    Article  ADS  Google Scholar 

  254. Funk, T., Deb, A., George, S. J., Wang, H. X. & Cramer, S. P. X-ray magnetic circular dichroism — a high energy probe of magnetic properties. Coord. Chem. Rev. 249, 3 (2005).

    Article  Google Scholar 

  255. de Groot, F. M. F. J. X-ray absorption and dichroism of transition metals and their compounds. J. Electron Spectrosc. Relat. Phenom. 67, 529 (1994).

    Article  ADS  Google Scholar 

  256. Wu, R. Q., Wang, X. D. & Freeman, A. J. First principles investigation of the validity and range of applicability of the X-ray magnetic circular dichroism sum rule. Phys. Rev. Lett. 71, 3581 (1993).

    Article  ADS  Google Scholar 

  257. van Veenendaal, M., Goedkoop, J. B. & Thole, B. T. Branching ratios of the circular dichroism at rare earth L23 edges. Phys. Rev. Lett. 78, 1162 (1997).

    Article  ADS  Google Scholar 

  258. Figueroa, A. I. et al. Magnetic Cr doping of Bi2Se3: evidence for divalent Cr from X-ray spectroscopy. Phys. Rev. B 90, 134402 (2014).

    Article  ADS  Google Scholar 

  259. Wu, R. Q. & Freeman, A. J. Limitation of the magnetic-circular-dichroism spin sum rule for transition metals and importance of the magnetic dipole term. Phys. Rev. Lett. 73, 1994 (1994).

    Article  ADS  Google Scholar 

  260. Miura, Y. & Okabayashi, J. Understanding magnetocrystalline anisotropy based on orbital and quadrupole moments. J. Phys. Condens. Matter 34, 473001 (2022).

    Article  ADS  Google Scholar 

  261. Stohr, J. & Konig, H. Determination of spin-moment and orbital-moment anisotropies in transition-metals by angle-dependent X-ray magnetic circular-dichroism. Phys. Rev. Lett. 75, 3748–3751 (1995).

    Article  ADS  Google Scholar 

  262. Arvanitis, D. et al. in Spin-Orbit Influenced Spectroscopies of Magnetic Solids (eds Ebert, H. & Schutz, G.) (Springer Verlag, 1996).

  263. Sainctavit, Ph., Arrio, M. A. & Brouder, C. Analytic calculation of the spin sum-rule at the L2,3 edges of Cu2+. Phys. Rev. B 52, 12766–12769 (1995).

    Article  ADS  Google Scholar 

  264. Sainctavit, Ph. Magnetic operators for Ti3+ and Cu2+ ground states. J. Electron Spectrosc. Relat. Phenom. 86, 133–138 (1997).

    Article  ADS  Google Scholar 

  265. Edmonds, K. W. et al. Ferromagnetic moment and antiferromagnetic coupling in (Ga,Mn)As thin films. Phys. Rev. B 71, 064418 (2005).

    Article  ADS  Google Scholar 

  266. van der Laan, G. & Thole, B. T. X-ray-absorption sum rules in jj-coupled operators and ground-state moments of actinide ions. Phys. Rev. B 53, 14458–14469 (1996).

    Article  ADS  Google Scholar 

  267. van der Laan, G. & Thole, B. T. Angular dependent photoelectric yield. Measurement of the La 3d Auger and autoionization lifetime widths. J. Electron Spectrosc. Relat. Phenom. 46, 123–129 (1988).

    Article  ADS  Google Scholar 

  268. Fauth, K. How well does total electron yield measure X-ray absorption in nanoparticles? Appl. Phys. Lett. 85, 3271–3273 (2004).

    Article  ADS  Google Scholar 

  269. Noma, A. I. Correction of the self-absorption effect in fluorescence X-ray absorption fine structure. Jpn. J. Appl. Phys. 32, 2899–2902 (1993).

    Article  ADS  Google Scholar 

  270. Tröger, L. et al. Full correction of the self-absorption in soft-fluorescence extended X-ray-absorption fine structure. Phys. Rev. B 46, 3283–3289 (1992).

    Article  ADS  Google Scholar 

  271. Vaz, C. A. F., Moutafis, C., Quitmann, C. & Raabe, J. Luminescence-based magnetic imaging with scanning X-ray transmission microscopy. Appl. Phys. Lett. 101, 083114 (2012).

    Article  ADS  Google Scholar 

  272. Vaz, C. A. F., Moutafis, C., Buzzi, M. & Raabe, J. X-ray excited optical luminescence of metal oxide single crystals. J. Electron Spectrosc. Relat. Phenom. 189, 1–4 (2013).

    Article  ADS  Google Scholar 

  273. Kallmayer, M. et al. Interface magnetization of ultrathin epitaxial Co2FeSi(110)/Al2O3 films. J. Phys. D Appl. Phys. 40, 1552–1557 (2007).

    Article  ADS  Google Scholar 

  274. Stenning, G. B. G. et al. Transverse magnetic exchange springs in a DyFe2/YFe2 superlattice. Phys. Rev. B 86, 174420 (2012).

    Article  ADS  Google Scholar 

  275. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  ADS  Google Scholar 

  276. Tokura, Y. & Kanazawa, N. Magnetic skyrmion materials. Chem. Rev. 121, 2857–2897 (2021).

    Article  Google Scholar 

  277. Ajayi, T. M. et al. Characterization of just one atom using synchrotron X-rays. Nature 618, 69 (2023).

    Article  ADS  Google Scholar 

  278. Zhu, X. et al. Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography. Proc. Natl Acad. Sci. USA 113, E8219 (2016).

    Article  Google Scholar 

  279. Moyer, J. A. et al. Magnetic structure of Fe-doped CoFe2O4 probed by X-ray magnetic spectroscopies. Phys. Rev. B 84, 054447 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.F.R. acknowledges financial support from the Spanish MICIIN (PID2021-127397NB-I00), Catalan AGAUR (2021SGR00328) and EU FEDER funds.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.A.F.V., G.v.d.L. and G.S.); Experimentation (G.v.d.L., S.A.C., F.K., E.W. and F.W.); Results (G.v.d.L. and Ph.S.); Applications (C.A.F.V., H.A.D., W.K. and H.W.); Reproducibility and data deposition (C.A.F.V.); Limitations and optimizations (C.A.F.V., G.v.d.L., A.F.R. and Ph.S.); Outlook (C.A.F.V., G.v.d.L., A.F.R. and G.S.); overview of the Primer (all authors).

Corresponding authors

Correspondence to C. A. F. Vaz or G. van der Laan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Daniel Haskel, Javier Herrero-Martin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Database of X-ray interactions with matter: https://henke.lbl.gov/optical_constants/

FDMNES: https://fdmnes.neel.cnrs.fr/

FEFF: https://feff.phys.washington.edu/

Quanty: http://www.quanty.org/

Supplementary information

Glossary

Absorption edges

Sudden increase in X-ray absorption at photon energies that correspond to electron transitions from core level to empty states.

Circularly polarized photon

A quantum of light whose electric field rotates in a circular pattern, as the wave moves forward.

E1 electric-dipole

Quantum processes in which an electron moves between energy levels in an atom or molecule by absorbing or emitting a photon, resulting in a change in the dipole moment.

E2 electric-quadrupole

Quantum processes involving the movement of an electron between energy levels in an atom or molecule that causes a change in the electric quadrupole moment. These transitions typically have lower probability than E1 transitions.

Hard X-ray

High-energy X-ray radiation with short wavelengths. Hard X-rays can penetrate dense materials, making them useful for imaging and analysis in various fields, including medical and industrial applications.

Magnetic solitons

Stable, wave-like structure in a magnetized material; the magnetic spins twist in a specific pattern and move without changing shape over time.

Magneto-optical effect

Magneto-optical effects describe the changes in the optical properties of a material — such as how it absorbs or reflects light — in the presence of a magnetic field.

Soft X-rays

A type of X-ray radiation with lower energy and longer wavelengths, compared with tender or hard X-rays, making them useful for studying materials at shallow depths or with delicate structures.

Spin-polarized electron

An electron whose spin — a quantum property similar to magnetic orientation — is aligned in a specific direction, either up or down, rather than in a random direction.

Tender X-rays

A type of X-ray radiation with energy between soft and hard X-rays, which hence penetrates deeper than soft X-rays.

X-ray helicity

The direction of rotation — left (negative helicity) or right (positive helicity) — of the electric field of circularly polarized X-rays.

X-ray magnetic cross-section

Quantifies the probability of X-rays interacting with the magnetic electrons of a material, providing insights into its magnetic properties.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaz, C.A.F., van der Laan, G., Cavill, S.A. et al. X-ray magnetic circular dichroism. Nat Rev Methods Primers 5, 27 (2025). https://doi.org/10.1038/s43586-025-00397-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-025-00397-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing