Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The physical frailty syndrome as a transition from homeostatic symphony to cacophony

Abstract

Frailty in aging marks a state of decreased reserves resulting in increased vulnerability to adverse outcomes when exposed to stressors. This Perspective synthesizes the evidence on the aging-related pathophysiology underpinning the clinical presentation of physical frailty as a phenotype of a clinical syndrome that is distinct from the cumulative-deficit-based frailty index. We focus on integrating the converging evidence on the conceptualization of physical frailty as a state, largely independent of chronic diseases, that emerges when the dysregulation of multiple interconnected physiological and biological systems crosses a threshold to critical dysfunction, severely compromising homeostasis. Our exegesis posits that the physiology underlying frailty is a critically dysregulated complex dynamical system. This conceptual framework implies that interventions such as physical activity that have multisystem effects are more promising to remedy frailty than interventions targeted at replenishing single systems. We then consider how this framework can drive future research to further understanding, prevention and treatment of frailty, which will likely preserve health and resilience in aging populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A hierarchical, multiscale representation of the physiological dysregulation and likely biological drivers of physical frailty.
Fig. 2: Stimulus–response experiments in older adults measuring physiological response to minor stressors in community-dwelling older adults who were characterized as nonfrail, prefrail or frail.
Fig. 3: Hypothesized natural history of frailty: deterioration of physiological integrity in response to repeated stressors and natural aging.
Fig. 4: Nonlinear increase in the prevalence of physical frailty by number of dysregulated physiological systems at baseline among women aged 70–79 years participating in the WHAS I and II studies (n = 704).

Similar content being viewed by others

References

  1. Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56, M146–M157 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Bandeen-Roche, K. et al. Phenotype of frailty: characterization in the Women’s Health and Aging Studies. J. Gerontol. A Biol. Sci. Med. Sci. 61, 262–266 (2006).

    Article  PubMed  Google Scholar 

  3. Mitnitski, A. B. et al. Accumulation of deficits as a proxy measure of aging. Sci. World J. 1, 323–336 (2001).

    Article  CAS  Google Scholar 

  4. Rockwood, K. & Mitnitski, A. Frailty in relation to the accumulation of deficits. J. Gerontol. A Biol. Sci. Med. Sci. 62, 722–727 (2007).

    Article  PubMed  Google Scholar 

  5. Xue, Q. L. et al. Discrepancy in frailty identification: move beyond predictive validity. J. Gerontol. A Biol. Sci. Med. Sci. 75, 387–393 (2019).

    Article  PubMed Central  Google Scholar 

  6. Kelaiditi, E. et al. Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J. Nutr. Health Aging 17, 726–734 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Xue, Q. L., Buta, B., Ma, L. N., Ge, M. L. & Carlson, M. C. Integrating frailty and cognitive phenotypes: why, how, now what? Curr. Geriatr. Rep. 8, 97–106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bilotta, C. et al. Frailty syndrome diagnosed according to the Study of Osteoporotic Fractures criteria and mortality in older outpatients suffering from Alzheimer’s disease: a one-year prospective cohort study. Aging Ment. Health 16, 273–280 (2012).

    Article  PubMed  Google Scholar 

  9. Collard, R. M., Boter, H., Schoevers, R. A. & Oude Voshaar, R. C. Prevalence of frailty in community-dwelling older persons: a systematic review. J. Am. Geriatr. Soc. 60, 1487–1492 (2012).

    Article  PubMed  Google Scholar 

  10. Siriwardhana, D. D., Hardoon, S., Rait, G., Weerasinghe, M. C. & Walters, K. R. Prevalence of frailty and prefrailty among community-dwelling older adults in low-income and middle-income countries: a systematic review and meta-analysis. BMJ Open 8, e018195 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Llibre Rodriguez, J. J. et al. The prevalence and correlates of frailty in urban and rural populations in Latin America, China, and India: a 10/66 population-based survey. J. Am. Med. Dir. Assoc. 19, 287–295 (2018).

    Article  PubMed  Google Scholar 

  12. Boyd, C. M., Xue, Q. L., Simpson, C. F., Guralnik, J. M. & Fried, L. P. Frailty, hospitalization, and progression of disability in a cohort of disabled older women. Am. J. Med. 118, 1225–1231 (2005).

    Article  PubMed  Google Scholar 

  13. Makary, M. A. et al. Frailty as a predictor of surgical outcomes in older patients. J. Am. Coll. Surg. 210, 901–908 (2010).

    Article  PubMed  Google Scholar 

  14. Bandeen-Roche, K. et al. Principles and issues for physical frailty measurement and its clinical application. J. Gerontol. A Biol. Sci. Med. Sci. 75, 1107–1112 (2020).

    Article  PubMed  Google Scholar 

  15. Walston, J. et al. Moving frailty toward clinical practice: NIA intramural frailty science symposium summary. J. Am. Geriatr. Soc. 67, 1559–1564 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fried, L. P., Ferrucci, L., Darer, J., Williamson, J. D. & Anderson, G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J. Gerontol. A Biol. Sci. Med. Sci. 59, 255–263 (2004).

    Article  PubMed  Google Scholar 

  17. Shimokata, H. et al. Age as independent determinant of glucose tolerance. Diabetes 40, 44–51 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simon, H. A. The architecture of complexity. Proc. Am. Philos. Soc. 106, 467–482 (1962).

    Google Scholar 

  20. Li, Q. et al. Homeostatic dysregulation proceeds in parallel in multiple physiological systems. Aging Cell 14, 1103–1112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalyani, R. R., Varadhan, R., Weiss, C. O., Fried, L. P. & Cappola, A. R. Frailty status and altered glucose–insulin dynamics. J. Gerontol. A Biol. Sci. Med. Sci. 67, 1300–1306 (2012).

    Article  PubMed  Google Scholar 

  22. Blaum, C. S. et al. Is hyperglycemia associated with frailty status in older women? J. Am. Geriatr. Soc. 57, 840–847 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Perez-Tasigchana, R. F. et al. Metabolic syndrome and insulin resistance are associated with frailty in older adults: a prospective cohort study. Age Ageing 46, 807–812 (2017).

    Article  PubMed  Google Scholar 

  24. Kalyani, R. R., Varadhan, R., Weiss, C. O., Fried, L. P. & Cappola, A. R. Frailty status and altered dynamics of circulating energy metabolism hormones after oral glucose in older women. J. Nutr. Health Aging 16, 679–686 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Serra-Prat, M., Palomera, E., Clave, P. & Puig-Domingo, M. Effect of age and frailty on ghrelin and cholecystokinin responses to a meal test. Am. J. Clin. Nutr. 89, 1410–1417 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Lana, A., Valdés-Bécares, A., Buño, A., Rodríguez-Artalejo, F. & Lopez-Garcia, E. Serum leptin concentration is associated with incident frailty in older adults. Aging Dis. 8, 240–249 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ma, L., Sha, G., Zhang, Y. & Li, Y. Elevated serum IL-6 and adiponectin levels are associated with frailty and physical function in Chinese older adults. Clin. Interv. Aging 13, 2013–2020 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akki, A. et al. Skeletal muscle ATP kinetics are impaired in frail mice. Age 36, 21–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Ashar, F. N. et al. Association of mitochondrial DNA levels with frailty and all-cause mortality. J. Mol. Med. 93, 177–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Moore, A. Z. et al. Polymorphisms in the mitochondrial DNA control region and frailty in older adults. PLoS ONE 5, e11069 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Van Epps, P. et al. Frailty has a stronger association with inflammation than age in older veterans. Immun. Ageing 13, 27 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bektas, A., Schurman, S. H., Sen, R. & Ferrucci, L. Aging, inflammation and the environment. Exp. Gerontol. 105, 10–18 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Leng, S. X., Xue, Q.-L., Tian, J., Walston, J. D. & Fried, L. P. Inflammation and frailty in older women. J. Am. Geriatr. Soc. 55, 864–871 (2007).

    Article  PubMed  Google Scholar 

  34. Walston, J. et al. Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: results from the Cardiovascular Health Study. Arch. Intern. Med. 162, 2333–2341 (2002).

    Article  PubMed  Google Scholar 

  35. Laudisio, A. et al. The association of olfactory dysfunction, frailty, and mortality is mediated by inflammation: results from the InCHIANTI Study. J. Immunol. Res. 2019, 3128231 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bandeen-Roche, K., Walston, J. D., Huang, Y., Semba, R. D. & Ferrucci, L. Measuring systemic inflammatory regulation in older adults: evidence and utility. Rejuvenation Res. 12, 403–410 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Morrisette-Thomas, V. et al. Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech. Ageing Dev. 139, 49–57 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soysal, P. et al. Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res. Rev. 31, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Varadhan, R. et al. Frailty and impaired cardiac autonomic control: new insights from principal components aggregation of traditional heart rate variability indices. J. Gerontol. A Biol. Sci. Med. Sci. 64, 682–687 (2009).

    Article  PubMed  Google Scholar 

  41. Chaves, P. H. M. et al. Physiological complexity underlying heart rate dynamics and frailty status in community-dwelling older women. J. Am. Geriatr. Soc. 56, 1698–1703 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lipsitz, L. A. & Goldberger, A. L. Loss of ‘complexity’ and aging: potential applications of fractals and chaos theory to senescence. JAMA 267, 1806–1809 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Romero-Ortuno, R., Cogan, L., Foran, T., Kenny, R. A. & Fan, C. W. Continuous noninvasive orthostatic blood pressure measurements and their relationship with orthostatic intolerance, falls, and frailty in older people. J. Am. Geriatr. Soc. 59, 655–665 (2011).

    Article  PubMed  Google Scholar 

  44. Parvaneh, S. et al. Regulation of cardiac autonomic nervous system control across frailty statuses: a systematic review. Gerontology 62, 3–15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Johar, H. et al. Blunted diurnal cortisol pattern is associated with frailty: a cross-sectional study of 745 participants aged 65 to 90 years. J. Clin. Endocrinol. Metab. 99, E464–E468 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Varadhan, R. et al. Higher levels and blunted diurnal variation of cortisol in frail older women. J. Gerontol. A Biol. Sci. Med. Sci. 63, 190–195 (2008).

    Article  PubMed  Google Scholar 

  47. Voznesensky, M., Walsh, S., Dauser, D., Brindisi, J. & Kenny, A. M. The association between dehydroepiandosterone and frailty in older men and women. Age Ageing 38, 401–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leng, S. X. et al. Serum levels of insulin-like growth factor-I (IGF-I) and dehydroepiandrosterone sulfate (DHEA-S), and their relationships with serum interleukin-6, in the geriatric syndrome of frailty. Aging Clin. Exp. Res. 16, 153–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Varadhan, R., Seplaki, C. L., Xue, Q. L., Bandeen-Roche, K. & Fried, L. P. Stimulus–response paradigm for characterizing the loss of resilience in homeostatic regulation associated with frailty. Mech. Ageing Dev. 129, 666–670 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Varadhan, R. et al. Relationship of physical frailty to phosphocreatine recovery in muscle after mild exercise stress in the oldest-old women. J. Frailty Aging 8, 162–168 (2019).

    CAS  PubMed  Google Scholar 

  51. Lewsey, S. C. et al. Exercise intolerance and rapid skeletal muscle energetic decline in human age-associated frailty. JCI Insight 5, e141246 (2020).

    Article  PubMed Central  Google Scholar 

  52. Le, N. P., Varadhan, R., Fried, L. P. & Cappola, A. R. Cortisol and dehydroepiandrosterone response to adrenocorticotropic hormone and frailty in older women. J. Gerontol. A Biol. Sci. Med. Sci. https://doi.org/10.1093/gerona/glaa134 (2020).

  53. Yao, X. et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine 29, 5015–5021 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wieling, W., Krediet, C. T. P., Van Dijk, N., Linzer, M. & Tschakovsky, M. E. Initial orthostatic hypotension: review of a forgotten condition. Clin. Sci. 112, 157–165 (2007).

    Article  Google Scholar 

  55. Kim, K. & Choe, H. K. Role of hypothalamus in aging and its underlying cellular mechanisms. Mech. Ageing Dev. 177, 74–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Nijhout, H. F., Sadre-Marandi, F., Best, J. & Reed, M. C. Systems biology of phenotypic robustness and plasticity. Integr. Comp. Biol. 57, 171–184 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. McEwen, B. S. Stress, adaptation, and disease: allostasis and allostatic load. Ann. N.Y. Acad. Sci. 840, 33–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Bellavance, M. A. & Rivest, S. The HPA–immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front. Immunol. 3, 136 (2014).

    Google Scholar 

  59. Ménard, C., Pfau, M. L., Hodes, G. E. & Russo, S. J. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology 42, 62–80 (2017).

    Article  PubMed  Google Scholar 

  60. Braun, T. P. & Marks, D. L. The regulation of muscle mass by endogenous glucocorticoids. Front. Physiol. 6, 12 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pedersen, B. K., Steensberg, A. & Schjerling, P. Exercise and interleukin-6. Curr. Opin. Hematol. 8, 137–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Nance, D. M. & Sanders, V. M. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav. Immun. 21, 736–745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kobayashi, K. S. & Flavell, R. A. Shielding the double-edged sword: negative regulation of the innate immune system. J. Leukocyte Biol. 75, 428–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Epstein, F. H. & Reichlin, S. Neuroendocrine–immune interactions. N. Engl. J. Med. 329, 1246–1253 (1993).

    Article  Google Scholar 

  65. Richards, C. D. Innate immune cytokines, fibroblast phenotypes, and regulation of extracellular matrix in lung. J. Interferon Cytokine Res. 37, 52–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Straub, R. H. Interaction of the endocrine system with inflammation: a function of energy and volume regulation. Arthritis Res. Ther. 16, 203 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Galoyan, A. Neurochemistry of brain neuroendocrine immune system: signal molecules. Neurochem. Res. 25, 1343–1355 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Szanton, S. L., Allen, J. K., Seplaki, C. L., Bandeen-Roche, K. & Fried, L. P. Allostatic load and frailty in the Women’s Health and Aging Studies. Biol. Res. Nurs. 10, 248–256 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Ghachem, A. et al. Evidence from two cohorts for the frailty syndrome as an emergent state of parallel dysregulation in multiple physiological systems. Biogerontology https://doi.org/10.1007/s10522-020-09903-w (2020).

  70. Le Couteur, D. G. & Simpson, S. J. Adaptive senectitude: the prolongevity effects of aging. J. Gerontol. A Biol. Sci. Med. Sci. 66A, 179–182 (2011).

    Article  Google Scholar 

  71. Fulop, T. et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front. Immunol. 8, 1960 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fried, L. P. et al. Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. J. Gerontol. A Biol. Sci. Med. Sci. 64, 1049–1057 (2009).

    Article  PubMed  Google Scholar 

  73. Kenny, A. M. et al. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J. Am. Geriatr. Soc. 58, 1134–1143 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Muller, M., van den Beld, A. W., van der Schouw, Y. T., Grobbee, D. E. & Lamberts, S. W. Effects of dehydroepiandrosterone and atamestane supplementation on frailty in elderly men. J. Clin. Endocrinol. Metab. 91, 3988–3991 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Nelson, H. D., Walker, M., Zakher, B. & Mitchell, J. Menopausal hormone therapy for the primary prevention of chronic conditions: a systematic review to update the U.S. Preventive Services Task Force recommendations. Ann. Intern. Med. 157, 104–113 (2012).

    Article  PubMed  Google Scholar 

  76. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Nakazato, Y. et al. Estimation of homeostatic dysregulation and frailty using biomarker variability: a principal component analysis of hemodialysis patients. Sci. Rep. 10, 10314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gijzel, S. M. et al. Dynamical resilience indicators in time series of self-rated health correspond to frailty levels in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 72, 991–996 (2017).

    Article  PubMed  Google Scholar 

  79. Yates, F. E. Complexity of a human being: changes with age. Neurobiol. Aging 23, 17–19 (2002).

    Article  PubMed  Google Scholar 

  80. Xue, Q. L., Bandeen-Roche, K., Varadhan, R., Zhou, J. & Fried, L. P. Initial manifestations of frailty criteria and the development of frailty phenotype in the Women’s Health and Aging Study II. J. Gerontol. A Biol. Sci. Med. Sci. 63, 984–990 (2008).

    Article  PubMed  Google Scholar 

  81. Xue, Q. L., Bandeen-Roche, K., Tian, J., Kasper, J. D. & Fried, L. P. Progression of physical frailty and the risk of all-cause mortality: is there a point of no return? J. Am. Geriatr. Soc. https://doi.org/10.1111/jgs.16976 (2020).

  82. Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Andreux, P. A. et al. Mitochondrial function is impaired in the skeletal muscle of pre-frail elderly. Sci. Rep. 8, 8548 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ko, F. et al. Impaired mitochondrial degradation by autophagy in the skeletal muscle of the aged female interleukin 10 null mouse. Exp. Gerontol. 73, 23–27 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Kim, J. A., Wei, Y. & Sowers, J. R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102, 401–414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mazya, A. L., Garvin, P. & Ekdahl, A. W. Outpatient comprehensive geriatric assessment: effects on frailty and mortality in old people with multimorbidity and high health care utilization. Aging Clin. Exp. Res. 31, 519–525 (2019).

    Article  PubMed  Google Scholar 

  88. Allen, D. G., Lamb, G. D. & Westerblad, H. Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev. 88, 287–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Weiss, C. O., Cappola, A. R., Varadhan, R. & Fried, L. P. Resting metabolic rate in old-old women with and without frailty: variability and estimation of energy requirements. J. Am. Geriatr. Soc. 60, 1695–1700 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Picard, M. et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc. Natl Acad. Sci. USA 112, E6614–E6623 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Fried, L. P. & Walston, J. in Principles of Geriatric Medicine and Gerontology 4th edn (eds Hazzard, W. R. et al.) 1387–1402 (McGraw Hill, 1998).

  93. Fried, L. P. Interventions for human frailty: physical activity as a model. Cold Spring Harb. Perspect. Med. 6, a025916 (2016).

  94. Bortz, W. Frailty. Mech. Ageing Dev. 129, 680 (2008).

    Article  PubMed  Google Scholar 

  95. Fried, L. P. et al. A social model for health promotion for an aging population: initial evidence on the Experience Corps model. J. Urban Health 81, 64–78 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tan, E. J. et al. The long-term relationship between high-intensity volunteering and physical activity in older African American women. J. Gerontol. B Psychol. Sci. Soc. Sci. 64, 304–311 (2009).

    Article  PubMed  Google Scholar 

  97. Carlson, M. C. et al. Evidence for neurocognitive plasticity in at-risk older adults: the Experience Corps program. J. Gerontol. A Biol. Sci. Med. Sci. 64, 1275–1282 (2009).

    Article  PubMed  Google Scholar 

  98. Talegawkar, S. A. et al. A higher adherence to a Mediterranean-style diet is inversely associated with the development of frailty in community-dwelling elderly men and women. J. Nutr. 142, 2161–2166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Deer, R. R. & Volpi, E. Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care 18, 248–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fiatarone, M. A. et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N. Engl. J. Med. 330, 1769–1775 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Cesari, M. et al. A physical activity intervention to treat the frailty syndrome in older persons—results from the LIFE-P study. J. Gerontol. A Biol. Sci. Med. Sci. 70, 216–222 (2015).

    Article  PubMed  Google Scholar 

  102. Li, C. M., Chen, C. Y., Li, C. Y., Wang, W. D. & Wu, S. C. The effectiveness of a comprehensive geriatric assessment intervention program for frailty in community-dwelling older people: a randomized, controlled trial. Arch. Gerontol. Geriatr. 50, S39–S42 (2010).

    Article  PubMed  Google Scholar 

  103. Pazan, F. et al. Current evidence on the impact of medication optimization or pharmacological interventions on frailty or aspects of frailty: a systematic review of randomized controlled trials. Eur. J. Clin. Pharmacol. https://doi.org/10.1007/s00228-020-02951-8 (2020).

  104. Cappola, A. R., Maggio, M. & Ferrucci, L. Is research on hormones and aging finished? No! Just started! J. Gerontol. A Biol. Sci. Med. Sci. 63, 696–697 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ma, L. et al. Targeted deletion of interleukin-6 in a mouse model of chronic inflammation demonstrates opposing roles in aging: benefit and harm. J. Gerontol. A Biol. Sci. Med. Sci. https://doi.org/10.1093/gerona/glaa156 (2020).

  106. Fried, L. P. et al. From bedside to bench: research agenda for frailty. Sci. Aging Knowl. Environ. 2005, pe24 (2005).

    Article  Google Scholar 

  107. Chang, S. S., Weiss, C. O., Xue, Q. L. & Fried, L. P. Association between inflammatory-related disease burden and frailty: results from the Women’s Health and Aging Studies (WHAS) I and II. Arch. Gerontol. Geriatr. 54, 9–15 (2012).

    Article  PubMed  Google Scholar 

  108. Krakauer, D. C. et al. Worlds Hidden in Plain Sight: Thirty Years of Complexity Thinking at the Santa Fe Institute (Santa Fe Institute Press, 2019).

  109. Sterling, P. Allostasis: a model of predictive regulation. Physiol. Behav. 106, 5–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Goldstein, J. Emergence as a construct: history and issues. Emergence 1, 49–72 (1999).

    Article  Google Scholar 

  111. Taffet, G. E. in Geriatric Medicine: An Evidence-Based Approach (eds Cassel, C. K. et al.) 27–28 (Springer Science & Business Media, 2006).

  112. Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Strehler, B. L. & Mildvan, A. S. General theory of mortality and aging. Science 132, 14–21 (1960).

    Article  CAS  PubMed  Google Scholar 

  114. Varadhan, R., Walston, J. D. & Bandeen-Roche, K. Can a link be found between physical resilience and frailty in older adults by studying dynamical systems? J. Am. Geriatr. Soc. 66, 1455–1458 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kitano, H. Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Goldstein, J. Emergence in complex systems. In The SAGE Handbook of Complexity and Management (eds Allen, P. et al.) 65–78 (SAGE, 2011).

  119. Bar-Yam, Y. Dynamics of Complex Systems (Routledge, 2019).

  120. Newmann, M., Barabasi, A. L. & Watts, D. J. The Structure and Dynamics of Networks (Princeton Univ. Press, 2006).

  121. Holland, J. H. Complex adaptive systems. Daedalus 121, 17–30 (1992).

    Google Scholar 

Download references

Acknowledgements

We dedicate this article to Dr. Richard Suzman, who consistently envisioned and enabled transformative aging research. We are grateful for support by the National Institute on Aging, including for WHAS I (N01 AG012112), WHAS II (M01 R000052), Pathogenesis of Physical Disability in Aging Women (MERIT Award, R37 AG019905) and the frailty-focused Johns Hopkins University Claude D. Pepper Older Americans Independence Center (P30 AG021334). We thank M. A. O’Brien for her outstanding assistance in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda P. Fried.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Aging thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fried, L.P., Cohen, A.A., Xue, QL. et al. The physical frailty syndrome as a transition from homeostatic symphony to cacophony. Nat Aging 1, 36–46 (2021). https://doi.org/10.1038/s43587-020-00017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-020-00017-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing