Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The complex interplay between aging and cancer

Abstract

Cancer is an age-related disease, but the interplay between cancer and aging is complex and their shared molecular drivers are deeply intertwined. This Review provides an overview of how different biological pathways affect cancer and aging, leveraging evidence mainly derived from animal studies. We discuss how genome maintenance and accumulation of DNA mutations affect tumorigenesis and tissue homeostasis during aging. We describe how age-related telomere dysfunction and cellular senescence intricately modulate tumor development through mechanisms involving genomic instability and inflammation. We examine how an aged immune system and chronic inflammation shape tumor immunosurveillance, fueling DNA damage and cellular senescence. Finally, as animal models are important to untangling the relative contributions of these aging-modulated pathways to cancer progression and to test interventions, we discuss some of the limitations of physiological and accelerated aging models, aiming to improve experimental designs and enhance translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of DNA damage in aging and cancer.
Fig. 2: Molecular mechanisms and phenotypes of cellular senescence.
Fig. 3: Immunosenescence phenotypes in aging and cancer.
Fig. 4: The complex interplay between aging and cancer.

Similar content being viewed by others

References

  1. Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024).

    Article  PubMed  Google Scholar 

  2. DeSantis, C. E. et al. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J. Clin. 69, 452–467 (2019).

    Article  PubMed  Google Scholar 

  3. Mattiuzzi, C. & Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health 9, 217–222 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. The importance of aging in cancer research. Nat. Aging 2, 365–366 (2022).

  5. Radkiewicz, C., Kronmark, J. J., Adami, H. O. & Edgren, G. Declining cancer incidence in the elderly: decreasing diagnostic intensity or biology? Cancer Epidemiol. Biomarkers Prev. 31, 280–286 (2022).

    Article  PubMed  Google Scholar 

  6. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  7. Zhao, Y., Simon, M., Seluanov, A. & Gorbunova, V. DNA damage and repair in age-related inflammation. Nat. Rev. Immunol. 23, 75–89 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Niedernhofer, L. J. et al. Nuclear genomic instability and aging. Annu. Rev. Biochem. 87, 295–322 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Folgueras, A. R., Freitas-Rodríguez, S., Velasco, G. & López-Otín, C. Mouse models to disentangle the hallmarks of human aging. Circ. Res. 123, 905–924 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Laconi, E., Marongiu, F. & DeGregori, J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Br. J. Cancer 122, 943–952 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guarente, L., Sinclair, D. A. & Kroemer, G. Human trials exploring anti-aging medicines. Cell Metab. 36, 354–376 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Foley, N. M. et al. Growing old, yet staying young: the role of telomeres in bats’ exceptional longevity. Sci. Adv. 4, eaao0926 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tian, X. et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499, 346–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seluanov, A., Gladyshev, V. N., Vijg, J. & Gorbunova, V. Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 18, 433–441 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. López-Otín, C., Pietrocola, F., Roiz-Valle, D., Galluzzi, L. & Kroemer, G. Meta-hallmarks of aging and cancer. Cell Metab. 35, 12–35 (2023).

    Article  PubMed  Google Scholar 

  18. Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci. 121, 1–84 (2008).

    Article  PubMed  Google Scholar 

  19. Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Science 349, 1483–1489 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  Google Scholar 

  21. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & De Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Loeb, L. A. Human cancers express mutator phenotypes: origin, consequences and targeting. Nat. Rev. Cancer 11, 450–457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Evans, E. J. & DeGregori, J. Cells with cancer‐associated mutations overtake our tissues as we age. Aging Cancer 2, 82–97 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martincorena, I. Somatic mutation and clonal expansions in human tissues. Genome Med. 11, 11–13 (2019).

    Article  Google Scholar 

  26. Li, R., Sonik, A., Stindl, R., Rasnick, D. & Duesberg, P. Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc. Natl Acad. Sci. USA 97, 3236–3241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, L. & Vijg, J. Somatic mutagenesis in mammals and its implications for human disease and aging. Annu. Rev. Genet. 52, 397–419 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vijg, J. et al. Mitigating age-related somatic mutation burden. Trends Mol. Med. 29, 530–540 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, C. H., Haider, S. & Boutros, P. C. Age influences on the molecular presentation of tumours. Nat. Commun. 13, 208 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith, A. L. M., Whitehall, J. C. & Greaves, L. C. Mitochondrial DNA mutations in ageing and cancer. Mol. Oncol. 16, 3276–3294 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gyenis, A. et al. Genome-wide RNA polymerase stalling shapes the transcriptome during aging. Nat. Genet. 55, 268–279 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vijg, J. & Dong, X. Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell 182, 12–23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jonason, A. S. et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl Acad. Sci. USA 93, 14025–14029 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nathan, D. I., Dougherty, M., Bhatta, M., Mascarenhas, J. & Marcellino, B. K. Clonal hematopoiesis and inflammation: a review of mechanisms and clinical implications. Crit. Rev. Oncol. Hematol. 192, 104187 (2023).

    Article  PubMed  Google Scholar 

  36. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598, 510–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abby, E. et al. Notch1 mutations drive clonal expansion in normal esophageal epithelium but impair tumor growth. Nat. Genet. 55, 232–245 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Panier, S., Wang, S. & Schumacher, B. Genome instability and DNA repair in somatic and reproductive aging. Annu. Rev. Pathol. 24, 261–290 (2023).

    Google Scholar 

  43. Zhang, L. et al. Maintenance of genome sequence integrity in long- and short-lived rodent species. Sci. Adv. 7, eabj3284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tian, X. et al. SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. Cell 177, 622–638 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tian, X., Seluanov, A. & Gorbunova, V. Molecular mechanisms determining lifespan in short- and long-lived species. Trends Endocrinol. Metab. 28, 722–734 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gorbunova, V., Seluanov, A., Mao, Z. & Hine, C. Changes in DNA repair during aging. Nucleic Acids Res. 35, 7466–7474 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rieckher, M., Garinis, G. A. & Schumacher, B. Molecular pathology of rare progeroid diseases. Trends Mol. Med. 27, 907–922 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. J. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Montégut, L., López-Otín, C. & Kroemer, G. Aging and cancer. Mol. Cancer 23, 106 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pérez, R. F., Tejedor, J. R., Fernández, A. F. & Fraga, M. F. Aging and cancer epigenetics: where do the paths fork? Aging Cell 21, e13709 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu, Z. et al. Immunosenescence: molecular mechanisms and diseases. Signal Transduct. Target. Ther. 8, 200 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bottazzi, B., Riboli, E. & Mantovani, A. Aging, inflammation and cancer. Semin. Immunol. 40, 74–82 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, S., El Jurdi, N., Thyagarajan, B., Prizment, A. & Blaes, A. H. Accelerated aging in cancer survivors: cellular senescence, frailty, and possible opportunities for interventions. Int. J. Mol. Sci. 25, 3319 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perez, K. et al. DNA repair-deficient premature aging models display accelerated epigenetic age. Aging Cell 23, e14058 (2023).

  58. Yang, J. H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Borges, G., Criqui, M. & Harrington, L. Tieing together loose ends: telomere instability in cancer and aging. Mol. Oncol. 16, 3380–3396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Csiszar, A. et al. Chemically induced carcinogenesis in rodent models of aging: assessing organismal resilience to genotoxic stressors in geroscience research. Geroscience 41, 209–227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. De Lange, T. Shelterin-mediated telomere protection. Annu. Rev. Genet. 52, 223–247 (2018).

    Article  PubMed  Google Scholar 

  63. Rossiello, F., Jurk, D., Passos, J. F. & d’Adda di Fagagna, F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 24, 135–147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chakravarti, D., LaBella, K. A. & DePinho, R. A. Telomeres: history, health, and hallmarks of aging. Cell 184, 306–322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. D’Adda Di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  PubMed  Google Scholar 

  66. Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14, 355–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012).

  68. Barnes, R. P. et al. Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening. Nat. Struct. Mol. Biol. 29, 639–652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jurk, D. et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2, 4172 (2014).

    Article  PubMed  Google Scholar 

  70. Lansdorp, P. M. Telomeres, aging, and cancer: the big picture. Blood 139, 813–821 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Demanelis, K. et al. Determinants of telomere length across human tissues. Science 369, eaaz6876 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Suram, A. & Herbig, U. The replicometer is broken: telomeres activate cellular senescence in response to genotoxic stresses. Aging Cell 13, 780–786 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nassour, J., Przetocka, S. & Karlseder, J. Telomeres as hotspots for innate immunity and inflammation. DNA Repair 133, 103591 (2024).

    CAS  Google Scholar 

  74. Rossiello, F. et al. DNA damage response inhibition at dysfunctional telomeres by modulation of telomeric DNA damage response RNAs. Nat. Commun. 8, 13980 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aguado, J. et al. Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson–Gilford progeria syndrome. Nat. Commun. 10, 4990 (2019).

  76. Rosso, I. et al. Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs. Nat. Commun. 14, 7086 (2023).

  77. Nassour, J., Schmidt, T. T. & Karlseder, J. Telomeres and cancer: resolving the paradox. Annu. Rev. Cancer Biol. 5, 59–77 (2020).

    Article  Google Scholar 

  78. Barthel, F. P. et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat. Genet. 49, 349–357 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. De Vitis, M., Berardinelli, F. & Sgura, A. Telomere length maintenance in cancer: at the crossroad between telomerase and alternative lengthening of telomeres (ALT). Int. J. Mol. Sci. 19, 606 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Claude, E. & Decottignies, A. Telomere maintenance mechanisms in cancer: telomerase, ALT or lack thereof. Curr. Opin. Genet. Dev. 60, 1–8 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Viceconte, N. et al. Highly aggressive metastatic melanoma cells unable to maintain telomere length. Cell Rep. 19, 2529–2543 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Dagg, R. A. et al. Extensive proliferation of human cancer cells with ever-shorter telomeres. Cell Rep. 19, 2544–2556 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Seger, Y. R. et al. Transformation of normal human cells in the absence of telomerase activation. Cancer Cell 2, 401–413 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Taboski, M. A. S. et al. Long telomeres bypass the requirement for telomere maintenance in human tumorigenesis. Cell Rep. 1, 91–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Byrjalsen, A., Brainin, A. E., Lund, T. K., Andersen, M. K. & Jelsig, A. M. Size matters in telomere biology disorders — expanding phenotypic spectrum in patients with long or short telomeres. Hered. Cancer Clin. Pract. 21, 7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gomes, N. M. V. et al. Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 10, 761–768 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Henriques, C. M., Carneiro, M. C., Tenente, I. M. & Ferreira, J. A. Telomerase is required for zebrafish lifespan. PLoS Genet. 9, 1003214 (2013).

    Article  Google Scholar 

  90. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Liu, N. et al. HTERT promotes tumor angiogenesis by activating VEGF via interactions with the Sp1 transcription factor. Nucleic Acids Res. 44, 8693–8703 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Jaskelioff, M. et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469, 102–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Lex, K. et al. Telomere shortening produces an inflammatory environment that increases tumor incidence in zebrafish. Proc. Natl Acad. Sci. USA 117, 15066–15074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Varela, E., Muñoz-Lorente, M. A., Tejera, A. M., Ortega, S. & Blasco, M. A. Generation of mice with longer and better preserved telomeres in the absence of genetic manipulations. Nat. Commun. 7, 11739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Blasco, M. A. Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J. 24, 1095–1103 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. González-Suárez, E., Samper, E., Flores, J. M. & Blasco, M. A. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat. Genet. 26, 114–117 (2000).

    Article  PubMed  Google Scholar 

  98. Franco, S., Segura, I., Riese, H. H. & Blasco, M. A. Decreased B16F10 melanoma growth and impaired vascularization in telomerase-deficient mice with critically short telomeres. Cancer Res. 62, 552–559 (2002).

    CAS  PubMed  Google Scholar 

  99. Ding, Z. et al. Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell 148, 896–907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Platzbecker, U. et al. Imetelstat in patients with lower-risk myelodysplastic syndromes who have relapsed or are refractory to erythropoiesis-stimulating agents (IMerge): a multinational, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 403, 249–260 (2024).

    Article  CAS  PubMed  Google Scholar 

  101. Muñoz-Lorente, M. A. et al. AAV9-mediated telomerase activation does not accelerate tumorigenesis in the context of oncogenic K-Ras-induced lung cancer. PLoS Genet. 14, e1007562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

    Article  PubMed  Google Scholar 

  103. Dasgupta, N., Arnold, R., Equey, A., Gandhi, A. & Adams, P. D. The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression. NPJ Aging 10, 48 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  105. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  PubMed  Google Scholar 

  106. Liu, J. Y. et al. Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence. Proc. Natl Acad. Sci. USA 116, 2603–2611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ogata, Y., Yamada, T., Hasegawa, S., Sugiura, K. & Akamatsu, H. Changes of senescent cell accumulation and removal in skin tissue with ageing. Exp. Dermatol. 32, 1159–1161 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Haston, S. et al. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer. Cancer Cell 41, 1242–1260 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Schafer, M. J. et al. The senescence-associated secretome as an indicator of age and medical risk. JCI Insight 5, e133668 (2020).

    Google Scholar 

  110. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Victorelli, S. et al. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J. 38, e101982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. da Silva, P. F. L. et al. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell 18, e12848 (2019).

    Article  PubMed  Google Scholar 

  113. Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

  116. Wang, T. W. et al. Blocking PD-L1–PD-1 improves senescence surveillance and ageing phenotypes. Nature 611, 358–364 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Majewska, J. et al. p16-dependent increase of PD-L1 stability regulates immunosurveillance of senescent cells. Nat. Cell Biol. 26, 1336–1345 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chaib, S. et al. The efficacy of chemotherapy is limited by intratumoral senescent cells expressing PD-L2. Nat. Cancer 5, 448–462 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Karin, O., Agrawal, A., Porat, Z., Krizhanovsky, V. & Alon, U. Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nat. Commun. 10, 5495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hernandez-Gonzalez, F. et al. Human senescent fibroblasts trigger progressive lung fibrosis in mice. Aging 15, 6641–6657 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Amor, C. et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat. Aging 4, 336–349 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer — role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kolodkin-Gal, D. et al. Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant pancreatic lesions. Gut 71, 345–355 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Di Micco, R. et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat. Cell Biol. 13, 292–302 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Prieto, L. I. et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis. Cancer Cell 41, 1261–1275 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fletcher-Sananikone, E. et al. Elimination of radiation-induced senescence in the brain tumor microenvironment attenuates glioblastoma recurrence. Cancer Res. 81, 5935–5947 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, D. & Hornsby, P. J. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 67, 3117–3126 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ruhland, M. K. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat. Commun. 7, 11762 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Bhakta, N. et al. The cumulative burden of surviving childhood cancer: an initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet 390, 2569–2582 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. González-Gualda, E. et al. Galacto-conjugation of navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell 19, e13142 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Fleury, H. et al. Exploiting interconnected synthetic lethal interactions between PARP inhibition and cancer cell reversible senescence. Nat. Commun. 10, 2556 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Saleh, T. et al. Clearance of therapy-induced senescent tumor cells by the senolytic ABT-263 via interference with BCL-XL–BAX interaction. Mol. Oncol. 14, 2504–2519 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nikolich-Žugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    Article  PubMed  Google Scholar 

  145. Ikeda, H. & Togashi, Y. Aging, cancer, and antitumor immunity. Int. J. Clin. Oncol. 27, 316–322 (2022).

    Article  PubMed  Google Scholar 

  146. Fulop, T. et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front. Immunol. 8, 1960 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Arai, Y. et al. Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2, 1549–1558 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 32, 1267–1284 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chiodoni, C. et al. Transcriptional profiles and stromal changes reveal bone marrow adaptation to early breast cancer in association with deregulated circulating microRNAs. Cancer Res. 80, 484–498 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Hill, W. et al. Lung adenocarcinoma promotion by air pollutants. Nature 616, 159–167 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Johnson, C. C., Hayes, R. B., Schoen, R. E., Gunter, M. J. & Huang, W.-Y. Non-steroidal anti-inflammatory drug use and colorectal polyps in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am. J. Gastroenterol. 105, 2646–2655 (2010).

    CAS  Google Scholar 

  153. Han, Z., Brown, J. R. & Niederkorn, J. Y. Growth and metastasis of intraocular tumors in aged mice. Invest. Ophthalmol. Vis. Sci. 57, 2366–2376 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Golomb, L. et al. Age-associated inflammation connects RAS-induced senescence to stem cell dysfunction and epidermal malignancy. Cell Death Differ. 22, 1764–1774 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Park, M. D. et al. Hematopoietic aging promotes cancer by fueling IL-1α-driven emergency myelopoiesis. Science 386, eadn0327 (2024).

  156. Anczuków, O. et al. Challenges and opportunities for modeling aging and cancer. Cancer Cell 41, 641–645 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Schratz, K. E. et al. T cell immune deficiency rather than chromosome instability predisposes patients with short telomere syndromes to squamous cancers. Cancer Cell 41, 807–817 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Blasco, M. A. Immunosenescence phenotypes in the telomerase knockout mouse. Springer Semin. Immunopathol. 24, 75–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Jackson, S. J. et al. Does age matter? The impact of rodent age on study outcomes. Lab. Anim. 51, 160–169 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Jenkins, E. C. et al. Age alters the oncogenic trajectory toward luminal mammary tumors that activate unfolded proteins responses. Aging Cell 21, e13665 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chhabra, Y. et al. Sex-dependent effects in the aged melanoma tumor microenvironment influence invasion and resistance to targeted therapy. Cell 187, 6016–6034 (2024).

    Article  CAS  PubMed  Google Scholar 

  162. Moore, A. L., Shore, H., Ershler, W. B. & Gamelli, R. L. Transfer of age-associated restrained tumor growth in mice by old-to-young bone marrow transplantation. Cancer Res. 44, 5677–5680 (1984).

    PubMed  Google Scholar 

  163. Scannell, J. W. et al. Predictive validity in drug discovery: what it is, why it matters and how to improve it. Nat. Rev. Drug Discov. 21, 915–931 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Olson, B., Li, Y., Lin, Y., Liu, E. T. & Patnaik, A. Mouse models for cancer immunotherapy research. Cancer Discov. 8, 1358–1365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bouleftour, W. & Magne, N. Aging preclinical models in oncology field: from cells to aging. Aging Clin. Exp. Res. 34, 751–755 (2022).

    Article  PubMed  Google Scholar 

  166. Reed, M. J. et al. The effects of aging on tumor growth and angiogenesis are tumor-cell dependent. Int. J. Cancer 120, 753–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Ershler, W. B., Stewart, J. A., Hacker, M. P., Moore, A. L. & Tindle, B. H. B16 murine melanoma and aging: slower growth and longer survival in old mice. J. Natl Cancer Inst. 72, 161–164 (1984).

    CAS  Google Scholar 

  168. Pili, R. et al. Altered angiogenesis underlying age-dependent changes in tumor growth. J. Natl Cancer Inst. 86, 1303–1314 (1994).

    Article  CAS  PubMed  Google Scholar 

  169. Kreisle, R. A., Stebler, B. A. & Ershler, W. B. Effect of host age on tumor-associated angiogenesis in mice. J. Natl Cancer Inst. 82, 44–47 (1990).

    Article  CAS  PubMed  Google Scholar 

  170. Skou, S. T. et al. Multimorbidity. Nat. Rev. Dis. Primers 8, 48 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Sanchez, S. E. et al. Digital telomere measurement by long-read sequencing distinguishes healthy aging from disease. Nat. Commun. 15, 5148 (2024).

  172. Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C. & Blasco, M. A. Telomere shortening rate predicts species life span. Proc. Natl Acad. Sci. USA 116, 15122–15127 (2019).

  173. Vera, E., Bernardes de Jesus, B., Foronda, M., Flores, J. M. & Blasco, M. A. The rate of increase of short telomeres predicts longevity in mammals. Cell Rep. 2, 732–737 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Lorenzini, A. et al. Significant correlation of species longevity with DNA double strand break recognition but not with telomere length. Mech. Ageing Dev. 130, 784–792 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fick, L. J. et al. Telomere length correlates with life span of dog breeds. Cell Rep. 2, 1530–1536 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Domínguez-de-Barros, A. et al. An approach to the effects of longevity, sexual maturity, and reproduction on telomere length and oxidative stress in different Psittacidae species. Front. Genet. 14, 1156730 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Buddhachat, K. et al. Life expectancy in marine mammals is unrelated to telomere length but is associated with body size. Front. Genet. 12, 737860 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Dantzer, B. & Fletcher, Q. E. Telomeres shorten more slowly in slow-aging wild animals than in fast-aging ones. Exp. Gerontol. 71, 38–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Haussmann, M. F. et al. Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. Proc. Biol. Sci. 270, 1387–1392 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Peto, R. Epidemiology, multistage models, and short-term mutagenicity tests. Int. J. Epidemiol. 45, 621–637 (2016).

    Article  PubMed  Google Scholar 

  181. VanderWalde, N. A. et al. Disparities in older adult accrual to cancer trials: analysis from the Alliance for Clinical Trials in Oncology (A151736). J. Geriatr. Oncol. 13, 20–26 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Ludmir, E. B. et al. Factors associated with age disparities among cancer clinical trial participants. JAMA Oncol. 5, 1769–1773 (2019).

    Google Scholar 

  183. Guarnieri, C. & Von Hoff, D. D. Phase 1 clinical trials in the elderly: enrollment challenges. J. Adv. Pract. Oncol. 11, 494–501 (2020).

    PubMed  PubMed Central  Google Scholar 

  184. Solary, E., Abou-Zeid, N. & Calvo, F. Ageing and cancer: a research gap to fill. Mol. Oncol. 16, 3220–3237 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics 20, 273–286 (2019).

    Article  PubMed  Google Scholar 

  186. Lukow, D. A. et al. Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Dev. Cell 56, 2427–2439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ippolito, M. R. et al. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy. Dev. Cell 56, 2440–2454 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Maggiorani, D. et al. Senescence drives immunotherapy resistance by inducing an immunosuppressive tumor microenvironment. Nat. Commun. 15, 2435 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. D’Ordine, A. M., Jogl, G. & Sedivy, J. M. Identification and characterization of small molecule inhibitors of the LINE-1 retrotransposon endonuclease. Nat. Commun. 15, 3883 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Brankiewicz-Kopcinska, W., Kallingal, A., Krzemieniecki, R. & Baginski, M. Targeting shelterin proteins for cancer therapy. Drug Discov. Today 29, 104056 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Oppezzo, F. Rossiello, C. Tripodo and A. Bertotti for critically reading the manuscript and M. Cabrini for figure suggestions. L.A.T. is a PhD student within the European School of Molecular Medicine and is supported by an AIRC fellowship for Italy (28211). F.d’A.d.F.’s laboratory is supported by an ERC advanced grant (TELORNAGING, 835103); ERC POC (TELOVACCINE, 101113229); AIRC-IG (30471); AIRC-IG (21762); AIRC 5x1000 (21091); Telethon (GMR23T2007); Progetti di Ricerca di Interesse Nazionale (2020CXFL4T); Progetti di Ricerca di Interesse Nazionale (2022R7LH5T); AriSLA (DDR&ALS FG_24_2020); POR FESR InterSLA (DSB.AD004.294); the Fondazione Regionale per la Ricerca Biomedica (Regione Lombardia) (EJPRD19-206 PROGERIA, GA 825575); Next Generation EU, in the context of the National Recovery and Resilience Plan, Investment PE8 Project Age-It and Investment CN3 National Center for Gene Therapy and Drugs based on RNA Technology.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived, structured, wrote and edited the manuscript.

Corresponding authors

Correspondence to Lucrezia A. Trastus or Fabrizio d’Adda di Fagagna.

Ethics declarations

Competing interests

F.d’A.d.F. is a founder and investor in TAG Therapeutics, a company dedicated to treating telomere pathologies and age-related disorders. L.A.T. declares no competing interests.

Peer review

Peer review information

Nature Aging thanks George Garinis, James DeGregori, and Daniel Munoz-Espin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trastus, L.A., d’Adda di Fagagna, F. The complex interplay between aging and cancer. Nat Aging 5, 350–365 (2025). https://doi.org/10.1038/s43587-025-00827-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-025-00827-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer