Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Photoluminescence microscopy of optoelectronic materials

Abstract

Photoluminescence (PL) microscopy is a technique for mapping the spatial distribution of optical and electronic properties in optoelectronic (OE) materials, including silicon, III–V and organic semiconductors, halide perovskites and quantum dots. This Primer provides an overview of the foundational principles and methods of PL microscopy, highlighting how different microscopy configurations can reveal unique insights into the photophysical behaviours of OE materials and the importance of selecting appropriate set-ups for accurate analysis. Key topics include acquisition modes such as widefield and confocal scanning, along with time-resolved and spectrally resolved PL techniques. Practical guidance on experimental set-up, data acquisition and analytical approaches is provided, addressing common challenges and limitations. Finally, emerging applications, solutions to typical issues and potential advancements in PL imaging are discussed, with the goal of supporting the optimization of next-generation OE materials and devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photoluminescence imaging modes.
Fig. 2: Charge carrier processes in optoelectronic materials at the microscale and the role of the pinhole.
Fig. 3: Elements of steady-state and time-resolved photoluminescence microscopy configurations.
Fig. 4: Acquisition of photoluminescence data cubes.
Fig. 5: Effect of the pinhole on time-resolved photoluminescence data.
Fig. 6: Analysis of photoluminescence data cubes.

Similar content being viewed by others

References

  1. Abbott, M. D. et al. Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells. J. Appl. Phys. 100, 114514 (2006).

    Article  ADS  Google Scholar 

  2. Bothe, K. & Hinken, D. in Semiconductors and Semimetals Vol. 89 (eds Willeke, G. P. & Weber, E. R.) 259–339 (Elsevier, 2013).

  3. Jiang, X. et al. Isomeric diammonium passivation for perovskite–organic tandem solar cells. Nature 635, 860–866 (2024).

    Article  Google Scholar 

  4. Li, C. et al. Non-fullerene acceptors with high crystallinity and photoluminescence quantum yield enable >20% efficiency organic solar cells. Nat. Mater. 24, 433–443 (2025).

    Article  Google Scholar 

  5. Boroditsky, M. et al. Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes. J. Appl. Phys. 87, 3497–3504 (2000).

    Article  ADS  Google Scholar 

  6. Zhao, H., Arneson, C. E., Fan, D. & Forrest, S. R. Stable blue phosphorescent organic LEDs that use polariton-enhanced Purcell effects. Nature 626, 300–305 (2024).

    Article  ADS  Google Scholar 

  7. Diesing, S., Zhang, L., Zysman-Colman, E. & Samuel, I. D. W. A figure of merit for efficiency roll-off in TADF-based organic LEDs. Nature 627, 747–753 (2024).

    Article  ADS  Google Scholar 

  8. Wang, Y.-K. et al. Long-range order enabled stability in quantum dot light-emitting diodes. Nature 629, 586–591 (2024).

    Article  ADS  Google Scholar 

  9. Fan, Y. et al. Dispersion-assisted high-dimensional photodetector. Nature 630, 77–83 (2024).

    Article  ADS  Google Scholar 

  10. Koepfli, S. M. et al. Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz. Science 380, 1169–1174 (2023).

    Article  ADS  Google Scholar 

  11. Ahmad, W. et al. Progress and insight of van der Waals heterostructures containing interlayer transition for near infrared photodetectors. Adv. Funct. Mater. 33, 2300686 (2023).

    Article  Google Scholar 

  12. de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article  Google Scholar 

  13. Frohna, K. et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat. Nanotechnol. 17, 190–196 (2022). This work showcases a powerful multimodal microscopy toolkit to pinpoint the role of nanoscale heterogeneity in both perovskite thin films and solar cells.

    Article  ADS  Google Scholar 

  14. Ochoa, M., Yang, S.-C., Nishiwaki, S., Tiwari, A. N. & Carron, R. Charge carrier lifetime fluctuations and performance evaluation of Cu(In,Ga)Se2 absorbers via time-resolved-photoluminescence microscopy. Adv. Energy Mater. 12, 2102800 (2022).

    Article  Google Scholar 

  15. Lichtman, J. W. & Conchello, J.-A. Fluorescence microscopy. Nat. Methods 2, 910–919 (2005).

    Article  Google Scholar 

  16. Ranjit, S., Lanzanò, L., Libby, A. E., Gratton, E. & Levi, M. Advances in fluorescence microscopy techniques to study kidney function. Nat. Rev. Nephrol. 17, 128–144 (2021).

    Article  Google Scholar 

  17. Hickey, S. M. et al. Fluorescence microscopy — an outline of hardware, biological handling, and fluorophore considerations. Cells 11, 35 (2022).

    Article  Google Scholar 

  18. Trupke, T., Bardos, R. A., Schubert, M. C. & Warta, W. Photoluminescence imaging of silicon wafers. Appl. Phys. Lett. 89, 044107 (2006).

    Article  ADS  Google Scholar 

  19. Delport, G., Macpherson, S. & Stranks, S. D. Imaging carrier transport properties in halide perovskites using time-resolved optical microscopy. Adv. Energy Mater. 10, 1903814 (2020).

    Article  Google Scholar 

  20. Würfel, P. et al. Diffusion lengths of silicon solar cells from luminescence images. J. Appl. Phys. 101, 123110 (2007).

    Article  ADS  Google Scholar 

  21. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  ADS  Google Scholar 

  22. Niemeyer, M. et al. Minority carrier diffusion length, lifetime and mobility in p-type GaAs and GaInAs. J. Appl. Phys. 122, 115702 (2017).

    Article  ADS  Google Scholar 

  23. Pan, A. et al. Color-changeable optical transport through Se-doped CdS 1D nanostructures. Nano Lett. 7, 2970–2975 (2007).

    Article  ADS  Google Scholar 

  24. Walker, A. W. et al. Impact of photon recycling on GaAs solar cell designs. IEEE J. Photovolt. 5, 1636–1645 (2015).

    Article  Google Scholar 

  25. Pazos-Outón, L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016).

    Article  ADS  Google Scholar 

  26. Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article  ADS  Google Scholar 

  27. deQuilettes, D. W. et al. Impact of photon recycling, grain boundaries, and nonlinear recombination on energy transport in semiconductors. ACS Photon. 9, 110–122 (2022).

    Article  Google Scholar 

  28. Walker, A. W. et al. Nonradiative lifetime extraction using power-dependent relative photoluminescence of III–V semiconductor double-heterostructures. J. Appl. Phys. 119, 155702 (2016).

    Article  ADS  Google Scholar 

  29. Suhling, K., French, P. M. W. & Phillips, D. Time-resolved fluorescence microscopy. Photochem. Photobiol. Sci. 4, 13–22 (2005).

    Article  Google Scholar 

  30. Fricker, M., Runions, J. & Moore, I. Quantitative fluorescence microscopy: from art to science. Annu. Rev. Plant Biol. 57, 79–107 (2006).

    Article  Google Scholar 

  31. Scheele, C. L. G. J. et al. Multiphoton intravital microscopy of rodents. Nat. Rev. Methods Primers 2, 1–26 (2022).

    Article  ADS  Google Scholar 

  32. Stelzer, E. H. K. et al. Light sheet fluorescence microscopy. Nat. Rev. Methods Primers 1, 1–25 (2021).

    Article  Google Scholar 

  33. Maiberg, M. & Scheer, R. Theoretical study of time-resolved luminescence in semiconductors. II. Pulsed excitation. J. Appl. Phys. 116, 123711 (2014).

    Article  ADS  Google Scholar 

  34. Marunchenko, A. et al. Hidden photoexcitations probed by multipulse photoluminescence. ACS Energy Lett. 9, 5898–5906 (2024).

    Article  Google Scholar 

  35. Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).

    Article  ADS  Google Scholar 

  36. Péan, E. V., Dimitrov, S., De Castro, C. S. & Davies, M. L. Interpreting time-resolved photoluminescence of perovskite materials. Phys. Chem. Chem. Phys. 22, 28345–28358 (2020).

    Article  Google Scholar 

  37. Krückemeier, L., Krogmeier, B., Liu, Z., Rau, U. & Kirchartz, T. Understanding transient photoluminescence in halide perovskite layer stacks and solar cells. Adv. Energy Mater. 11, 2003489 (2021).

    Article  Google Scholar 

  38. Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Article  ADS  Google Scholar 

  39. Hall, R. Germanium rectifier characteristics. Phys. Rev. 83, 228 (1951).

    MathSciNet  Google Scholar 

  40. Yuan, Y., Yan, G., Dreessen, C. & Kirchartz, T. Understanding power-law photoluminescence decays and bimolecular recombination in lead-halide perovskites. Adv. Energy Mater. 15, 2403279 (2025). An in-depth discussion on the proper analysis of photoluminescence decays in intrinsic semiconductors, including those with shallow defects, using perovskite thin films as an example.

    Article  Google Scholar 

  41. Maiberg, M., Hölscher, T., Zahedi-Azad, S. & Scheer, R. Theoretical study of time-resolved luminescence in semiconductors. III. Trap states band gap. J. Appl. Phys. 118, 105701 (2015).

    Article  ADS  Google Scholar 

  42. Shen, Y. C. et al. Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91, 141101 (2007).

    Article  ADS  Google Scholar 

  43. Shen, J.-X., Zhang, X., Das, S., Kioupakis, E. & Van de Walle, C. G. Unexpectedly strong Auger recombination in halide perovskites. Adv. Energy Mater. 8, 1801027 (2018).

    Article  Google Scholar 

  44. Ghanassi, M. et al. Time-resolved measurements of carrier recombination in experimental semiconductor-doped glasses: confirmation of the role of Auger recombination. Appl. Phys. Lett. 62, 78–80 (1993).

    Article  ADS  Google Scholar 

  45. Anikeev, S. et al. Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminescence. Appl. Phys. Lett. 83, 3317–3319 (2003).

    Article  ADS  Google Scholar 

  46. Taguchi, S., Saruyama, M., Teranishi, T. & Kanemitsu, Y. Quantized Auger recombination of biexcitons in CdSe nanorods studied by time-resolved photoluminescence and transient-absorption spectroscopy. Phys. Rev. B 83, 155324 (2011).

    Article  ADS  Google Scholar 

  47. Staub, F. et al. Beyond bulk lifetimes: insights into lead halide perovskite films from time-resolved photoluminescence. Phys. Rev. Appl. 6, 044017 (2016).

    Article  ADS  Google Scholar 

  48. Yuan, L. & Huang, L. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 7, 7402–7408 (2015).

    Article  ADS  Google Scholar 

  49. Delport, G. et al. Exciton–exciton annihilation in two-dimensional halide perovskites at room temperature. J. Phys. Chem. Lett. 10, 5153–5159 (2019).

    Article  Google Scholar 

  50. Airy, G. B. On the diffraction of an object-glass with circular aperture. Trans. Camb. Philos. Soc. 5, 283 (1835).

    ADS  Google Scholar 

  51. Fick, A. V. On liquid diffusion. Lond. Edinb. Dublin Philos. Mag. J. Sci. 10, 30–39 (1855).

    Article  Google Scholar 

  52. Beer, A. Grundriß des photometrischen Calcüles. Braunschweig, Friedrich Vieweg U. sohn 1854 (Vieweg, 1854).

  53. Lobet, M. et al. Efficiency enhancement of perovskite solar cells based on opal-like photonic crystals. Opt. Express 27, 32308–32322 (2019).

    Article  ADS  Google Scholar 

  54. König, K. Multiphoton microscopy in life sciences. J. Microsc. 200, 83–104 (2000).

    Article  Google Scholar 

  55. Hoover, E. E. & Squier, J. A. Advances in multiphoton microscopy technology. Nat. Photon. 7, 93–101 (2013).

    Article  ADS  Google Scholar 

  56. Barnard, E. S. et al. 3D lifetime tomography reveals how CdCl2 improves recombination throughout CdTe solar cells. Adv. Mater. 29, 1603801 (2017).

    Article  Google Scholar 

  57. Stavrakas, C. et al. Visualizing buried local carrier diffusion in halide perovskite crystals via two-photon microscopy. ACS Energy Lett. 5, 117–123 (2020).

    Article  Google Scholar 

  58. Akselrod, G. M. et al. Subdiffusive exciton transport in quantum dot solids. Nano Lett. 14, 3556–3562 (2014).

    Article  ADS  Google Scholar 

  59. Baldwin, A. et al. Local energy landscape drives long-range exciton diffusion in two-dimensional halide perovskite semiconductors. J. Phys. Chem. Lett. 12, 4003–4011 (2021).

    Article  Google Scholar 

  60. Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014).

    Article  ADS  Google Scholar 

  61. Lo Gerfo, M. G., Bolzonello, L., Bernal-Texca, F., Martorell, J. & van Hulst, N. F. Spatiotemporal mapping uncouples exciton diffusion from singlet–singlet annihilation in the electron acceptor Y6. J. Phys. Chem. Lett. 14, 1999–2005 (2023).

    Article  Google Scholar 

  62. Banappanavar, G., Saxena, R., Bässler, H., Köhler, A. & Kabra, D. Impact of photoluminescence imaging methodology on transport parameters in semiconductors. J. Phys. Chem. Lett. 15, 3109–3117 (2024).

    Article  Google Scholar 

  63. Yuan, Y. et al. Shallow defects and variable photoluminescence decay times up to 280 µs in triple-cation perovskites. Nat. Mater. 23, 391–397 (2024).

    Article  ADS  Google Scholar 

  64. Fluegel, B. et al. Carrier decay and diffusion dynamics in single-crystalline CdTe as seen via microphotoluminescence. Phys. Rev. Appl. 2, 034010 (2014).

    Article  ADS  Google Scholar 

  65. Ziegler, J. D. et al. Fast and anomalous exciton diffusion in two-dimensional hybrid perovskites. Nano Lett. 20, 6674–6681 (2020).

    Article  ADS  Google Scholar 

  66. Blais-Ouellette, S., Daigle, O. & Taylor, K. The imaging Bragg tunable filter: a new path to integral field spectroscopy and narrow band imaging. SPIE Astronom. Telesc. Instrum. 6269, 1750–1757 (2006).

    Google Scholar 

  67. Marcet, S., Verhaegen, M., Blais-Ouellette, S. & Martel, R. Raman spectroscopy hyperspectral imager based on Bragg tunable filters. in Photonics North 2012 Vol. 8412, 399–405 (SPIE, 2012).

  68. Gómez-Chova, L. et al. Correction of systematic spatial noise in push-broom hyperspectral sensors: application to CHRIS/PROBA images. Appl. Opt. 47, F46–F60 (2008).

    Article  Google Scholar 

  69. Ortega, S. et al. Hyperspectral push-broom microscope development and characterization. IEEE Access. 7, 122473–122491 (2019).

    Article  Google Scholar 

  70. Perri, A. et al. Hyperspectral imaging with a TWINS birefringent interferometer. Opt. Express 27, 15956–15967 (2019).

    Article  ADS  Google Scholar 

  71. Torrado, B., Pannunzio, B., Malacrida, L. & Digman, M. A. Fluorescence lifetime imaging microscopy. Nat. Rev. Methods Primers 4, 1–23 (2024).

    Article  Google Scholar 

  72. Datta, R., Heaster, T. M., Sharick, J. T., Gillette, A. A. & Skala, M. C. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt. 25, 071203 (2020).

    Article  ADS  Google Scholar 

  73. Ohno, S. Projection of phase singularities in moiré fringe onto a light field. Appl. Phys. Lett. 108, 251104 (2016).

    Article  ADS  Google Scholar 

  74. Bercegol, A. et al. Spatial inhomogeneity analysis of cesium-rich wrinkles in triple-cation perovskite. J. Phys. Chem. C 122, 23345–23351 (2018).

    Article  Google Scholar 

  75. Vidon, G. et al. Mapping transport properties of halide perovskites via short-time-dynamics scaling laws and subnanosecond-time-resolution imaging. Phys. Rev. Appl. 16, 044058 (2021).

    Article  ADS  Google Scholar 

  76. Bowman, A. R. & Stranks, S. D. How to characterize emerging luminescent semiconductors with unknown photophysical properties. PRX Energy 2, 022001 (2023).

    Article  Google Scholar 

  77. deQuilettes, D. W. et al. Tracking photoexcited carriers in hybrid perovskite semiconductors: trap-dominated spatial heterogeneity and diffusion. ACS Nano 11, 11488–11496 (2017). This study directly compares local photoluminescence variations in polycrystalline thin films using both confocal and widefield photoluminescence microscopy on the same region.

    Article  Google Scholar 

  78. Heinz, F. D., Mundt, L. E., Warta, W. & Schubert, M. C. A combined transient and steady state approach for robust lifetime spectroscopy with micrometer resolution. Phys. Stat. Sol. RRL Rapid Res. Lett. 9, 697–700 (2015).

    Article  ADS  Google Scholar 

  79. Kurrle, D. & Pflaum, J. Exciton diffusion length in the organic semiconductor diindenoperylene. Appl. Phys. Lett. 92, 133306 (2008).

    Article  ADS  Google Scholar 

  80. Firdaus, Y. et al. Long-range exciton diffusion in molecular non-fullerene acceptors. Nat. Commun. 11, 5220 (2020).

    Article  ADS  Google Scholar 

  81. Cacovich, S. et al. Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nat. Commun. 13, 2868 (2022).

    Article  ADS  Google Scholar 

  82. Bercegol, A., El-Hajje, G., Ory, D. & Lombez, L. Determination of transport properties in optoelectronic devices by time-resolved fluorescence imaging. J. Appl. Phys. 122, 203102 (2017).

    Article  ADS  Google Scholar 

  83. Kiliani, D. et al. Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging. J. Appl. Phys. 110, 054508 (2011).

    Article  ADS  Google Scholar 

  84. Giesecke, J. A., Schubert, M. C., Michl, B., Schindler, F. & Warta, W. Minority carrier lifetime imaging of silicon wafers calibrated by quasi-steady-state photoluminescence. Sol. Energy Mater. Sol. Cell 95, 1011–1018 (2011).

    Article  Google Scholar 

  85. Kirchartz, T., Márquez, J. A., Stolterfoht, M. & Unold, T. Photoluminescence-based characterization of halide perovskites for photovoltaics. Adv. Energy Mater. 10, 1904134 (2020).

    Article  Google Scholar 

  86. van der Pol, T. P. A., Datta, K., Wienk, M. M. & Janssen, R. A. J. The intrinsic photoluminescence spectrum of perovskite films. Adv. Opt. Mater. 10, 2102557 (2022).

    Article  Google Scholar 

  87. Giesecke, J. A., Kasemann, M. & Warta, W. Determination of local minority carrier diffusion lengths in crystalline silicon from luminescence images. J. Appl. Phys. 106, 014907 (2009).

    Article  ADS  Google Scholar 

  88. Cho, C. et al. Efficient vertical charge transport in polycrystalline halide perovskites revealed by four-dimensional tracking of charge carriers. Nat. Mater. 21, 1388–1395 (2022).

    Article  ADS  Google Scholar 

  89. Braly, I. L. et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat. Photon. 12, 355–361 (2018).

    Article  ADS  Google Scholar 

  90. Wurfel, P. The chemical potential of radiation. J. Phys. C Solid State Phys. 15, 3967 (1982). A seminal work on fundamental physics of the photoluminescence.

    Article  ADS  Google Scholar 

  91. Delamarre, A., Lombez, L. & Guillemoles, J.-F. Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images. J. Photon. Energy 2, 027004 (2012). To our knowledge, this is the first demonstration of hyperspectral imaging using a volume Bragg grating applied to optoelectronics.

    Article  Google Scholar 

  92. Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018). This work illustrates how maps of quasi-Fermi level splitting can be used to assess local non-radiative recombination losses at different interfaces within a solar cell.

    Article  ADS  Google Scholar 

  93. El-Hajje, G., Ory, D., Guillemoles, J.-F. & Lombez, L. On the origin of the spatial inhomogeneity of photoluminescence in thin-film CIGS solar devices. Appl. Phys. Lett. 109, 022104 (2016).

    Article  ADS  Google Scholar 

  94. Ugur, E. et al. Life on the Urbach edge. J. Phys. Chem. Lett. 13, 7702–7711 (2022). A comprehensive review of techniques used to extract Urbach energy, some of which can be adopted in optical microscopy to obtain maps of electronic disorder in a material.

    Article  Google Scholar 

  95. Witt, C., Schötz, K., Köhler, A. & Panzer, F. Understanding method-dependent differences in Urbach energies in halide perovskites. J. Phys. Chem. C 128, 6336–6345 (2024).

    Article  Google Scholar 

  96. Braly, I. L., Stoddard, R. J., Rajagopal, A., Jen, A. K.-Y. & Hillhouse, H. W. Photoluminescence and photoconductivity to assess maximum open-circuit voltage and carrier transport in hybrid perovskites and other photovoltaic materials. J. Phys. Chem. Lett. 9, 3779–3792 (2018). A clear description of the methods and utility of calculating the quasi-Fermi level splitting for various semiconductor materials.

    Article  Google Scholar 

  97. Schubert, M. C., Mundt, L. E., Walter, D., Fell, A. & Glunz, S. W. Spatially resolved performance analysis for perovskite solar cells. Adv. Energy Mater. 10, 1904001 (2020).

    Article  Google Scholar 

  98. Stolterfoht, M. et al. Voltage-dependent photoluminescence and how it correlates with the fill factor and open-circuit voltage in perovskite solar cells. ACS Energy Lett. 4, 2887–2892 (2019).

    Article  Google Scholar 

  99. Dasgupta, A. et al. Visualizing macroscopic inhomogeneities in perovskite solar cells. ACS Energy Lett. 7, 2311–2322 (2022).

    Article  Google Scholar 

  100. Wagner, L. et al. Revealing fundamentals of charge extraction in photovoltaic devices through potentiostatic photoluminescence imaging. Matter 5, 2352–2364 (2022).

    Article  Google Scholar 

  101. Frohna, K. et al. The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells. Nat. Energy 10, 66–76 (2025).

    Article  Google Scholar 

  102. Anaya, M. et al. Best practices for measuring emerging light-emitting diode technologies. Nat. Photon. 13, 818–821 (2019).

    Article  ADS  Google Scholar 

  103. Ji, K. et al. Self-supervised deep learning for tracking degradation of perovskite light-emitting diodes with multispectral imaging. Nat. Mach. Intell. 5, 1225–1235 (2023).

    Article  Google Scholar 

  104. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  ADS  Google Scholar 

  105. Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

    Article  ADS  Google Scholar 

  106. Yan, X. et al. Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 13, 1701478 (2017).

    Article  Google Scholar 

  107. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    Article  ADS  Google Scholar 

  108. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    Article  ADS  Google Scholar 

  109. Alexeev, E. M. et al. Imaging of interlayer coupling in van der Waals heterostructures using a bright-field optical microscope. Nano Lett. 17, 5342–5349 (2017).

    Article  ADS  Google Scholar 

  110. Okada, M. et al. Direct and indirect interlayer excitons in a van der Waals heterostructure of hBN/WS2/MoS2/hBN. ACS Nano 12, 2498–2505 (2018).

    Article  Google Scholar 

  111. Mahdikhanysarvejahany, F. et al. Localized interlayer excitons in MoSe2–WSe2 heterostructures without a moiré potential. Nat. Commun. 13, 5354 (2022).

    Article  ADS  Google Scholar 

  112. Fang, H. et al. Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers. Nat. Commun. 14, 6910 (2023).

    Article  ADS  Google Scholar 

  113. Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    Article  ADS  Google Scholar 

  114. Chen, Y. et al. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano 14, 10258–10264 (2020).

    Article  Google Scholar 

  115. Shrestha, S. et al. Room temperature valley polarization via spin selective charge transfer. Nat. Commun. 14, 5234 (2023).

    Article  ADS  Google Scholar 

  116. Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article  ADS  Google Scholar 

  117. Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).

    Article  Google Scholar 

  118. Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

    Article  ADS  Google Scholar 

  119. Zhang, Z. et al. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. 16, 1093–1096 (2020).

    Article  Google Scholar 

  120. Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).

    Article  ADS  Google Scholar 

  121. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  ADS  Google Scholar 

  122. Choi, J. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 6, eaba8866 (2020).

    Article  ADS  Google Scholar 

  123. Zhao, S. et al. Excitons in mesoscopically reconstructed moiré heterostructures. Nat. Nanotechnol. 18, 572–579 (2023).

    Article  ADS  Google Scholar 

  124. Zhang, S. et al. Moiré superlattices in twisted two-dimensional halide perovskites. Nat. Mater. 23, 1222–1229 (2024).

    Article  Google Scholar 

  125. Sortino, L. et al. Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nat. Commun. 12, 6063 (2021).

    Article  ADS  Google Scholar 

  126. Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).

    Article  ADS  Google Scholar 

  127. Stern, H. L. et al. A quantum coherent spin in hexagonal boron nitride at ambient conditions. Nat. Mater. 23, 1379–1385 (2024).

    Article  Google Scholar 

  128. Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).

    Article  ADS  Google Scholar 

  129. Higginbottom, D. B. et al. Optical observation of single spins in silicon. Nature 607, 266–270 (2022).

    Article  ADS  Google Scholar 

  130. Redjem, W. et al. Single artificial atoms in silicon emitting at telecom wavelengths. Nat. Electron. 3, 738–743 (2020).

    Article  Google Scholar 

  131. Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article  ADS  Google Scholar 

  132. Frantsuzov, P., Kuno, M., Jankó, B. & Marcus, R. A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nat. Phys. 4, 519–522 (2008).

    Article  Google Scholar 

  133. Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article  ADS  Google Scholar 

  134. Morad, V. et al. Designer phospholipid capping ligands for soft metal halide nanocrystals. Nature 626, 542–548 (2024).

    Article  ADS  Google Scholar 

  135. Shi, J. et al. All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses. Nat. Nanotechnol. 16, 1355–1361 (2021).

    Article  ADS  Google Scholar 

  136. Montero Llopis, P. et al. Best practices and tools for reporting reproducible fluorescence microscopy methods. Nat. Methods 18, 1463–1476 (2021).

    Article  Google Scholar 

  137. Schmied, C. et al. Community-developed checklists for publishing images and image analyses. Nat. Methods 21, 170–181 (2024).

    Article  Google Scholar 

  138. Talirz, L. et al. Materials cloud, a platform for open computational science. Sci. Data 7, 299 (2020).

    Article  Google Scholar 

  139. Draxl, C. & Scheffler, M. The nomad laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2, 036001 (2019).

    Article  Google Scholar 

  140. Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  ADS  Google Scholar 

  141. Almora, O. et al. Device performance of emerging photovoltaic materials (version 1). Adv. Energy Mater. 11, 2002774 (2021).

    Article  Google Scholar 

  142. Jacobsson, T. J. et al. An open-access database and analysis tool for perovskite solar cells based on the Fair data principles. Nat. Energy 7, 107–115 (2022).

    Article  ADS  Google Scholar 

  143. Richardson, W. H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972).

    Article  ADS  Google Scholar 

  144. Chen, F., Zhang, Y., Gfroerer, T. H., Finger, A. N. & Wanlass, M. W. Spatial resolution versus data acquisition efficiency in mapping an inhomogeneous system with species diffusion. Sci. Rep. 5, 10542 (2015).

    Article  ADS  Google Scholar 

  145. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  ADS  Google Scholar 

  146. Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).

    Article  ADS  Google Scholar 

  147. Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000). A concise explanation and demonstration of the resolution enhancements offered by structured illumination microscopy.

    Article  Google Scholar 

  148. Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    Article  ADS  Google Scholar 

  149. Wei, Z. et al. The importance of relativistic effects on two-photon absorption spectra in metal halide perovskites. Nat. Commun. 10, 5342 (2019).

    Article  ADS  Google Scholar 

  150. Everall, N. J. Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy. Appl. Spectrosc. 54, 773–782 (2000).

    Article  ADS  Google Scholar 

  151. Ou, Z. et al. Achieving optical transparency in live animals with absorbing molecules. Science 385, eadm6869 (2024).

    Article  Google Scholar 

  152. Phillips, L. J. et al. Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks. Sol. Energy Mater. Sol. Cell 147, 327–333 (2016).

    Article  Google Scholar 

  153. Kuciauskas, D., Myers, T. H., Barnes, T. M., Jensen, S. A. & Allende Motz, A. M. Time-resolved correlative optical microscopy of charge-carrier transport, recombination, and space-charge fields in CdTe heterostructures. Appl. Phys. Lett. 110, 083905 (2017).

    Article  ADS  Google Scholar 

  154. Karvonen, L. et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat. Commun. 8, 15714 (2017).

    Article  ADS  Google Scholar 

  155. Moore, D. et al. Uncovering topographically hidden features in 2D MoSe2 with correlated potential and optical nanoprobes. npj 2D Mater. Appl. 4, 1–7 (2020).

    Article  Google Scholar 

  156. Stranks, S. D. Multimodal microscopy characterization of halide perovskite semiconductors: revealing a new world (dis)order. Matter 4, 3852–3866 (2021).

    Article  Google Scholar 

  157. Polishchuk, R. S. et al. Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J. Cell Biol. 148, 45–58 (2000).

    Article  Google Scholar 

  158. Löschberger, A., Franke, C., Krohne, G., van de Linde, S. & Sauer, M. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J. Cell Sci. 127, 4351–4355 (2014).

    Google Scholar 

  159. Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).

    Article  ADS  Google Scholar 

  160. Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).

    Article  ADS  Google Scholar 

  161. Werner, J. H., Mattheis, J. & Rau, U. Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2. Thin Solid Films 480–481, 399–409 (2005).

    Article  ADS  Google Scholar 

  162. Keller, J. et al. High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency. Nat. Energy 9, 467–478 (2024).

    Article  ADS  Google Scholar 

  163. Sharma, D. et al. Charge-carrier-concentration inhomogeneities in alkali-treated Cu(In,Ga)Se2 revealed by conductive atomic force microscopy tomography. Nat. Energy 9, 163–171 (2024).

    Article  ADS  Google Scholar 

  164. Ooi, Z. Y. et al. Strong angular and spectral narrowing of electroluminescence in an integrated Tamm-plasmon-driven halide perovskite LED. Nat. Commun. 15, 5802 (2024).

    Article  Google Scholar 

  165. van Mensfoort, S. L. M. et al. Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution. Nat. Photon. 4, 329–335 (2010).

    Article  Google Scholar 

  166. Sersic, I., Tuambilangana, C. & Koenderink, A. F. Fourier microscopy of single plasmonic scatterers. N. J. Phys. 13, 083019 (2011).

    Article  Google Scholar 

  167. Wagner, R., Heerklotz, L., Kortenbruck, N. & Cichos, F. Back focal plane imaging spectroscopy of photonic crystals. Appl. Phys. Lett. 101, 081904 (2012).

    Article  ADS  Google Scholar 

  168. Zhu, Y. et al. Highly efficient light-emitting diodes based on self-assembled colloidal quantum wells. Adv. Mater. 35, 2305382 (2023).

    Article  Google Scholar 

  169. Ye, J. et al. Direct linearly polarized electroluminescence from perovskite nanoplatelet superlattices. Nat. Photon. 18, 586–594 (2024).

    Article  ADS  Google Scholar 

  170. Bari, M., Bokov, A. A., Leach, G. W. & Ye, Z.-G. Ferroelastic domains and effects of spontaneous strain in lead halide perovskite CsPbBr3. Chem. Mater. 35, 6659–6670 (2023).

    Article  Google Scholar 

  171. Fu, J. et al. Robust ferroelasticity and carrier dynamics across the domain wall in perovskite-like van der Waals WO2I2. Adv. Funct. Mater. 34, 2400218 (2024).

    Article  Google Scholar 

  172. Ashoka, A. et al. Local symmetry breaking drives picosecond spin domain formation in polycrystalline halide perovskite films. Nat. Mater. 22, 977–984 (2023).

    Article  ADS  Google Scholar 

  173. Kitzmann, W. R., Freudenthal, J., Reponen, A.-P. M., VanOrman, Z. A. & Feldmann, S. Fundamentals, advances, and artifacts in circularly polarized luminescence (CPL) spectroscopy. Adv. Mater. 35, 2302279 (2023).

    Article  Google Scholar 

  174. Heintzmann, R. & Cremer, C. G. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. in Optical Biopsies and Microscopic Techniques III Vol. 3568, 185–196 (SPIE, 1999).

  175. Heintzmann, R. & Gustafsson, M. G. L. Subdiffraction resolution in continuous samples. Nat. Photon. 3, 362–364 (2009).

    Article  ADS  Google Scholar 

  176. Goodman, J. W. Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

  177. Field, J. J. et al. Superresolved multiphoton microscopy with spatial frequency-modulated imaging. Proc. Natl Acad. Sci. USA 113, 6605–6610 (2016).

    Article  ADS  Google Scholar 

  178. Ochoa, M., Nishiwaki, S., Yang, S.-C., Tiwari, A. N. & Carron, R. Lateral charge carrier transport in Cu(In,Ga)Se2 studied by time-resolved photoluminescence mapping. Phys. Stat. Sol. RRL Rapid Res. Lett. 15, 2100313 (2021).

    Article  ADS  Google Scholar 

  179. Maiberg, M., Bertram, F., Müller, M. & Scheer, R. Theoretical study of time-resolved luminescence in semiconductors. IV. Lateral inhomogeneities. J. Appl. Phys. 121, 085703 (2017).

    Article  ADS  Google Scholar 

  180. Frohna, K. et al. Multimodal correlative microscopy to study the chemical and energetic landscape of alloyed halide perovskites. Microsc. Microanal. 28, 1950–1952 (2022).

    Article  Google Scholar 

  181. Lasher, G. & Stern, F. Spontaneous and stimulated recombination radiation in semiconductors. Phys. Rev. 133, A553–A563 (1964).

    Article  ADS  Google Scholar 

  182. Katahara, J. K. & Hillhouse, H. W. Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence. J. Appl. Phys. 116, 173504 (2014). A theoretical framework that can be used to perform full photoluminescence spectrum fitting, which allows extraction of quasi-Fermi level splitting.

    Article  ADS  Google Scholar 

  183. Gao, M. et al. Photoluminescence manipulation in two-dimensional transition metal dichalcogenides. J. Materiomics 9, 768–786 (2023).

    Article  Google Scholar 

  184. Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1324 (1953).

    Article  ADS  Google Scholar 

  185. Tauc, J. in Amorphous and Liquid Semiconductors (ed. Tauc, J.) 159–220 (Springer US, 1974).

  186. Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    Article  ADS  Google Scholar 

  187. Frost, J. M., Butler, K. T. & Walsh, A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2, 081506 (2014).

    Article  ADS  Google Scholar 

  188. Johnson, S. R. & Tiedje, T. Temperature dependence of the Urbach edge in GaAs. J. Appl. Phys. 78, 5609–5613 (1995).

    Article  ADS  Google Scholar 

  189. Beaudoin, M., DeVries, A. J. G., Johnson, S. R., Laman, H. & Tiedje, T. Optical absorption edge of semi-insulating GaAs and InP at high temperatures. Appl. Phys. Lett. 70, 3540–3542 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Z.W. acknowledges the Leverhulme Trust (Project No. RPG-2021-191). M.D. acknowledges UKRI guarantee funding for Marie Skłodowska-Curie Actions Postdoctoral Fellowships 2022 (EP/Y024648/1). C.C. acknowledges the support of a Marshall Scholarship, Winton Scholarship and the Cambridge Trust. S.K. is grateful for funding from the German Academic Exchange Service (DAAD) (91793256) for a short-term research fellowship and from the Leverhulme Early Career Fellowship funded by the Leverhulme Trust (ECF-2022-593) and the Isaac Newton Trust (22.08(i)). S.D.S. acknowledges the Royal Society and Tata Group (grant numbers UF150033, URF\R\221026). The authors acknowledge the Engineering and Physical Sciences Research Council (EP/R023980/1) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement no. 756962). The authors thank A. Dearle for the synthesis of MAPbBr3 thin crystals and C. Mamak for her help in developing the code for TRPL acquisition with the emICCD camera. The authors thank L. Hirst and T. Agoro for providing the GaAs wafer.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (Z.W.); Experimentation (Z.W., C.C. and M.D.); Results (M.D., C.C. and Z.W.); Applications (Z.W. and C.C.); Reproducibility and data deposition (Z.W.); Limitations and optimizations (Z.W.); Outlook (Z.W., C.C. and M.D.); overview of the Primer (Z.W., C.C., M.D., S.K. and S.D.S.); funding acquisition and supervision (S.D.S.). All authors discussed and edited the full manuscript.

Corresponding author

Correspondence to Samuel D. Stranks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Darius Kuciauskas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Materials Cloud: https://www.materialscloud.org/home

NOMAD: https://nomad-lab.eu/nomad-lab/

Glossary

Airy unit

A unit of measure used in optics, representing the diameter of the central Airy disc in the diffraction pattern produced by a circular aperture.

Auger recombination

A non-radiative process in which the energy released by an electron–hole recombination is transferred to a third charge carrier (electron or hole), which is excited to a higher energy state instead of emitting a photon.

Band-to-band recombination

A radiative process in which an electron in the conduction band directly recombines with a hole in the valence band, emitting a photon.

Beer–Lambert law

A relationship describing the attenuation of light as it passes through a medium; it states that the amount of light absorbed is directly proportional to the concentration of the absorbing species, absorptivity of the species and the path length through the material.

Charge carriers

Particles that carry electric charge and are free to move within a material, such as electrons and holes in semiconductors.

Diffraction limit

The fundamental limit on the resolution of any optical system, defined by the wave nature of light, beyond which two adjacent points can no longer be resolved separately owing to diffraction effects.

Excitons

Bound pairs of an electron and a hole, held together by Coulomb attraction; they are electrically neutral quasiparticles that can transfer energy without transporting net electric charge.

Fick’s law

A principle describing diffusion, stating that the speed of particles moving from areas of high to low concentration is proportional to their concentration gradient, via the diffusion coefficient.

Fluence

Energy per unit area (J cm²) delivered in a single laser pulse.

Fluorescence

A specific type of photoluminescence where the excited electron returns to the ground state without changing its spin, leading to a very fast emission process (typically within nanoseconds).

Intensified gated cameras

An imaging device equipped with an image intensifier and electronic gating, allowing it to capture ultrafast, low-light events by selectively detecting light within precise time windows.

Moiré patterns

Large-scale interference patterns that appear when superposing patterned objects (either in space or in time) with a slight difference in period; they could appear as artefacts in fluorescence lifetime imaging microscopic images, owing to mismatch between the pulse repetition rate and the pixel dwell time.

Numerical aperture

(NA). A dimensionless number that characterizes the light acceptance cone of a lens or, equivalently, the range of emission angles of a source; higher NA values indicate better spatial resolution as more light can be collected with the microscopy system.

Operando

Describes a way of implementing a technique to study a system under its real operational conditions, typically while it is functioning in situ.

Optoelectronic

Describes materials such as silicon, III–V semiconductors, metal oxides and halide perovskites that interact with light and electrical charges, often used in devices that convert electrical signals into optical signals or vice versa.

Quasi-Fermi level splitting

The energy difference between the electron and hole quasi-Fermi levels in a semiconductor under non-equilibrium conditions.

Shockley–Read–Hall recombination

A non-radiative process in semiconductors in which electrons and holes recombine through localized energy states (also called traps) within the bandgap, leading to energy loss as heat rather than light.

Steady-state

A condition in which the properties of the system remain constant over the observation time.

Stokes shift

The difference in wavelength (or energy) between the maxima of the absorption and emission spectra of the same electronic transition.

Super-Gaussian

A generalized form of a Gaussian function with a flatter top and steeper sides, often used to model beam profiles or spatial intensity distributions that deviate from a standard Gaussian shape.

Urbach energy

A parameter that quantifies the width of the exponential tail of the absorption edge in a semiconductor, reflecting the degree of structural or thermal disorder in the material.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Dubajic, M., Chosy, C. et al. Photoluminescence microscopy of optoelectronic materials. Nat Rev Methods Primers 5, 37 (2025). https://doi.org/10.1038/s43586-025-00407-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-025-00407-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing