Abstract
Photoluminescence (PL) microscopy is a technique for mapping the spatial distribution of optical and electronic properties in optoelectronic (OE) materials, including silicon, III–V and organic semiconductors, halide perovskites and quantum dots. This Primer provides an overview of the foundational principles and methods of PL microscopy, highlighting how different microscopy configurations can reveal unique insights into the photophysical behaviours of OE materials and the importance of selecting appropriate set-ups for accurate analysis. Key topics include acquisition modes such as widefield and confocal scanning, along with time-resolved and spectrally resolved PL techniques. Practical guidance on experimental set-up, data acquisition and analytical approaches is provided, addressing common challenges and limitations. Finally, emerging applications, solutions to typical issues and potential advancements in PL imaging are discussed, with the goal of supporting the optimization of next-generation OE materials and devices.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Abbott, M. D. et al. Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells. J. Appl. Phys. 100, 114514 (2006).
Bothe, K. & Hinken, D. in Semiconductors and Semimetals Vol. 89 (eds Willeke, G. P. & Weber, E. R.) 259–339 (Elsevier, 2013).
Jiang, X. et al. Isomeric diammonium passivation for perovskite–organic tandem solar cells. Nature 635, 860–866 (2024).
Li, C. et al. Non-fullerene acceptors with high crystallinity and photoluminescence quantum yield enable >20% efficiency organic solar cells. Nat. Mater. 24, 433–443 (2025).
Boroditsky, M. et al. Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes. J. Appl. Phys. 87, 3497–3504 (2000).
Zhao, H., Arneson, C. E., Fan, D. & Forrest, S. R. Stable blue phosphorescent organic LEDs that use polariton-enhanced Purcell effects. Nature 626, 300–305 (2024).
Diesing, S., Zhang, L., Zysman-Colman, E. & Samuel, I. D. W. A figure of merit for efficiency roll-off in TADF-based organic LEDs. Nature 627, 747–753 (2024).
Wang, Y.-K. et al. Long-range order enabled stability in quantum dot light-emitting diodes. Nature 629, 586–591 (2024).
Fan, Y. et al. Dispersion-assisted high-dimensional photodetector. Nature 630, 77–83 (2024).
Koepfli, S. M. et al. Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz. Science 380, 1169–1174 (2023).
Ahmad, W. et al. Progress and insight of van der Waals heterostructures containing interlayer transition for near infrared photodetectors. Adv. Funct. Mater. 33, 2300686 (2023).
de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).
Frohna, K. et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat. Nanotechnol. 17, 190–196 (2022). This work showcases a powerful multimodal microscopy toolkit to pinpoint the role of nanoscale heterogeneity in both perovskite thin films and solar cells.
Ochoa, M., Yang, S.-C., Nishiwaki, S., Tiwari, A. N. & Carron, R. Charge carrier lifetime fluctuations and performance evaluation of Cu(In,Ga)Se2 absorbers via time-resolved-photoluminescence microscopy. Adv. Energy Mater. 12, 2102800 (2022).
Lichtman, J. W. & Conchello, J.-A. Fluorescence microscopy. Nat. Methods 2, 910–919 (2005).
Ranjit, S., Lanzanò, L., Libby, A. E., Gratton, E. & Levi, M. Advances in fluorescence microscopy techniques to study kidney function. Nat. Rev. Nephrol. 17, 128–144 (2021).
Hickey, S. M. et al. Fluorescence microscopy — an outline of hardware, biological handling, and fluorophore considerations. Cells 11, 35 (2022).
Trupke, T., Bardos, R. A., Schubert, M. C. & Warta, W. Photoluminescence imaging of silicon wafers. Appl. Phys. Lett. 89, 044107 (2006).
Delport, G., Macpherson, S. & Stranks, S. D. Imaging carrier transport properties in halide perovskites using time-resolved optical microscopy. Adv. Energy Mater. 10, 1903814 (2020).
Würfel, P. et al. Diffusion lengths of silicon solar cells from luminescence images. J. Appl. Phys. 101, 123110 (2007).
Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).
Niemeyer, M. et al. Minority carrier diffusion length, lifetime and mobility in p-type GaAs and GaInAs. J. Appl. Phys. 122, 115702 (2017).
Pan, A. et al. Color-changeable optical transport through Se-doped CdS 1D nanostructures. Nano Lett. 7, 2970–2975 (2007).
Walker, A. W. et al. Impact of photon recycling on GaAs solar cell designs. IEEE J. Photovolt. 5, 1636–1645 (2015).
Pazos-Outón, L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016).
Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).
deQuilettes, D. W. et al. Impact of photon recycling, grain boundaries, and nonlinear recombination on energy transport in semiconductors. ACS Photon. 9, 110–122 (2022).
Walker, A. W. et al. Nonradiative lifetime extraction using power-dependent relative photoluminescence of III–V semiconductor double-heterostructures. J. Appl. Phys. 119, 155702 (2016).
Suhling, K., French, P. M. W. & Phillips, D. Time-resolved fluorescence microscopy. Photochem. Photobiol. Sci. 4, 13–22 (2005).
Fricker, M., Runions, J. & Moore, I. Quantitative fluorescence microscopy: from art to science. Annu. Rev. Plant Biol. 57, 79–107 (2006).
Scheele, C. L. G. J. et al. Multiphoton intravital microscopy of rodents. Nat. Rev. Methods Primers 2, 1–26 (2022).
Stelzer, E. H. K. et al. Light sheet fluorescence microscopy. Nat. Rev. Methods Primers 1, 1–25 (2021).
Maiberg, M. & Scheer, R. Theoretical study of time-resolved luminescence in semiconductors. II. Pulsed excitation. J. Appl. Phys. 116, 123711 (2014).
Marunchenko, A. et al. Hidden photoexcitations probed by multipulse photoluminescence. ACS Energy Lett. 9, 5898–5906 (2024).
Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).
Péan, E. V., Dimitrov, S., De Castro, C. S. & Davies, M. L. Interpreting time-resolved photoluminescence of perovskite materials. Phys. Chem. Chem. Phys. 22, 28345–28358 (2020).
Krückemeier, L., Krogmeier, B., Liu, Z., Rau, U. & Kirchartz, T. Understanding transient photoluminescence in halide perovskite layer stacks and solar cells. Adv. Energy Mater. 11, 2003489 (2021).
Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).
Hall, R. Germanium rectifier characteristics. Phys. Rev. 83, 228 (1951).
Yuan, Y., Yan, G., Dreessen, C. & Kirchartz, T. Understanding power-law photoluminescence decays and bimolecular recombination in lead-halide perovskites. Adv. Energy Mater. 15, 2403279 (2025). An in-depth discussion on the proper analysis of photoluminescence decays in intrinsic semiconductors, including those with shallow defects, using perovskite thin films as an example.
Maiberg, M., Hölscher, T., Zahedi-Azad, S. & Scheer, R. Theoretical study of time-resolved luminescence in semiconductors. III. Trap states band gap. J. Appl. Phys. 118, 105701 (2015).
Shen, Y. C. et al. Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91, 141101 (2007).
Shen, J.-X., Zhang, X., Das, S., Kioupakis, E. & Van de Walle, C. G. Unexpectedly strong Auger recombination in halide perovskites. Adv. Energy Mater. 8, 1801027 (2018).
Ghanassi, M. et al. Time-resolved measurements of carrier recombination in experimental semiconductor-doped glasses: confirmation of the role of Auger recombination. Appl. Phys. Lett. 62, 78–80 (1993).
Anikeev, S. et al. Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminescence. Appl. Phys. Lett. 83, 3317–3319 (2003).
Taguchi, S., Saruyama, M., Teranishi, T. & Kanemitsu, Y. Quantized Auger recombination of biexcitons in CdSe nanorods studied by time-resolved photoluminescence and transient-absorption spectroscopy. Phys. Rev. B 83, 155324 (2011).
Staub, F. et al. Beyond bulk lifetimes: insights into lead halide perovskite films from time-resolved photoluminescence. Phys. Rev. Appl. 6, 044017 (2016).
Yuan, L. & Huang, L. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 7, 7402–7408 (2015).
Delport, G. et al. Exciton–exciton annihilation in two-dimensional halide perovskites at room temperature. J. Phys. Chem. Lett. 10, 5153–5159 (2019).
Airy, G. B. On the diffraction of an object-glass with circular aperture. Trans. Camb. Philos. Soc. 5, 283 (1835).
Fick, A. V. On liquid diffusion. Lond. Edinb. Dublin Philos. Mag. J. Sci. 10, 30–39 (1855).
Beer, A. Grundriß des photometrischen Calcüles. Braunschweig, Friedrich Vieweg U. sohn 1854 (Vieweg, 1854).
Lobet, M. et al. Efficiency enhancement of perovskite solar cells based on opal-like photonic crystals. Opt. Express 27, 32308–32322 (2019).
König, K. Multiphoton microscopy in life sciences. J. Microsc. 200, 83–104 (2000).
Hoover, E. E. & Squier, J. A. Advances in multiphoton microscopy technology. Nat. Photon. 7, 93–101 (2013).
Barnard, E. S. et al. 3D lifetime tomography reveals how CdCl2 improves recombination throughout CdTe solar cells. Adv. Mater. 29, 1603801 (2017).
Stavrakas, C. et al. Visualizing buried local carrier diffusion in halide perovskite crystals via two-photon microscopy. ACS Energy Lett. 5, 117–123 (2020).
Akselrod, G. M. et al. Subdiffusive exciton transport in quantum dot solids. Nano Lett. 14, 3556–3562 (2014).
Baldwin, A. et al. Local energy landscape drives long-range exciton diffusion in two-dimensional halide perovskite semiconductors. J. Phys. Chem. Lett. 12, 4003–4011 (2021).
Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014).
Lo Gerfo, M. G., Bolzonello, L., Bernal-Texca, F., Martorell, J. & van Hulst, N. F. Spatiotemporal mapping uncouples exciton diffusion from singlet–singlet annihilation in the electron acceptor Y6. J. Phys. Chem. Lett. 14, 1999–2005 (2023).
Banappanavar, G., Saxena, R., Bässler, H., Köhler, A. & Kabra, D. Impact of photoluminescence imaging methodology on transport parameters in semiconductors. J. Phys. Chem. Lett. 15, 3109–3117 (2024).
Yuan, Y. et al. Shallow defects and variable photoluminescence decay times up to 280 µs in triple-cation perovskites. Nat. Mater. 23, 391–397 (2024).
Fluegel, B. et al. Carrier decay and diffusion dynamics in single-crystalline CdTe as seen via microphotoluminescence. Phys. Rev. Appl. 2, 034010 (2014).
Ziegler, J. D. et al. Fast and anomalous exciton diffusion in two-dimensional hybrid perovskites. Nano Lett. 20, 6674–6681 (2020).
Blais-Ouellette, S., Daigle, O. & Taylor, K. The imaging Bragg tunable filter: a new path to integral field spectroscopy and narrow band imaging. SPIE Astronom. Telesc. Instrum. 6269, 1750–1757 (2006).
Marcet, S., Verhaegen, M., Blais-Ouellette, S. & Martel, R. Raman spectroscopy hyperspectral imager based on Bragg tunable filters. in Photonics North 2012 Vol. 8412, 399–405 (SPIE, 2012).
Gómez-Chova, L. et al. Correction of systematic spatial noise in push-broom hyperspectral sensors: application to CHRIS/PROBA images. Appl. Opt. 47, F46–F60 (2008).
Ortega, S. et al. Hyperspectral push-broom microscope development and characterization. IEEE Access. 7, 122473–122491 (2019).
Perri, A. et al. Hyperspectral imaging with a TWINS birefringent interferometer. Opt. Express 27, 15956–15967 (2019).
Torrado, B., Pannunzio, B., Malacrida, L. & Digman, M. A. Fluorescence lifetime imaging microscopy. Nat. Rev. Methods Primers 4, 1–23 (2024).
Datta, R., Heaster, T. M., Sharick, J. T., Gillette, A. A. & Skala, M. C. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt. 25, 071203 (2020).
Ohno, S. Projection of phase singularities in moiré fringe onto a light field. Appl. Phys. Lett. 108, 251104 (2016).
Bercegol, A. et al. Spatial inhomogeneity analysis of cesium-rich wrinkles in triple-cation perovskite. J. Phys. Chem. C 122, 23345–23351 (2018).
Vidon, G. et al. Mapping transport properties of halide perovskites via short-time-dynamics scaling laws and subnanosecond-time-resolution imaging. Phys. Rev. Appl. 16, 044058 (2021).
Bowman, A. R. & Stranks, S. D. How to characterize emerging luminescent semiconductors with unknown photophysical properties. PRX Energy 2, 022001 (2023).
deQuilettes, D. W. et al. Tracking photoexcited carriers in hybrid perovskite semiconductors: trap-dominated spatial heterogeneity and diffusion. ACS Nano 11, 11488–11496 (2017). This study directly compares local photoluminescence variations in polycrystalline thin films using both confocal and widefield photoluminescence microscopy on the same region.
Heinz, F. D., Mundt, L. E., Warta, W. & Schubert, M. C. A combined transient and steady state approach for robust lifetime spectroscopy with micrometer resolution. Phys. Stat. Sol. RRL Rapid Res. Lett. 9, 697–700 (2015).
Kurrle, D. & Pflaum, J. Exciton diffusion length in the organic semiconductor diindenoperylene. Appl. Phys. Lett. 92, 133306 (2008).
Firdaus, Y. et al. Long-range exciton diffusion in molecular non-fullerene acceptors. Nat. Commun. 11, 5220 (2020).
Cacovich, S. et al. Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nat. Commun. 13, 2868 (2022).
Bercegol, A., El-Hajje, G., Ory, D. & Lombez, L. Determination of transport properties in optoelectronic devices by time-resolved fluorescence imaging. J. Appl. Phys. 122, 203102 (2017).
Kiliani, D. et al. Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging. J. Appl. Phys. 110, 054508 (2011).
Giesecke, J. A., Schubert, M. C., Michl, B., Schindler, F. & Warta, W. Minority carrier lifetime imaging of silicon wafers calibrated by quasi-steady-state photoluminescence. Sol. Energy Mater. Sol. Cell 95, 1011–1018 (2011).
Kirchartz, T., Márquez, J. A., Stolterfoht, M. & Unold, T. Photoluminescence-based characterization of halide perovskites for photovoltaics. Adv. Energy Mater. 10, 1904134 (2020).
van der Pol, T. P. A., Datta, K., Wienk, M. M. & Janssen, R. A. J. The intrinsic photoluminescence spectrum of perovskite films. Adv. Opt. Mater. 10, 2102557 (2022).
Giesecke, J. A., Kasemann, M. & Warta, W. Determination of local minority carrier diffusion lengths in crystalline silicon from luminescence images. J. Appl. Phys. 106, 014907 (2009).
Cho, C. et al. Efficient vertical charge transport in polycrystalline halide perovskites revealed by four-dimensional tracking of charge carriers. Nat. Mater. 21, 1388–1395 (2022).
Braly, I. L. et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat. Photon. 12, 355–361 (2018).
Wurfel, P. The chemical potential of radiation. J. Phys. C Solid State Phys. 15, 3967 (1982). A seminal work on fundamental physics of the photoluminescence.
Delamarre, A., Lombez, L. & Guillemoles, J.-F. Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images. J. Photon. Energy 2, 027004 (2012). To our knowledge, this is the first demonstration of hyperspectral imaging using a volume Bragg grating applied to optoelectronics.
Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018). This work illustrates how maps of quasi-Fermi level splitting can be used to assess local non-radiative recombination losses at different interfaces within a solar cell.
El-Hajje, G., Ory, D., Guillemoles, J.-F. & Lombez, L. On the origin of the spatial inhomogeneity of photoluminescence in thin-film CIGS solar devices. Appl. Phys. Lett. 109, 022104 (2016).
Ugur, E. et al. Life on the Urbach edge. J. Phys. Chem. Lett. 13, 7702–7711 (2022). A comprehensive review of techniques used to extract Urbach energy, some of which can be adopted in optical microscopy to obtain maps of electronic disorder in a material.
Witt, C., Schötz, K., Köhler, A. & Panzer, F. Understanding method-dependent differences in Urbach energies in halide perovskites. J. Phys. Chem. C 128, 6336–6345 (2024).
Braly, I. L., Stoddard, R. J., Rajagopal, A., Jen, A. K.-Y. & Hillhouse, H. W. Photoluminescence and photoconductivity to assess maximum open-circuit voltage and carrier transport in hybrid perovskites and other photovoltaic materials. J. Phys. Chem. Lett. 9, 3779–3792 (2018). A clear description of the methods and utility of calculating the quasi-Fermi level splitting for various semiconductor materials.
Schubert, M. C., Mundt, L. E., Walter, D., Fell, A. & Glunz, S. W. Spatially resolved performance analysis for perovskite solar cells. Adv. Energy Mater. 10, 1904001 (2020).
Stolterfoht, M. et al. Voltage-dependent photoluminescence and how it correlates with the fill factor and open-circuit voltage in perovskite solar cells. ACS Energy Lett. 4, 2887–2892 (2019).
Dasgupta, A. et al. Visualizing macroscopic inhomogeneities in perovskite solar cells. ACS Energy Lett. 7, 2311–2322 (2022).
Wagner, L. et al. Revealing fundamentals of charge extraction in photovoltaic devices through potentiostatic photoluminescence imaging. Matter 5, 2352–2364 (2022).
Frohna, K. et al. The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells. Nat. Energy 10, 66–76 (2025).
Anaya, M. et al. Best practices for measuring emerging light-emitting diode technologies. Nat. Photon. 13, 818–821 (2019).
Ji, K. et al. Self-supervised deep learning for tracking degradation of perovskite light-emitting diodes with multispectral imaging. Nat. Mach. Intell. 5, 1225–1235 (2023).
Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).
Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).
Yan, X. et al. Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 13, 1701478 (2017).
Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).
Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).
Alexeev, E. M. et al. Imaging of interlayer coupling in van der Waals heterostructures using a bright-field optical microscope. Nano Lett. 17, 5342–5349 (2017).
Okada, M. et al. Direct and indirect interlayer excitons in a van der Waals heterostructure of hBN/WS2/MoS2/hBN. ACS Nano 12, 2498–2505 (2018).
Mahdikhanysarvejahany, F. et al. Localized interlayer excitons in MoSe2–WSe2 heterostructures without a moiré potential. Nat. Commun. 13, 5354 (2022).
Fang, H. et al. Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers. Nat. Commun. 14, 6910 (2023).
Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).
Chen, Y. et al. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano 14, 10258–10264 (2020).
Shrestha, S. et al. Room temperature valley polarization via spin selective charge transfer. Nat. Commun. 14, 5234 (2023).
Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).
Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).
Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).
Zhang, Z. et al. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. 16, 1093–1096 (2020).
Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).
Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).
Choi, J. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 6, eaba8866 (2020).
Zhao, S. et al. Excitons in mesoscopically reconstructed moiré heterostructures. Nat. Nanotechnol. 18, 572–579 (2023).
Zhang, S. et al. Moiré superlattices in twisted two-dimensional halide perovskites. Nat. Mater. 23, 1222–1229 (2024).
Sortino, L. et al. Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nat. Commun. 12, 6063 (2021).
Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).
Stern, H. L. et al. A quantum coherent spin in hexagonal boron nitride at ambient conditions. Nat. Mater. 23, 1379–1385 (2024).
Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).
Higginbottom, D. B. et al. Optical observation of single spins in silicon. Nature 607, 266–270 (2022).
Redjem, W. et al. Single artificial atoms in silicon emitting at telecom wavelengths. Nat. Electron. 3, 738–743 (2020).
Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).
Frantsuzov, P., Kuno, M., Jankó, B. & Marcus, R. A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nat. Phys. 4, 519–522 (2008).
Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).
Morad, V. et al. Designer phospholipid capping ligands for soft metal halide nanocrystals. Nature 626, 542–548 (2024).
Shi, J. et al. All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses. Nat. Nanotechnol. 16, 1355–1361 (2021).
Montero Llopis, P. et al. Best practices and tools for reporting reproducible fluorescence microscopy methods. Nat. Methods 18, 1463–1476 (2021).
Schmied, C. et al. Community-developed checklists for publishing images and image analyses. Nat. Methods 21, 170–181 (2024).
Talirz, L. et al. Materials cloud, a platform for open computational science. Sci. Data 7, 299 (2020).
Draxl, C. & Scheffler, M. The nomad laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2, 036001 (2019).
Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Almora, O. et al. Device performance of emerging photovoltaic materials (version 1). Adv. Energy Mater. 11, 2002774 (2021).
Jacobsson, T. J. et al. An open-access database and analysis tool for perovskite solar cells based on the Fair data principles. Nat. Energy 7, 107–115 (2022).
Richardson, W. H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972).
Chen, F., Zhang, Y., Gfroerer, T. H., Finger, A. N. & Wanlass, M. W. Spatial resolution versus data acquisition efficiency in mapping an inhomogeneous system with species diffusion. Sci. Rep. 5, 10542 (2015).
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).
Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).
Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000). A concise explanation and demonstration of the resolution enhancements offered by structured illumination microscopy.
Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).
Wei, Z. et al. The importance of relativistic effects on two-photon absorption spectra in metal halide perovskites. Nat. Commun. 10, 5342 (2019).
Everall, N. J. Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy. Appl. Spectrosc. 54, 773–782 (2000).
Ou, Z. et al. Achieving optical transparency in live animals with absorbing molecules. Science 385, eadm6869 (2024).
Phillips, L. J. et al. Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks. Sol. Energy Mater. Sol. Cell 147, 327–333 (2016).
Kuciauskas, D., Myers, T. H., Barnes, T. M., Jensen, S. A. & Allende Motz, A. M. Time-resolved correlative optical microscopy of charge-carrier transport, recombination, and space-charge fields in CdTe heterostructures. Appl. Phys. Lett. 110, 083905 (2017).
Karvonen, L. et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat. Commun. 8, 15714 (2017).
Moore, D. et al. Uncovering topographically hidden features in 2D MoSe2 with correlated potential and optical nanoprobes. npj 2D Mater. Appl. 4, 1–7 (2020).
Stranks, S. D. Multimodal microscopy characterization of halide perovskite semiconductors: revealing a new world (dis)order. Matter 4, 3852–3866 (2021).
Polishchuk, R. S. et al. Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J. Cell Biol. 148, 45–58 (2000).
Löschberger, A., Franke, C., Krohne, G., van de Linde, S. & Sauer, M. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J. Cell Sci. 127, 4351–4355 (2014).
Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).
Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).
Werner, J. H., Mattheis, J. & Rau, U. Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2. Thin Solid Films 480–481, 399–409 (2005).
Keller, J. et al. High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency. Nat. Energy 9, 467–478 (2024).
Sharma, D. et al. Charge-carrier-concentration inhomogeneities in alkali-treated Cu(In,Ga)Se2 revealed by conductive atomic force microscopy tomography. Nat. Energy 9, 163–171 (2024).
Ooi, Z. Y. et al. Strong angular and spectral narrowing of electroluminescence in an integrated Tamm-plasmon-driven halide perovskite LED. Nat. Commun. 15, 5802 (2024).
van Mensfoort, S. L. M. et al. Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution. Nat. Photon. 4, 329–335 (2010).
Sersic, I., Tuambilangana, C. & Koenderink, A. F. Fourier microscopy of single plasmonic scatterers. N. J. Phys. 13, 083019 (2011).
Wagner, R., Heerklotz, L., Kortenbruck, N. & Cichos, F. Back focal plane imaging spectroscopy of photonic crystals. Appl. Phys. Lett. 101, 081904 (2012).
Zhu, Y. et al. Highly efficient light-emitting diodes based on self-assembled colloidal quantum wells. Adv. Mater. 35, 2305382 (2023).
Ye, J. et al. Direct linearly polarized electroluminescence from perovskite nanoplatelet superlattices. Nat. Photon. 18, 586–594 (2024).
Bari, M., Bokov, A. A., Leach, G. W. & Ye, Z.-G. Ferroelastic domains and effects of spontaneous strain in lead halide perovskite CsPbBr3. Chem. Mater. 35, 6659–6670 (2023).
Fu, J. et al. Robust ferroelasticity and carrier dynamics across the domain wall in perovskite-like van der Waals WO2I2. Adv. Funct. Mater. 34, 2400218 (2024).
Ashoka, A. et al. Local symmetry breaking drives picosecond spin domain formation in polycrystalline halide perovskite films. Nat. Mater. 22, 977–984 (2023).
Kitzmann, W. R., Freudenthal, J., Reponen, A.-P. M., VanOrman, Z. A. & Feldmann, S. Fundamentals, advances, and artifacts in circularly polarized luminescence (CPL) spectroscopy. Adv. Mater. 35, 2302279 (2023).
Heintzmann, R. & Cremer, C. G. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. in Optical Biopsies and Microscopic Techniques III Vol. 3568, 185–196 (SPIE, 1999).
Heintzmann, R. & Gustafsson, M. G. L. Subdiffraction resolution in continuous samples. Nat. Photon. 3, 362–364 (2009).
Goodman, J. W. Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
Field, J. J. et al. Superresolved multiphoton microscopy with spatial frequency-modulated imaging. Proc. Natl Acad. Sci. USA 113, 6605–6610 (2016).
Ochoa, M., Nishiwaki, S., Yang, S.-C., Tiwari, A. N. & Carron, R. Lateral charge carrier transport in Cu(In,Ga)Se2 studied by time-resolved photoluminescence mapping. Phys. Stat. Sol. RRL Rapid Res. Lett. 15, 2100313 (2021).
Maiberg, M., Bertram, F., Müller, M. & Scheer, R. Theoretical study of time-resolved luminescence in semiconductors. IV. Lateral inhomogeneities. J. Appl. Phys. 121, 085703 (2017).
Frohna, K. et al. Multimodal correlative microscopy to study the chemical and energetic landscape of alloyed halide perovskites. Microsc. Microanal. 28, 1950–1952 (2022).
Lasher, G. & Stern, F. Spontaneous and stimulated recombination radiation in semiconductors. Phys. Rev. 133, A553–A563 (1964).
Katahara, J. K. & Hillhouse, H. W. Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence. J. Appl. Phys. 116, 173504 (2014). A theoretical framework that can be used to perform full photoluminescence spectrum fitting, which allows extraction of quasi-Fermi level splitting.
Gao, M. et al. Photoluminescence manipulation in two-dimensional transition metal dichalcogenides. J. Materiomics 9, 768–786 (2023).
Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1324 (1953).
Tauc, J. in Amorphous and Liquid Semiconductors (ed. Tauc, J.) 159–220 (Springer US, 1974).
Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).
Frost, J. M., Butler, K. T. & Walsh, A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2, 081506 (2014).
Johnson, S. R. & Tiedje, T. Temperature dependence of the Urbach edge in GaAs. J. Appl. Phys. 78, 5609–5613 (1995).
Beaudoin, M., DeVries, A. J. G., Johnson, S. R., Laman, H. & Tiedje, T. Optical absorption edge of semi-insulating GaAs and InP at high temperatures. Appl. Phys. Lett. 70, 3540–3542 (1997).
Acknowledgements
Z.W. acknowledges the Leverhulme Trust (Project No. RPG-2021-191). M.D. acknowledges UKRI guarantee funding for Marie Skłodowska-Curie Actions Postdoctoral Fellowships 2022 (EP/Y024648/1). C.C. acknowledges the support of a Marshall Scholarship, Winton Scholarship and the Cambridge Trust. S.K. is grateful for funding from the German Academic Exchange Service (DAAD) (91793256) for a short-term research fellowship and from the Leverhulme Early Career Fellowship funded by the Leverhulme Trust (ECF-2022-593) and the Isaac Newton Trust (22.08(i)). S.D.S. acknowledges the Royal Society and Tata Group (grant numbers UF150033, URF\R\221026). The authors acknowledge the Engineering and Physical Sciences Research Council (EP/R023980/1) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement no. 756962). The authors thank A. Dearle for the synthesis of MAPbBr3 thin crystals and C. Mamak for her help in developing the code for TRPL acquisition with the emICCD camera. The authors thank L. Hirst and T. Agoro for providing the GaAs wafer.
Author information
Authors and Affiliations
Contributions
Introduction (Z.W.); Experimentation (Z.W., C.C. and M.D.); Results (M.D., C.C. and Z.W.); Applications (Z.W. and C.C.); Reproducibility and data deposition (Z.W.); Limitations and optimizations (Z.W.); Outlook (Z.W., C.C. and M.D.); overview of the Primer (Z.W., C.C., M.D., S.K. and S.D.S.); funding acquisition and supervision (S.D.S.). All authors discussed and edited the full manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks Darius Kuciauskas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Materials Cloud: https://www.materialscloud.org/home
Glossary
- Airy unit
-
A unit of measure used in optics, representing the diameter of the central Airy disc in the diffraction pattern produced by a circular aperture.
- Auger recombination
-
A non-radiative process in which the energy released by an electron–hole recombination is transferred to a third charge carrier (electron or hole), which is excited to a higher energy state instead of emitting a photon.
- Band-to-band recombination
-
A radiative process in which an electron in the conduction band directly recombines with a hole in the valence band, emitting a photon.
- Beer–Lambert law
-
A relationship describing the attenuation of light as it passes through a medium; it states that the amount of light absorbed is directly proportional to the concentration of the absorbing species, absorptivity of the species and the path length through the material.
- Charge carriers
-
Particles that carry electric charge and are free to move within a material, such as electrons and holes in semiconductors.
- Diffraction limit
-
The fundamental limit on the resolution of any optical system, defined by the wave nature of light, beyond which two adjacent points can no longer be resolved separately owing to diffraction effects.
- Excitons
-
Bound pairs of an electron and a hole, held together by Coulomb attraction; they are electrically neutral quasiparticles that can transfer energy without transporting net electric charge.
- Fick’s law
-
A principle describing diffusion, stating that the speed of particles moving from areas of high to low concentration is proportional to their concentration gradient, via the diffusion coefficient.
- Fluence
-
Energy per unit area (J cm−²) delivered in a single laser pulse.
- Fluorescence
-
A specific type of photoluminescence where the excited electron returns to the ground state without changing its spin, leading to a very fast emission process (typically within nanoseconds).
- Intensified gated cameras
-
An imaging device equipped with an image intensifier and electronic gating, allowing it to capture ultrafast, low-light events by selectively detecting light within precise time windows.
- Moiré patterns
-
Large-scale interference patterns that appear when superposing patterned objects (either in space or in time) with a slight difference in period; they could appear as artefacts in fluorescence lifetime imaging microscopic images, owing to mismatch between the pulse repetition rate and the pixel dwell time.
- Numerical aperture
-
(NA). A dimensionless number that characterizes the light acceptance cone of a lens or, equivalently, the range of emission angles of a source; higher NA values indicate better spatial resolution as more light can be collected with the microscopy system.
- Operando
-
Describes a way of implementing a technique to study a system under its real operational conditions, typically while it is functioning in situ.
- Optoelectronic
-
Describes materials such as silicon, III–V semiconductors, metal oxides and halide perovskites that interact with light and electrical charges, often used in devices that convert electrical signals into optical signals or vice versa.
- Quasi-Fermi level splitting
-
The energy difference between the electron and hole quasi-Fermi levels in a semiconductor under non-equilibrium conditions.
- Shockley–Read–Hall recombination
-
A non-radiative process in semiconductors in which electrons and holes recombine through localized energy states (also called traps) within the bandgap, leading to energy loss as heat rather than light.
- Steady-state
-
A condition in which the properties of the system remain constant over the observation time.
- Stokes shift
-
The difference in wavelength (or energy) between the maxima of the absorption and emission spectra of the same electronic transition.
- Super-Gaussian
-
A generalized form of a Gaussian function with a flatter top and steeper sides, often used to model beam profiles or spatial intensity distributions that deviate from a standard Gaussian shape.
- Urbach energy
-
A parameter that quantifies the width of the exponential tail of the absorption edge in a semiconductor, reflecting the degree of structural or thermal disorder in the material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wei, Z., Dubajic, M., Chosy, C. et al. Photoluminescence microscopy of optoelectronic materials. Nat Rev Methods Primers 5, 37 (2025). https://doi.org/10.1038/s43586-025-00407-w
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-025-00407-w