Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Time-domain thermoreflectance

Abstract

Time-domain thermoreflectance (TDTR) has been instrumental in measuring the heat transfer properties of bulk and nanostructured materials over the past two decades. In this Primer, we describe the optical and thermal aspects of TDTR, with an in-depth discussion on the theory, apparatus design and implementation. We present examples that illustrate the ability of TDTR to measure thermal conductivity tensors, thermal conductance across material interfaces, and volumetric heat capacity of thin films, 2D materials and bulk materials. The ability of TDTR to spatially resolve thermal properties is useful for studying heterogeneous material systems, such as materials processed in or subjected to extreme environments. We consider current limitations of pump–probe metrologies and discuss recent advancements of TDTR, such as time-resolved magneto-optic Kerr effect (TR-MOKE), beam-offset TDTR/TR-MOKE, steady-state thermoreflectance, frequency-domain thermoreflectance and laser-flash TDTR. Finally, we present an outlook on anticipated technological developments to further expand the ability of TDTR to measure nanoscale thermal properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Introduction to optical pump–probe metrologies for thermal property measurements.
Fig. 2: Optical schematic for time-domain thermoreflectance and experimental variants.
Fig. 3: Thermal responses to different types of heating.
Fig. 4: Representative data for common time-domain thermoreflectance experiments.
Fig. 5: Representative data for time-resolved magneto-optic Kerr effect and laser-flash time-domain thermoreflectance.
Fig. 6: Diverse applications of time-domain thermoreflectance for thermal characterization.

Similar content being viewed by others

References

  1. Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004). This work presents an introduction to and a description of the now-standardized TDTR experimental layout and data analysis, including out-of-phase signals.

    Article  ADS  Google Scholar 

  2. Cahill, D. G., Goodson, K. & Majumdar, A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat. Transf. 124, 223–241 (2002).

    Article  Google Scholar 

  3. Rosei, R. & Lynch, D. W. Thermomodulation spectra of Al, Au, and Cu. Phys. Rev. B 5, 3883–3894 (1972).

    Article  ADS  Google Scholar 

  4. Rosei, R. Temperature modulation of the optical transitions involving the Fermi surface in Ag: theory. Phys. Rev. B 10, 474–483 (1974).

    Article  ADS  Google Scholar 

  5. Weaver, J. H., Lynch, D. W., Culp, C. H. & Rosei, R. Thermoreflectance of V, Nb, and paramagnetic Cr. Phys. Rev. B 14, 459–463 (1976).

    Article  ADS  Google Scholar 

  6. Colavita, E., Franciosi, A., Mariani, C. & Rosei, R. Thermoreflectance test of W, Mo and paramagnetic Cr band structures. Phys. Rev. B 27, 4684–4693 (1983).

    Article  ADS  Google Scholar 

  7. Braun, J. L. & Hopkins, P. E. Upper limit to the thermal penetration depth during modulated heating of multilayer thin films with pulsed and continuous wave lasers: a numerical study. J. Appl. Phys. 121, 175107 (2017).

    Article  ADS  Google Scholar 

  8. Chen, G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford Univ. Press, 2005).

  9. Zhang, Z. Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

  10. Kaviany, M. Heat Transfer Physics (Cambridge Univ. Press, 2008).

  11. Srivastava, G. P. The Physics of Phonons (Taylor and Francis, 1990).

  12. Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).

    Article  ADS  Google Scholar 

  13. Hopkins, P. E. Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mech. Eng. 2013, 1–19 (2013).

    Article  ADS  Google Scholar 

  14. Monachon, C., Weber, L. & Dames, C. Thermal boundary conductance: a materials science perspective. Annu. Rev. Mater. Res. 46, 433 (2016).

    Article  ADS  Google Scholar 

  15. López-Honorato, E. et al. Thermal conductivity mapping of pyrolytic carbon and silicon carbide coatings on simulated fuel particles by time-domain thermoreflectance. J. Nucl. Mater. 378, 35–39 (2008).

    Article  ADS  Google Scholar 

  16. Zhao, J.-C., Zheng, X. & Cahill, D. G. High-throughput diffusion multiples. Mater. Today 8, 28–37 (2005). This work demonstrates using TDTR to spatially map the thermal conductivity of materials.

    Article  Google Scholar 

  17. Olson, D. H. et al. Anisotropic thermal conductivity tensor of β-Y2Si2O7 for orientational control of heat flow on micrometer scales. Acta Mater. 189, 299–305 (2020).

    Article  ADS  Google Scholar 

  18. Olson, D. H. et al. Evolution of microstructure and thermal conductivity of multifunctional environmental barrier coating systems. Mater. Today Phys. 17, 100304 (2021).

    Article  Google Scholar 

  19. Olson, D. H. et al. Local thermal conductivity measurements to determine the fraction of α-cristobalite in thermally grown oxides for aerospace applications. Scr. Mater. 177, 214–217 (2020).

    Article  Google Scholar 

  20. Milich, M. et al. Quantifying devitrification and porosity in thermally grown oxides through spatially-resolved time-domain thermoreflectance. Acta Mater. 288, 120802 (2025).

    Article  Google Scholar 

  21. Ardrey, K. D. et al. Opportunities for novel refractory alloy thermal/environmental barrier coatings using multicomponent rare earth oxides. Scr. Mater. 251, 116206 (2024).

    Article  Google Scholar 

  22. Koh, Y. K., Bae, M.-H., Cahill, D. G. & Pop, E. Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10, 4363–4368 (2010).

    Article  ADS  Google Scholar 

  23. Liu, H. et al. Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS2. Sci. Adv. 6, eabc9308 (2020).

    Article  ADS  Google Scholar 

  24. Zhang, F. et al. Monolayer vanadium-doped tungsten disulfide: a room-temperature dilute magnetic semiconductor. Adv. Sci. 7, 2001174 (2020).

    Article  Google Scholar 

  25. Evans, A. M. et al. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat. Mater. 20, 1142–1148 (2021).

    Article  ADS  Google Scholar 

  26. Cancellieri, C. et al. Interface and layer periodicity effects on the thermal conductivity of copper-based nanomultilayers with tungsten, tantalum, and tantalum nitride diffusion barriers. J. Appl. Phys. 128, 195302 (2020).

    Article  ADS  Google Scholar 

  27. Cheaito, R. et al. Interplay between total thickness and period thickness in the phonon thermal conductivity of superlattices from the nanoscale to the microscale: coherent versus incoherent phonon transport. Phys. Rev. B 97, 085306 (2018).

    Article  ADS  Google Scholar 

  28. Lorenzin, G. et al. Tensile and compressive stresses in Cu/W multilayers: correlation with microstructure, thermal stability, and thermal conductivity. Acta Mater. 240, 118315 (2022).

    Article  Google Scholar 

  29. Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2014). This work discusses the implications of coherent phonon transport on the thermal conductivity of superlattices determined with TDTR.

    Article  ADS  Google Scholar 

  30. Chen, P. et al. Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices. Phys. Rev. Lett. 111, 115901 (2013).

    Article  ADS  Google Scholar 

  31. Koh, Y. K., Cao, Y., Cahill, D. G. & Jena, D. Heat-transport mechanisms in superlattices. Adv. Funct. Mater. 19, 610–615 (2009).

    Article  Google Scholar 

  32. Rawat, V., Koh, Y. K., Cahill, D. G. & Sands, T. D. Thermal conductivity of (Zr,W)N/ScN metal/semiconductor multilayers and superlattices. J. Appl. Phys. 105, 024909 (2009).

    Article  ADS  Google Scholar 

  33. Babaei, H. et al. Observation of reduced thermal conductivity in a metal–organic framework due to the presence of adsorbates. Nat. Commun. 11, 4010 (2020).

    Article  ADS  Google Scholar 

  34. Erickson, K. J. et al. Thin film thermoelectric metal–organic framework with high Seebeck coefficient and low thermal conductivity. Adv. Mat. 27, 3453–3459 (2015).

    Article  Google Scholar 

  35. DeCoster, M. E. et al. Hybridization from guest–host interactions reduces the thermal conductivity of metal–organic frameworks. J. Am. Chem. Soc. 144, 3603–3613 (2022).

    Article  Google Scholar 

  36. Meirzadeh, E. et al. A few-layer covalent network of fullerenes. Nature 613, 71–76 (2023).

    Article  ADS  Google Scholar 

  37. Hoque, M. S. B. et al. Ruddlesden–Popper chalcogenides push the limit of mechanical stiffness and glass-like thermal conductivity in crystals. Nat. Commun. 16, 6104 (2025).

    Article  Google Scholar 

  38. Zhao, B. et al. Orientation-controlled anisotropy in single crystals of quasi-1D BaTiS3. Chem. Mater. 34, 5680–5689 (2022).

    Article  Google Scholar 

  39. Dames, C. Ultrahigh thermal conductivity confirmed in boron arsenide. Science 361, 549–550 (2018).

    Article  ADS  Google Scholar 

  40. Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018).

    Article  ADS  Google Scholar 

  41. Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).

    Article  ADS  Google Scholar 

  42. Wang, X., Ho, V., Segalman, R. A. & Cahill, D. G. Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 4937–4943 (2013).

    Article  ADS  Google Scholar 

  43. Cahill, D. G. Extremes of heat conduction—pushing the boundaries of the thermal conductivity of materials. MRS Bull. 37, 855–863 (2012).

    Article  MathSciNet  Google Scholar 

  44. Cahill, D. G. Thermal-conductivity measurement by time-domain thermoreflectance. MRS Bull. 43, 782–789 (2018).

    Article  ADS  Google Scholar 

  45. Schmidt, A., Chiesa, M., Chen, X. & Chen, G. An optical pump–probe technique for measuring the thermal conductivity of liquids. Rev. Sci. Instrum. 79, 64902 (2008).

    Article  Google Scholar 

  46. Foley, B. M. et al. Voltage-controlled bistable thermal conductivity in suspended ferroelectric thin-film membranes. ACS Appl. Mater. Interfaces 10, 25493–25501 (2018).

    Article  Google Scholar 

  47. Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015). This work uses TDTR to measure the thermal conductivity of a ferroelectric thin film while an electric field is applied to modulate the thermal conductivity via ferroelastic domain wall switching.

    Article  ADS  Google Scholar 

  48. Foley, B. M. et al. Modifying surface energy of graphene via plasma-based chemical functionalization to tune thermal and electrical transport at metal interfaces. Nano Lett. 15, 4876–4882 (2015).

    Article  ADS  Google Scholar 

  49. Hopkins, P. E. et al. Measuring the thermal conductivity of porous, transparent SiO2 films with time domain thermoreflectance. J. Heat. Transf. 133, 61601 (2011).

    Article  Google Scholar 

  50. Hopkins, P. E., Kaehr, B., Piekos, E. S., Dunphy, D. & Brinker, C. J. Minimum thermal conductivity considerations in aerogel thin films. J. Appl. Phys. 111, 113532 (2012).

    Article  ADS  Google Scholar 

  51. Rosul, M. G. et al. Thermionic transport across gold-graphene-WSe2 van der Waals heterostructures. Sci. Adv. 5, eaax7827 (2019).

    Article  ADS  Google Scholar 

  52. Koh, Y. K. et al. Role of remote interfacial phonon (RIP) scattering in heat transport across graphene/SiO2 interfaces. Nano Lett. 16, 6014–6020 (2016).

    Article  ADS  Google Scholar 

  53. Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 4035 (2014). This work uses TDTR to measure the thermal conductivity of a cathode material while an electric field is applied to modulate the thermal conductivity via lithiation.

    Article  ADS  Google Scholar 

  54. Eesley, G. L. Observation of nonequilibrium electron heating in copper. Phys. Rev. Lett. 51, 2140–2143 (1983). To our knowledge, this work presents the first demonstration of using pulsed lasers (~12 ps pulse width) in a transient thermoreflectance configuration to measure thermal properties of a material.

    Article  ADS  Google Scholar 

  55. Eesley, G. L. Generation of nonequlibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B 33, 2144–2151 (1986).

    Article  ADS  Google Scholar 

  56. Paddock, C. A. & Eesley, G. L. Transient thermoreflectance from thin metal films. J. Appl. Phys. 60, 285–290 (1986).

    Article  ADS  Google Scholar 

  57. Opsal, J., Rosencwaig, A. & Willenborg, D. L. Thermal-wave detection and thin-film thickness measurements with laser beam deflection. Appl. Opt. 22, 3169–3176 (1983).

    Article  ADS  Google Scholar 

  58. Opsal, J. & Rosencwaig, A. Thermal and plasma wave depth profiling in silicon. Appl. Phys. Lett. 47, 498–500 (1985).

    Article  ADS  Google Scholar 

  59. Thomsen, C. et al. Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 53, 989–992 (1984).

    Article  ADS  Google Scholar 

  60. Stoner, R. J. & Maris, H. J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 48, 16373–16387 (1993).

    Article  ADS  Google Scholar 

  61. Bonello, B., Perrin, B. & Rossignol, C. Photothermal properties of bulk and layered materials by the picosecond acoustics technique. J. Appl. Phys. 83, 3081–3088 (1998).

    Article  ADS  Google Scholar 

  62. Capinski, W. S. & Maris, H. J. Improved apparatus for picosecond pump-and-probe optical measurements. Rev. Sci. Instrum. 67, 2720–2726 (1996).

    Article  ADS  Google Scholar 

  63. Capinski, W. S. & Maris, H. J. Thermal conductivity of GaAs/AlAs superlattices. Phys. B 219–220, 699–701 (1996).

    Article  ADS  Google Scholar 

  64. Capinski, W. S. et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59, 8105–8113 (1999).

    Article  ADS  Google Scholar 

  65. Huxtable, S., Cahill, D. G., Fauconnier, V., White, J. O. & Zhao, J. C. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater. 3, 298–301 (2004).

    Article  ADS  Google Scholar 

  66. Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

    Article  ADS  Google Scholar 

  67. Costescu, R. M., Wall, M. A. & Cahill, D. G. Thermal conductance of epitaxial interfaces. Phys. Rev. B 67, 054302 (2003). This work demonstrates using TDTR to measure the thermal interface conductance.

    Article  ADS  Google Scholar 

  68. Koh, Y. K. et al. Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. J. Appl. Phys. 105, 54303 (2009).

    Article  Google Scholar 

  69. Jiang, P., Qian, X. & Yang, R. Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 28, 161103 (2018). This paper presents an extensive tutorial on TDTR.

    Article  ADS  Google Scholar 

  70. Feser, J. P. & Cahill, D. G. Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots. Rev. Sci. Instrum. 83, 104901 (2012). This work uses a configuration of TDTR with offset pump and probe to measure both in-plane and out-of-plane thermal conductivity of materials.

    Article  ADS  Google Scholar 

  71. Feser, J. P., Liu, J. & Cahill, D. G. Pump–probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry. Rev. Sci. Instrum. 85, 104903 (2014).

    Article  ADS  Google Scholar 

  72. Kimling, J., Philippi-Kobs, A., Jacobsohn, J., Oepen, H. P. & Cahill, D. G. Thermal conductance of interfaces with amorphous SiO2 measured by time-resolved magneto-optic Kerr-effect thermometry. Phys. Rev. B 95, 184305 (2017).

    Article  ADS  Google Scholar 

  73. Angeles, F. et al. Picosecond magneto-optic thermometry measurements of nanoscale thermal transport in AlN thin films. APL Mater. 11, 061127 (2023). This study presents an example of using TR-MOKE to interrogate the cross-plane thermal conductivity of high-k thin films.

    Article  ADS  Google Scholar 

  74. Peng, W. & Wilson, R. B. Thermal model for time-domain thermoreflectance experiments in a laser-flash geometry. J. Appl. Phys. 131, 134301 (2022). This work discusses the laser-flash TDTR experiment and analyses.

    Article  ADS  Google Scholar 

  75. Peng, W. & Wilson, R. B. Nanoscale laser flash measurements of diffuson transport in amorphous Ge and Si. APL Mater. 10, 041111 (2022).

    Article  ADS  Google Scholar 

  76. Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G. & Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11, 502–506 (2012).

    Article  ADS  Google Scholar 

  77. Zheng, X., Cahill, D. G. & Zhao, J.-C. Effect of MeV ion irradiation on the coefficient of thermal expansion of Fe–Ni invar alloys: a combinatorial study. Acta Mater. 58, 1236–1241 (2010).

    Article  ADS  Google Scholar 

  78. Zheng, X., Cahill, D. G., Weaver, R. & Zhao, J.-C. Micron-scale measurements of the coefficient of thermal expansion by time-domain probe beam deflection. J. Appl. Phys. 104, 73509 (2008). This work presents as explanation of probe-beam deflection effects in TDTR experiments.

    Article  Google Scholar 

  79. Tomko, J. A. et al. Nanoscale wetting and energy transmission at solid/liquid interfaces. Langmuir 35, 2106–2114 (2019).

    Article  Google Scholar 

  80. Sun, J. et al. Probe beam deflection technique with liquid immersion for fast mapping of thermal conductance. Appl. Phys. Lett. 124, 42201 (2024).

    Article  Google Scholar 

  81. Sun, J., Lv, G. & Cahill, D. G. Frequency-domain probe beam deflection method for measurement of thermal conductivity of materials on micron length scale. Rev. Sci. Instrum. 94, 14903 (2023).

    Article  ADS  Google Scholar 

  82. Schmidt, A. J. Optical Characterization of Thermal Transport from the Nanoscale to the Macroscale (Massachusetts Institute of Technology, 2008).

  83. Gomez, M. J., Liu, K., Lee, J. G. & Wilson, R. B. High sensitivity pump-probe measurements of magnetic, thermal, and acoustic phenomena with a spectrally tunable oscillator. Rev. Sci. Instrum. 91, 023905 (2020).

    Article  ADS  Google Scholar 

  84. Liu, J., Choi, G.-M. & Cahill, D. G. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys. 116, 233107 (2014).

    Article  ADS  Google Scholar 

  85. Jang, H. et al. Thermal conductivity of oxide tunnel barriers in magnetic tunnel junctions measured by ultrafast thermoreflectance and magneto-optic Kerr effect thermometry. Phys. Rev. Appl. 13, 024007 (2020).

    Article  ADS  Google Scholar 

  86. Wilson, R. B., Apgar, B. A., Martin, L. W. & Cahill, D. G. Thermoreflectance of metal transducers for optical pump–probe studies of thermal properties. Opt. Express 20, 28829–28838 (2012).

    Article  ADS  Google Scholar 

  87. Hohensee, G. T., Hsieh, W. P., Losego, M. D. & Cahill, D. G. Interpreting picosecond acoustics in the case of low interface stiffness. Rev. Sci. Instrum. 83, 114902 (2012).

    Article  ADS  Google Scholar 

  88. Wilson, R. B., Feser, J. P., Hohensee, G. T. & Cahill, D. G. Two-channel model for nonequilibrium thermal transport in pump–probe experiments. Phys. Rev. B 88, 144305 (2013).

    Article  ADS  Google Scholar 

  89. Yang, J., Ziade, E. & Schmidt, A. J. Modeling optical absorption for thermoreflectance measurements. J. Appl. Phys. 119, 095107 (2016).

    Article  ADS  Google Scholar 

  90. Hopkins, P. E. et al. Criteria for cross-plane dominated thermal transport in multilayer thin film systems during modulated laser heating. J. Heat. Transf. 132, 081302 (2010).

    Article  Google Scholar 

  91. Schmidt, A. J., Chen, X. & Chen, G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump–probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).

    Article  ADS  Google Scholar 

  92. Wang, Y., Park, J. Y., Koh, Y. K. & Cahill, D. G. Thermoreflectance of metal transducers for time-domain thermoreflectance. J. Appl. Phys. 108, 43507 (2010).

    Article  Google Scholar 

  93. Rosei, R., Colavita, E., Franciosi, A., Weaver, J. H. & Peterson, D. T. Electronic structure of the bcc transition metals: thermoreflectance studies of bulk V, Nb, Ta, and αTaHx. Phys. Rev. B 21, 3152–3157 (1980).

    Article  ADS  Google Scholar 

  94. Islam, M. R. et al. Evaluating size effects on the thermal conductivity and electron-phonon scattering rates of copper thin films for experimental validation of Matthiessen’s rule. Nat. Commun. 15, 9167 (2024).

    Article  Google Scholar 

  95. Yang, J., Ziade, E. & Schmidt, A. J. Uncertainty analysis of thermoreflectance measurements. Rev. Sci. Instrum. 87, 014901 (2016).

    Article  ADS  Google Scholar 

  96. Khan, S., Shi, X., Feser, J. & Wilson, R. Thermal conductance of interfaces between titanium nitride and group IV semiconductors at high temperatures. Appl. Phys. Lett. 125, 041601 (2024).

    Article  Google Scholar 

  97. Khan, S. et al. Properties for thermally conductive interfaces with wide band gap materials. ACS Appl. Mater. Interfaces 14, 36178–36188 (2022).

    Article  Google Scholar 

  98. Jiang, P., Huang, B. & Koh, Y. K. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR). Rev. Sci. Instrum. 87, 075101 (2016).

    Article  ADS  Google Scholar 

  99. Kan, Y. K. Heat Transport by Phonons in Crystalline Materials and Nanostructures (Univ. of Illinois at Urbana-Champaign, 2010).

  100. Cheng, Z. et al. Thermal visualization of buried interfaces enabled by ratio signal and steady-state heating of time-domain thermoreflectance. ACS Appl. Mater. Interfaces 13, 31843–31851 (2021).

    Article  Google Scholar 

  101. Szwejkowski, C. J. et al. Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride. J. Appl. Phys. 117, 084308 (2015).

    Article  ADS  Google Scholar 

  102. Aryana, K. et al. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices. Nat. Commun. 12, 774 (2021).

    Article  ADS  Google Scholar 

  103. Lee, S.-M. & Cahill, D. G. Heat transport in thin dielectric films. J. Appl. Phys. 81, 2590–2595 (1997).

    Article  ADS  Google Scholar 

  104. Jiang, P., Qian, X., Yang, R. & Lindsay, L. Anisotropic thermal transport in bulk hexagonal boron nitride. Phys. Rev. Mater. 2, 064005 (2018).

    Article  Google Scholar 

  105. Jiang, P., Qian, X. & Yang, R. Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach. Rev. Sci. Instrum. 88, 074901 (2017).

    Article  ADS  Google Scholar 

  106. Rai, A., Sangwan, V. K., Gish, J. T., Hersam, M. C. & Cahill, D. G. Anisotropic thermal conductivity of layered indium selenide. Appl. Phys. Lett. 118, 073101 (2021).

    Article  ADS  Google Scholar 

  107. Jiang, P., Qian, X. & Yang, R. A new elliptical-beam method based on time-domain thermoreflectance (TDTR) to measure the in-plane anisotropic thermal conductivity and its comparison with the beam-offset method. Rev. Sci. Instrum. 89, 094902 (2018).

    Article  ADS  Google Scholar 

  108. Zhu, J. et al. Revealing the origins of 3D anisotropic thermal conductivities of black phosphorus. Adv. Electron. Mater. 2, 1600040 (2016).

    Article  Google Scholar 

  109. Jang, H., Wood, J. D., Ryder, C. R., Hersam, M. C. & Cahill, D. G. Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27, 8017–8022 (2015).

    Article  Google Scholar 

  110. Braun, J. L., Olson, D. H., Gaskins, J. T. & Hopkins, P. E. A steady-state thermoreflectance method to measure thermal conductivity. Rev. Sci. Instrum. 90, 24905 (2019). This work reviews SSTR.

    Article  Google Scholar 

  111. Oh, D.-W., Ko, C., Ramanathan, S. & Cahill, D. G. Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO2. Appl. Phys. Lett. 96, 151906 (2010).

    Article  ADS  Google Scholar 

  112. Olson, D. H., Braun, J. L. & Hopkins, P. E. Spatially resolved thermoreflectance techniques for thermal conductivity measurements from the nanoscale to the mesoscale. J. Appl. Phys. 126, 150901 (2019).

    Article  ADS  Google Scholar 

  113. Wang, X., Liman, C. D., Treat, N. D., Chabinyc, M. L. & Cahill, D. G. Ultralow thermal conductivity of fullerene derivatives. Phys. Rev. B 88, 075310 (2013).

    Article  ADS  Google Scholar 

  114. Liu, J. et al. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method. Rev. Sci. Instrum. 84, 034902 (2013). This study develops multi-frequency TDTR to measure both thermal conductivity and heat capacity.

    Article  ADS  Google Scholar 

  115. Wei, C., Zheng, X., Cahill, D. G. & Zhao, J. C. Invited article: micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance. Rev. Sci. Instrum. 84, 071301 (2013).

    Article  ADS  Google Scholar 

  116. Wilson, R. B. et al. Electric current induced ultrafast demagnetization. Phys. Rev. B 96, 045105 (2017).

    Article  ADS  Google Scholar 

  117. Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).

    Article  ADS  Google Scholar 

  118. Cheng, Z., Graham, S., Amano, H. & Cahill, D. G. Perspective on thermal conductance across heterogeneously integrated interfaces for wide and ultrawide bandgap electronics. Appl. Phys. Lett. 120, 030501 (2022).

    Article  ADS  Google Scholar 

  119. Zhang, Z. et al. Observation of thermal spin-transfer torque via ferromagnetic resonance in magnetic tunnel junctions. Phys. Rev. B 94, 064414 (2016).

    Article  ADS  Google Scholar 

  120. Choi, G.-M., Wilson, R. B. & Cahill, D. G. Indirect heating of Pt by short-pulse laser irradiation of Au in a nanoscale Pt/Au bilayer. Phys. Rev. B 89, 064307 (2014).

    Article  ADS  Google Scholar 

  121. Angeles, F., Shi, X. & Wilson, R. B. In situ and ex situ processes for synthesizing metal multilayers with electronically conductive interfaces. J. Appl. Phys. 131, 225302 (2022).

    Article  ADS  Google Scholar 

  122. Choi, G.-M., Moon, C.-H., Min, B.-C., Lee, K.-J. & Cahill, D. G. Thermal spin-transfer torque driven by the spin-dependent Seebeck effect in metallic spin-valves. Nat. Phys. 11, 576–581 (2015).

    Article  Google Scholar 

  123. Koh, Y. R. et al. Thermal boundary conductance across epitaxial metal/sapphire interfaces. Phys. Rev. B 102, 205304 (2020).

    Article  ADS  Google Scholar 

  124. Kang, J. S. et al. Integration of boron arsenide cooling substrates into gallium nitride devices. Nat. Electron. 4, 416–423 (2021).

    Article  Google Scholar 

  125. Cheng, Z. et al. High thermal conductivity in wafer-scale cubic silicon carbide crystals. Nat. Commun. 13, 7201 (2022).

    Article  ADS  Google Scholar 

  126. Mu, F. et al. High thermal boundary conductance across bonded heterogeneous GaN–SiC interfaces. ACS Appl. Mater. Interfaces 11, 33428–33434 (2019).

    Article  Google Scholar 

  127. Cheng, Z., Mu, F., Yates, L., Suga, T. & Graham, S. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl. Mater. Interfaces 12, 8376–8384 (2020).

    Article  Google Scholar 

  128. Cheng, Z. et al. Tunable thermal energy transport across diamond membranes and diamond–Si interfaces by nanoscale graphoepitaxy. ACS Appl. Mater. Interfaces 11, 18517–18527 (2019).

    Article  ADS  Google Scholar 

  129. Cahill, D. G. et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).

    Article  ADS  Google Scholar 

  130. Giri, A. & Hopkins, P. E. A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30, 1903857 (2020).

    Article  Google Scholar 

  131. Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: past, present, and future. Rev. Mod. Phys. 94, 025002 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  132. Wilson, R. B. & Cahill, D. G. Experimental validation of the interfacial form of the Wiedemann–Franz law. Phys. Rev. Lett. 108, 255901 (2012).

    Article  ADS  Google Scholar 

  133. Cheng, Z. et al. Thermal conductance across harmonic-matched epitaxial Al–sapphire heterointerfaces. Commun. Phys. 3, 115 (2020).

    Article  Google Scholar 

  134. Gaskins, J. T. et al. Thermal boundary conductance across heteroepitaxial ZnO/GaN interfaces: assessment of the phonon gas model. Nano. Lett. 18, 7469–7477 (2018).

    Article  ADS  Google Scholar 

  135. Norris, P. M. & Hopkins, P. E. Examining interfacial diffuse phonon scattering through transient thermoreflectance measurements of thermal boundary conductance. J. Heat. Transf. 131, 043207 (2009).

    Article  Google Scholar 

  136. Wilson, R. B., Apgar, B. A., Hsieh, W.-P., Martin, L. W. & Cahill, D. G. Thermal conductance of strongly bonded metal–oxide interfaces. Phys. Rev. B 91, 115414 (2015).

    Article  ADS  Google Scholar 

  137. Angeles, F. et al. Interfacial thermal transport in spin caloritronic material systems. Phys. Rev. Mater. 5, 114403 (2021).

    Article  Google Scholar 

  138. Hopkins, P. E. et al. Manipulating thermal conductance at metal–graphene contacts via chemical functionalization. Nano. Lett. 12, 590–595 (2012).

    Article  ADS  Google Scholar 

  139. Vaziri, S. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Sci. Adv. 5, eaax1325 (2019).

    Article  ADS  Google Scholar 

  140. Lyeo, H.-K. & Cahill, D. G. Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 73, 144301 (2006).

    Article  ADS  Google Scholar 

  141. Hohensee, G. T., Fellinger, M. R., Trinkle, D. R. & Cahill, D. G. Thermal transport across high-pressure semiconductor-metal transition in Si and Si0.991Ge0.009. Phys. Rev. B 91, 205104 (2015).

    Article  ADS  Google Scholar 

  142. Dalton, D. A., Hsieh, W.-P., Hohensee, G. T., Cahill, D. G. & Goncharov, A. F. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Sci. Rep. 3, 2400 (2013).

    Article  Google Scholar 

  143. Hsieh, W.-P. et al. Testing the minimum thermal conductivity model for amorphous polymers using high pressure. Phys. Rev. B 83, 174205 (2011).

    Article  ADS  Google Scholar 

  144. Hohensee, G. T., Wilson, R. B. & Cahill, D. G. Thermal conductance of metal–diamond interfaces at high pressure. Nat. Commun. 6, 6578 (2015).

    Article  ADS  Google Scholar 

  145. Hsieh, W.-P., Lyons, A. S., Pop, E., Keblinski, P. & Cahill, D. G. Pressure tuning of the thermal conductance of weak interfaces. Phys. Rev. B 84, 184107 (2011).

    Article  ADS  Google Scholar 

  146. Hsieh, W.-P., Chen, B., Li, J., Keblinski, P. & Cahill, D. G. Pressure tuning of the thermal conductivity of the layered muscovite crystal. Phys. Rev. B 80, 180302 (2009).

    Article  ADS  Google Scholar 

  147. Sääskilahti, K., Oksanen, J., Tulkki, J. & Volz, S. Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces. Phys. Rev. B 90, 134312 (2014).

    Article  ADS  Google Scholar 

  148. Lu, Z., Chaka, A. M. & Sushko, P. V. Thermal conductance enhanced via inelastic phonon transport by atomic vacancies at Cu/Si interfaces. Phys. Rev. B 102, 075449 (2020).

    Article  ADS  Google Scholar 

  149. Stevens, R. J., Zhigilei, L. V. & Norris, P. M. Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: nonequilibrium molecular dynamics simulations. Int. J. Heat. Mass. Transf. 50, 3977–3989 (2007).

    Article  ADS  Google Scholar 

  150. Dai, J. & Tian, Z. Rigorous formalism of anharmonic atomistic Green’s function for three-dimensional interfaces. Phys. Rev. B 101, 041301 (2020).

    Article  ADS  Google Scholar 

  151. Guo, Y. et al. Anharmonic phonon–phonon scattering at the interface between two solids by nonequilibrium Green’s function formalism. Phys. Rev. B 103, 174306 (2021).

    Article  ADS  Google Scholar 

  152. Sadasivam, S. et al. Thermal transport across metal silicide-silicon interfaces: first-principles calculations and Green’s function transport simulations. Phys. Rev. B 95, 085310 (2017).

    Article  ADS  Google Scholar 

  153. Majumdar, A. & Reddy, P. Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl. Phys. Lett. 84, 4768–4770 (2004).

    Article  ADS  Google Scholar 

  154. Sergeev, A. V. Electronic Kapitza conductance due to inelastic electron-boundary scattering. Phys. Rev. B 58, R10199–R10202 (1998).

    Article  ADS  Google Scholar 

  155. Sergeev, A. Inelastic electron–boundary scattering in thin films. Phys. B Condens. Matter 263–264, 217–219 (1999).

    Article  ADS  Google Scholar 

  156. Mahan, G. D. Kapitza thermal resistance between a metal and a nonmetal. Phys. Rev. B 79, 075408 (2009).

    Article  ADS  Google Scholar 

  157. Hopkins, P. E., Kassebaum, J. L. & Norris, P. M. Effects of electron scattering at metal–nonmetal interfaces on electron–phonon equilibration in gold films. J. Appl. Phys. 105, 023710 (2009).

    Article  ADS  Google Scholar 

  158. Wang, Y., Ruan, X. & Roy, A. K. Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal–nonmetal interfaces. Phys. Rev. B 85, 205311 (2012).

    Article  ADS  Google Scholar 

  159. P. Rudolph, ed. Handbook of Crystal Growth, Bulk Crystal Growth Vol. II (Elsevier, 2015).

  160. Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018).

    Article  ADS  Google Scholar 

  161. Hou, S. et al. Strong temperature dependence of thermal conductivity in high-purity cubic boron arsenide. Phys. Rev. B 111, 23520 (2025).

    Article  Google Scholar 

  162. Hou, S. et al. Thermal conductivity of BAs under pressure. Adv. Electron. Mater. 8, 2200017 (2022).

    Article  Google Scholar 

  163. Chen, K. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020).

    Article  ADS  Google Scholar 

  164. Kang, J. S., Wu, H. & Hu, Y. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications. Nano Lett. 17, 7507–7514 (2017).

    Article  ADS  Google Scholar 

  165. Zheng, Q. et al. High thermal conductivity in isotopically enriched cubic boron phosphide. Adv. Funct. Mater. 28, 1805116 (2018).

    Article  Google Scholar 

  166. Lv, B. et al. Experimental study of the proposed super-thermal-conductor: BAs. Appl. Phys. Lett. 106, 074105 (2015).

    Article  ADS  Google Scholar 

  167. Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201 (2017).

    Article  ADS  Google Scholar 

  168. Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013).

    Article  ADS  Google Scholar 

  169. Broido, D. A., Lindsay, L. & Reinecke, T. L. Ab initio study of the unusual thermal transport properties of boron arsenide and related materials. Phys. Rev. B 88, 214303 (2013).

    Article  ADS  Google Scholar 

  170. Ravichandran, N. K. & Broido, D. Non-monotonic pressure dependence of the thermal conductivity of boron arsenide. Nat. Commun. 10, 827 (2019).

    Article  Google Scholar 

  171. Mion, C., Muth, J. F., Preble, E. A. & Hanser, D. Thermal conductivity, dislocation density and GaN device design. Superlatt. Microstruct. 40, 338–342 (2006).

    Article  ADS  Google Scholar 

  172. Zou, J., Kotchetkov, D., Balandin, A. A., Florescu, D. I. & Pollak, F. H. Thermal conductivity of GaN films: effects of impurities and dislocations. J. Appl. Phys. 92, 2534–2539 (2002).

    Article  ADS  Google Scholar 

  173. Beechem, T. E. et al. Size dictated thermal conductivity of GaN. J. Appl. Phys. 120, 095104 (2016).

    Article  ADS  Google Scholar 

  174. Koh, Y. R. et al. Bulk-like intrinsic phonon thermal conductivity of micrometer-thick AlN films. ACS Appl. Mater. Interfaces 12, 29443–29450 (2020).

    Google Scholar 

  175. Sood, A. et al. Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond. J. Appl. Phys. 119, 175103 (2016).

    Article  ADS  Google Scholar 

  176. Jiang, P., Lindsay, L., Huang, X. & Koh, Y. K. Interfacial phonon scattering and transmission loss in >1 μm thick silicon-on-insulator thin films. Phys. Rev. B 97, 195308 (2018).

    Article  ADS  Google Scholar 

  177. Sun, B. et al. Dislocation-induced thermal transport anisotropy in single-crystal group-III nitride films. Nat. Mater. 18, 136–140 (2019).

    Article  ADS  Google Scholar 

  178. Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).

    Article  ADS  Google Scholar 

  179. Duda, J. C., Hopkins, P. E., Shen, Y. & Gupta, M. C. Thermal transport in organic semiconducting polymers. Appl. Phys. Lett. 102, 251912 (2013).

    Article  ADS  Google Scholar 

  180. Giri, A. et al. Molecular tail chemistry controls thermal transport in fullerene films. Phys. Rev. Mater. 4, 65404 (2020).

    Article  Google Scholar 

  181. Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007). This work presents an experimental realization of the lowest thermal conductivity fully dense solid at room temperature with TDTR.

    Article  ADS  Google Scholar 

  182. Hadland, E. C. et al. Ultralow thermal conductivity of turbostratically disordered MoSe2 ultra-thin films and implications for heterostructures. Nanotechnology 30, 285401 (2019).

    Article  Google Scholar 

  183. Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021).

    Article  ADS  Google Scholar 

  184. Li, D., Schleife, A., Cahill, D. G., Mitchson, G. & Johnson, D. C. Ultralow shear modulus of incommensurate [SnSe]n[MoSe2]n layers synthesized by the method of modulated elemental reactants. Phys. Rev. Mater. 3, 043607 (2019).

    Article  Google Scholar 

  185. Hadland, E. et al. Synthesis, characterization, and ultralow thermal conductivity of a lattice-mismatched SnSe2(MoSe2)1.32 heterostructure. Chem. Mater. 31, 5699–5705 (2019).

    Article  Google Scholar 

  186. Gunning, N. S., Feser, J., Beekman, M., Cahill, D. G. & Johnson, D. C. Synthesis and thermal properties of solid-state structural isomers: ordered intergrowths of SnSe and MoSe2. J. Am. Chem. Soc. 137, 8803–8809 (2015).

    Article  Google Scholar 

  187. Dai, H. & Wang, R. Methods for measuring thermal conductivity of two-dimensional materials: a review. Nanomaterials 12, 589 (2022).

    Article  Google Scholar 

  188. Dong, Y., Wu, Z.-S., Ren, W., Cheng, H.-M. & Bao, X. Graphene: a promising 2D material for electrochemical energy storage. Sci. Bull. 62, 724–740 (2017).

    Article  Google Scholar 

  189. Munteanu, R.-E., Moreno, P. S., Bramini, M. & Gáspár, S. 2D materials in electrochemical sensors for in vitro or in vivo use. Anal. Bioanal. Chem. 413, 701–725 (2021).

    Article  Google Scholar 

  190. Wang, X. et al. Recent advances in the functional 2D photonic and optoelectronic devices. Adv. Opt. Mater. 7, 1801274 (2019).

    Article  Google Scholar 

  191. Jiang, P., Qian, X., Gu, X. & Yang, R. Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) using time-domain thermoreflectance. Adv. Mater. 29, 1701068 (2017).

    Article  Google Scholar 

  192. Xu, K. et al. In-plane thermal diffusivity determination using beam-offset frequency-domain thermoreflectance with a one-dimensional optical heat source. Int. J. Heat. Mass. Transf. 214, 124376 (2023).

    Article  Google Scholar 

  193. Gu, X. & Yang, R. Phonon transport in single-layer transition metal dichalcogenides: a first-principles study. Appl. Phys. Lett. 105, 131903 (2014).

    Article  ADS  Google Scholar 

  194. Zhu, G. et al. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation. Nat. Commun. 7, 13211 (2016).

    Article  ADS  Google Scholar 

  195. Jiang, P., Qian, X., Li, X. & Yang, R. Three-dimensional anisotropic thermal conductivity tensor of single crystalline β-Ga2O3. Appl. Phys. Lett. 113, 232105 (2018).

    Article  ADS  Google Scholar 

  196. Sood, A. et al. Direct visualization of thermal conductivity suppression due to enhanced phonon scattering near individual grain boundaries. Nano. Lett. 18, 3466–3472 (2018).

    Article  ADS  Google Scholar 

  197. Grimm, D. et al. Thermal conductivity of mechanically joined semiconducting/metal nanomembrane superlattices. Nano. Lett. 14, 2387–2393 (2014).

    Article  ADS  Google Scholar 

  198. Cheng, Z. et al. Probing local thermal conductivity variations in CVD diamond with large grains by time-domain thermoreflectance. In Proc. Int. Heat Transf. Conf. Vol. 16 8694–8701 (Begellhouse, 2018).

  199. Sood, A. et al. An electrochemical thermal transistor. Nat. Commun. 9, 4510 (2018).

    Article  ADS  Google Scholar 

  200. Brown, D. B. et al. Spatial mapping of thermal boundary conductance at metal–molybdenum diselenide interfaces. ACS Appl. Mater. Interfaces 11, 14418–14426 (2019).

    Article  Google Scholar 

  201. Cheaito, R. et al. Thermal conductivity measurements on suspended diamond membranes using picosecond and femtosecond time-domain thermoreflectance. In Proc. IEEE Intersoc. Conf. Therm. Thermomech. Phenom. Electron. Syst. (ITherm) 706–710 (IEEE, 2017).

  202. Zheng, X., Cahill, D., Krasnochtchekov, P., Averback, R. & Zhao, J. High-throughput thermal conductivity measurements of nickel solid solutions and the applicability of the Wiedemann–Franz law. Acta. Mater. 55, 5177–5185 (2007).

    Article  ADS  Google Scholar 

  203. Zhao, J.-C., Zheng, X. & Cahill, D. G. Thermal conductivity mapping of the Ni–Al system and the β-NiAl phase in the Ni–Al–Cr system. Scr. Mater. 66, 935–938 (2012).

    Article  Google Scholar 

  204. Germain, T., Chowdhury, T. A., Carter, J. & Putnam, S. A. Measuring heat transfer coefficients for microchannel jet impingement using time-domain thermoreflectance. In Proc. IEEE Intersoc. Conf. Therm. Thermomech. Phenom. Electron. Syst. (ITherm) 449–454 (IEEE, 2018).

  205. Mehrvand, M. & Putnam, S. A. Probing the local heat transfer coefficient of |water-cooled microchannels using time-domain thermoreflectance. J. Heat. Transf. 139, 112403 (2017).

    Article  Google Scholar 

  206. Mehrvand, M. & Putnam, S. A. Transient and local two-phase heat transport at macro-scales to nano-scales. Commun. Phys. 1, 21 (2018).

    Article  Google Scholar 

  207. Xie, X., Diao, Z. & Cahill, D. G. Microscale, bendable thermoreflectance sensor for local measurements of the thermal effusivity of biological fluids and tissues. Rev. Sci. Instrum. 91, 044903 (2020).

    Article  ADS  Google Scholar 

  208. Tian, Z., Marconnet, A. & Chen, G. Enhancing solid–liquid interface thermal transport using self-assembled monolayers. Appl. Phys. Lett. 106, 211602 (2015).

    Article  ADS  Google Scholar 

  209. Ge, Z., Cahill, D. G. & Braun, P. V. Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 96, 186101 (2006). This work measures the thermal boundary conductance across solid–liquid interfaces with TDTR.

    Article  ADS  Google Scholar 

  210. Hsieh, W. P. & Deschamps, F. Thermal conductivity of H2O–CH3OH mixtures at high pressures: implications for the dynamics of icy super-Earths outer shells. J. Geophys. Res. Planets 120, 1697–1707 (2015).

    Article  ADS  Google Scholar 

  211. Yong Park, J., Gardner, A., King, W. P. & Cahill, D. G. Droplet impingement and vapor layer formation on hot hydrophobic surfaces. J. Heat. Transf. 136, 092902 (2014).

    Article  Google Scholar 

  212. Yong Park, J., Min, C.-K., Granick, S. & Cahill, D. G. Residence time and heat transfer when water droplets hit a scalding surface. J. Heat. Transf. 134, 101503 (2012).

    Article  Google Scholar 

  213. Shin, J. et al. Thermally functional liquid crystal networks by magnetic field driven molecular orientation. ACS Macro. Lett. 5, 955–960 (2016).

    Article  Google Scholar 

  214. Ueji, K. et al. In situ time-domain thermoreflectance measurements using Au as the transducer during electrolyte gating. Appl. Phys. Lett. 117, 133104 (2020).

    Article  ADS  Google Scholar 

  215. Zhang, D.-L. et al. High-frequency magnetoacoustic resonance through strain–spin coupling in perpendicular magnetic multilayers. Sci. Adv. 6, eabb4607 (2020).

    Article  ADS  Google Scholar 

  216. Chen, B., Hsieh, W. P., Cahill, D. G., Trinkle, D. R. & Li, J. Thermal conductivity of compressed H2O to 22 GPa: a test of the Leibfried–Schlömann equation. Phys. Rev. B 83, 132301 (2011).

    Article  ADS  Google Scholar 

  217. Ortiz, V. H. et al. Thermal conductivity of irradiated tetragonal lithium aluminate. J. Nucl. Mater. 606, 155585 (2025).

    Article  Google Scholar 

  218. Cheaito, R., Gorham, C. S., Misra, A., Hattar, K. & Hopkins, P. E. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage. J. Mater. Res. 30, 1403–1412 (2015).

    Article  ADS  Google Scholar 

  219. Alaie, S. et al. Reduction and increase in thermal conductivity of Si irradiated with Ga+ via focused ion beam. ACS Appl. Mater. Interfaces 10, 37679–37684 (2018).

    Article  Google Scholar 

  220. Pfeifer, T. W. et al. Measuring sub-surface spatially varying thermal conductivity of silicon implanted with krypton. J. Appl. Phys. 132, 075112 (2022). This work demonstrates resolving the thermal conductivity as a function of depth of irradiated silicon with TDTR.

    Article  Google Scholar 

  221. Scott, E. A. et al. Orders of magnitude reduction in the thermal conductivity of polycrystalline diamond through carbon, nitrogen, and oxygen ion implantation. Carbon 157, 97–105 (2020).

    Article  Google Scholar 

  222. Scott, E. A. et al. Reductions in the thermal conductivity of irradiated silicon governed by displacement damage. Phys. Rev. B 104, 134306 (2021).

    Article  ADS  Google Scholar 

  223. Scott, E. A. et al. Phonon scattering effects from point and extended defects on thermal conductivity studied via ion irradiation of crystals with self-impurities. Phys. Rev. Mater. 2, 095001 (2018).

    Article  ADS  Google Scholar 

  224. Scott, E. A. et al. Thermal conductivity enhancement in ion-irradiated hydrogenated amorphous carbon films. Nano Lett. 21, 3935–3940 (2021).

    Article  ADS  Google Scholar 

  225. Pfeifer, T. W. et al. Ion irradiation induced crystalline disorder accelerates interfacial phonon conversion and reduces thermal boundary resistance. Phys. Rev. B 109, 165421 (2024).

    Article  ADS  Google Scholar 

  226. Gorham, C. S. et al. Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces. Phys. Rev. B 90, 024301 (2014).

    Article  ADS  Google Scholar 

  227. Hopkins, P. E. et al. Influence of anisotropy on thermal boundary conductance at solid interfaces. Phys. Rev. B 84, 125408 (2011).

    Article  ADS  Google Scholar 

  228. Hopkins, P. E. et al. Reduction in thermal boundary conductance due to proton implantation in silicon and sapphire. Appl. Phys. Lett. 98, 231901 (2011).

    Article  ADS  Google Scholar 

  229. Zheng, X. & Eng, B. High-throughput Measurements of Thermal Conductivity and the Coefficient of Thermal Expansion (Univ. of Illinois at Urbana-Champaign, 2008).

  230. Rost, C. M. et al. Hafnium nitride films for thermoreflectance transducers at high temperatures: potential based on heating from laser absorption. Appl. Phys. Lett. 111, 151902 (2017).

    Article  ADS  Google Scholar 

  231. Wilson, R. B. & Cahill, D. G. Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments. Nat. Commun. 5, 5075 (2014). This work presents a set of comprehensive measurements, analyses and discussion ofmean free path spectroscopyeffects in TDTR measurements.

    Article  ADS  Google Scholar 

  232. Minnich, A. J. et al. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011).

    Article  ADS  Google Scholar 

  233. Koh, Y. K. & Cahill, D. G. Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76, 075207 (2007).

    Article  ADS  Google Scholar 

  234. Regner, K. T. et al. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013).

    Article  ADS  Google Scholar 

  235. Wilson, R. B. & Cahill, D. G. Limits to Fourier theory in high thermal conductivity single crystals. Appl. Phys. Lett. 107, 203112 (2015).

    Article  ADS  Google Scholar 

  236. Vermeersch, B., Mohammed, A. M. S., Pernot, G., Koh, Y. R. & Shakouri, A. Superdiffusive heat conduction in semiconductor alloys. II. Truncated Lévy formalism for experimental analysis. Phys. Rev. B 91, 085203 (2015).

    Article  ADS  Google Scholar 

  237. Vermeersch, B., Carrete, J., Mingo, N. & Shakouri, A. Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations. Phys. Rev. B 91, 085202 (2015).

    Article  ADS  Google Scholar 

  238. Li, X., Han, J. & Lee, S. Thermal resistance from non-equilibrium phonons at Si–Ge interface. Mater. Today Phys. 34, 101063 (2023).

    Article  Google Scholar 

  239. Han, J. & Lee, S. Thermal resistance across Si–SiGe alloy interface from phonon distribution mismatch. Appl. Phys. Lett. 124, 142201 (2024).

    Article  ADS  Google Scholar 

  240. Han, J. & Lee, S. Nonequilibrium thermal resistance of interfaces between III–V compounds. Phys. Rev. Mater. 8, 014604 (2024).

    Article  Google Scholar 

  241. Hua, C., Chen, X., Ravichandran, N. K. & Minnich, A. J. Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces. Phys. Rev. B 95, 205423 (2017).

    Article  ADS  Google Scholar 

  242. Hoque, M. S. B. et al. High in-plane thermal conductivity of aluminum nitride thin films. ACS Nano 15, 9588–9599 (2021).

    Article  Google Scholar 

  243. Tadjer, M. J. et al. Effect of GaN/AlGaN buffer thickness on the electrothermal performance of AlGaN/GaN high electron mobility transistors on engineered substrates. Phys. Status Solidi A 220, 2200828 (2023).

    Article  ADS  Google Scholar 

  244. Hoque, M. S. B. et al. Connection length controlled sound speed and thermal conductivity of hybrid metalcone films. Nano Lett. 25, 2594–2599 (2025).

    Article  Google Scholar 

  245. Aller, H. T. et al. Low thermal resistance of diamond–AlGaN interfaces achieved using carbide interlayers. Adv. Mater. Interfaces 12, 2400575 (2025).

    Article  Google Scholar 

  246. Pfeifer, T. W. et al. Limitations and advances in optical thermometry: nanoscale resistances, ultrahigh thermal conductivity, and ultrahigh temperatures. Annu. Rev. Mater. Res. 55, 080423-010435 (2025).

    Google Scholar 

  247. Hopkins, P. E. et al. Effect of dislocation density on thermal boundary conductance across GaSb/GaAs interfaces. Appl. Phys. Lett. 98, 161913 (2011).

    Article  ADS  Google Scholar 

  248. Chen, G. Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J. Heat. Transf. 118, 539 (1996).

    Article  Google Scholar 

  249. Braun, J. L., Szwejkowski, C. J., Giri, A. & Hopkins, P. E. On the steady-state temperature rise during laser heating of multilayer thin films in optical pump–probe techniques. J. Heat. Transf. 140, 052801 (2018).

    Article  Google Scholar 

  250. Scott, E. A. et al. Probing thermal conductivity of subsurface, amorphous layers in irradiated diamond. J. Appl. Phys. 129, 055307 (2021).

    Article  ADS  Google Scholar 

  251. Bin Hoque, Md. S. et al. Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance. Rev. Sci. Instrum. 92, 64906 (2021).

    Article  Google Scholar 

  252. Salnick, A. & Opsal, J. Dynamics of the plasma and thermal waves in surface-modified semiconductors. Rev. Sci. Instrum. 74, 545–549 (2003).

    Article  ADS  Google Scholar 

  253. Schmidt, A. J., Cheaito, R. & Chiesa, M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 94901 (2009). This work introduces the development of FDTR.

    Article  Google Scholar 

  254. Schmidt, A. J., Cheaito, R. & Chiesa, M. Characterization of thin metals films via frequency-domain thermoreflectance. J. Appl. Phys. 107, 24908 (2010).

    Article  Google Scholar 

  255. Regner, K. T., Majumdar, S. & Malen, J. A. Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions. Rev. Sci. Instrum. 84, 64901 (2013).

    Article  Google Scholar 

  256. Ziade, E. Wide bandwidth frequency-domain thermoreflectance: volumetric heat capacity, anisotropic thermal conductivity, and thickness measurements. Rev. Sci. Instrum. 91, 124901 (2020).

    Article  ADS  Google Scholar 

  257. Ziade, E. et al. Thickness dependent thermal conductivity of gallium nitride. Appl. Phys. Lett. 110, 31903 (2017).

    Article  Google Scholar 

  258. Scott, E. A. et al. Thermal conductivity of (Ge2Sb2Te5)1–xCx phase change films. J. Appl. Phys. 128, 155106 (2020).

    Article  ADS  Google Scholar 

  259. Kirsch, D. J. et al. An instrumentation guide to measuring thermal conductivity using frequency domain thermoreflectance (FDTR). Rev. Sci. Instrum. 95, 103006 (2024).

    Article  Google Scholar 

  260. Xiang, Z., Pang, Y., Qian, X. & Yang, R. Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals. Appl. Phys. Lett. 122, 142201 (2023). This work uses machine learning to analyse TDTR data.

    Article  ADS  Google Scholar 

  261. Shen, W., Vaca, D. & Kumar, S. Reconsidering uncertainty from frequency domain thermoreflectance measurement and novel data analysis by deep learning. Nanoscale Microscale Thermophys. Eng. 24, 138–149 (2020).

    Article  ADS  Google Scholar 

  262. Hodges, W., Jarzembski, A., McDonald, A., Ziade, E. & Pickrell, G. W. Sensing depths in frequency domain thermoreflectance. J. Appl. Phys. 131, 245103 (2022).

    Article  ADS  Google Scholar 

  263. Delmas, W. et al. Thermal transport and mechanical stress mapping of a compression bonded GaN/diamond interface for vertical power devices. ACS Appl. Mater. Interfaces 16, 11003–11012 (2024).

    Article  Google Scholar 

  264. Zandavi, S. H., Schmidt, A. & Brun, X. Assessing thermal resistance in fusion bond layers of 3D heterogeneous electronics packaging. J. Appl. Phys. 136, 155303 (2024).

    Article  Google Scholar 

  265. Poopakdee, N., Abdallah, Z., Pomeroy, J. W. & Kuball, M. In situ thermoreflectance characterization of thermal resistance in multilayer electronics packaging. ACS Appl. Electron. Mater. 4, 1558–1566 (2022).

    Article  Google Scholar 

  266. Wang, L., Cheaito, R., Braun, J. L., Giri, A. & Hopkins, P. E. Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer. Rev. Sci. Instrum. 87, 094902 (2016). This study extends TDTR to probe thermal properties without a metal film transducer (such astransducerlessTDTR).

    Article  ADS  Google Scholar 

  267. Hutchins, W. et al. Ultrafast evanescent heat transfer across solid interfaces via hyperbolic phonon polaritons in hexagonal boron nitride. Nat. Mater. 24, 698–706 (2025).

    Article  Google Scholar 

  268. Folland, T. G., Nordin, L., Wasserman, D. & Caldwell, J. D. Probing polaritons in the mid- to far-infrared. J. Appl. Phys. 125, 191102 (2019).

    Article  ADS  Google Scholar 

  269. Hutchins, W. D., Zare, S., Hirt, D., Golightly, E. & Hopkins, P. E. Infrared phonon thermoreflectance in polar dielectrics. Preprint at https://arxiv.org/abs/2504.05675 (2025).

  270. Majumdar, A. Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999).

    Article  ADS  Google Scholar 

  271. Zhang, Y. et al. A review on principles and applications of scanning thermal microscopy (SThM). Adv. Funct. Mater. 30, 1900892 (2020).

    Article  Google Scholar 

  272. Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26–30 (2010).

    Article  ADS  Google Scholar 

  273. Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. & Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015).

    Article  ADS  Google Scholar 

  274. Kwon, H., Perez, C., Park, W., Asheghi, M. & Goodson, K. E. Thermal characterization of metal–oxide interfaces using time-domain thermoreflectance with nanograting transducers. ACS Appl. Mater. Interfaces 13, 58059–58065 (2021).

    Article  Google Scholar 

  275. Höppener, C. et al. Tip-enhanced Raman scattering. Nat. Rev. Methods Primers 4, 47 (2024).

    Article  Google Scholar 

  276. Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    Article  Google Scholar 

  277. Eichfeld, D. A., Maniyara, R. A., Robinson, J. A., Foley, B. M. & Ramos-Alvarado, B. A novel approach to measuring local mechanical properties via photothermal excitation of an atomic force microscope probe using an optical pump–probe inspired design. AIP Adv. 13, 105035 (2023).

    Article  ADS  Google Scholar 

  278. Zhang, Y., Zhu, Q. & Borca-Tasciuc, T. Thermal conductivity measurements of thin films by non-contact scanning thermal microscopy under ambient conditions. Nanoscale Adv. 3, 692–702 (2021).

    Article  ADS  Google Scholar 

  279. Foley, B. M., Gaskins, J. T. & Hopkins, P. E. Fiber-optic based thermal reflectance material property measurement system and related methods. US Patent 10928317 B2 (2021).

  280. Malen, J. A. et al. Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance. J. Heat. Transf. 133, 081601 (2011).

    Article  Google Scholar 

  281. Dennett, C. A., Buller, D. L., Hattar, K. & Short, M. P. Real-time thermomechanical property monitoring during ion beam irradiation using in situ transient grating spectroscopy. Nucl. Instrum. Methods Phys. Res. B 440, 126–138 (2019).

    Article  ADS  Google Scholar 

  282. Reza, A. et al. Non-contact, non-destructive mapping of thermal diffusivity and surface acoustic wave speed using transient grating spectroscopy. Rev. Sci. Instrum. 91, 054902 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work by R.M. and P.E.H. was supported as part of the 3D Ferroelectric Microelectronics Manufacturing (3DFeM2), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences Energy Frontier Research Centers programme under award number DE-SC0021118. Work by S.K. and R.B.W. was supported as part of ULTRA, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under award number DE-SC0021230.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to each section, and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Richard B. Wilson or Patrick E. Hopkins.

Ethics declarations

Competing interests

P.E.H. is co-founder of Laser Thermal Analysis, Inc., a company that has commercialized frequency-domain thermoreflectance (FDTR) and steady-state thermoreflectance (SSTR) instruments. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Juan Sebastián Reparaz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Coherent pickup

Unintended leakage of the reference signal at the pump modulation frequency (\({f}_{\mathrm{mod}}\)) into the measurement input of the lock-in through radiative, capacitive or conduction paths. As it occurs at the reference frequency, it cannot be filtered out by the lock-in, despite not originating from the sample.

Mean free paths

The average distances that particles or quasi-particles (carriers such as electrons, phonons or magnons) travel between scattering events that alter their momentum or energy.

Multilayer thermal model

A framework for predicting the thermal response of the sample to heating. Thermal transport in each layer is assumed to be governed by a layer-specific heat equation, and transport between layers is governed by boundary conditions that assume the heat current is continuous across the boundary and that temperature drops at the interface are governed by the interface conductance between the two layers.

Phonon focusing

The propagation of phonons preferentially along certain crystallographic orientations in anisotropic materials.

Picosecond acoustics

Non-thermal signals in pump–probe measurements that arise from strain-induced changes to the reflectivity. The initial temperature gradient in the metal transducer after absorption of the pump pulse generates a strain wave that propagates into the sample, reflects from buried interfaces and eventually returns to the metal film surface. The time delay of the acoustic waves’ echoes is determined by the film thickness and the longitudinal speed of sound.

Pulse accumulation

Temperature response of the sample caused by the accumulated response from the pump pulses that heated the sample prior to zero time delay. Pulse accumulation occurs when energy from a previous pulse is not conducted away before the arrival of the subsequent pump pulse.

Thermal model

The iterative Feldman algorithm used to analyse heat conduction in layered structures.

Thermal transport phenomena

The processes involved in the transfer of energy (heat) through various media, including solids, liquids and gases.

Thermoreflectance

Change of reflectance with temperature.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, R., Khan, S., Wilson, R.B. et al. Time-domain thermoreflectance. Nat Rev Methods Primers 5, 55 (2025). https://doi.org/10.1038/s43586-025-00425-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-025-00425-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing