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Pre-symptomatic Parkinson’s disease blood
test quantifying repetitive sequence motifs
intransfer RNA fragments
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% Check for updates Early, efficient Parkinson’s disease (PD) tests may facilitate pre-symptomatic

diagnosis and disease-modifying therapies. Here we report elevated levels

of PD-specific transfer RNA fragments carrying a conserved sequence motif
(RGTTCRA-tRFs) in the substantia nigra, cerebrospinal fluid and blood of
patients with PD. Awhole blood qPCR test detecting elevated RGTTCRA-tRFs
and reduced mitochondrial-originated tRFs (MT-tRFs) segregated
pre-symptomatic patients with PD from controls (area under the receiver
operating characteristic curve (ROC-AUC) of 0.75 versus 0.71based on
traditional clinical scoring). Strengthening PD relevance, patients carrying
PD-related mutations presented higher blood RGTTCRA-tRFs/MT-tRFs ratios
than mutation-carrying non-symptomatic controls, and RGTTCRA-tRF

levels decreased in patients’ blood after deep brain stimulation.
Furthermore, RGTTCRA-tRFs complementarity to ribosomal RNA and the
translation-supporting LeuCAG3-tRF might aggravate PD via translational
inhibition, asreflected by disrupted ribosomal association of RGTTCRA-tRFs
indepolarized neuroblastoma cells. Our findings show tRF involvementin PD
and suggest a potential simple and safe blood test that may aid cliniciansin
pre-symptomatic PD diagnosis after validationinlargerindependent cohorts.

Parkinson’s disease (PD) is the second most prevalent neurodegenera- PD diagnosis often follows considerable neuronal damage mani-

tive disease'. PD poses major clinical, social and financial burdens to
society” and is characterized by progressive movement disabilities,
tremors and cognitive impairments. These symptoms result from pre-
mature death of dopaminergic neurons, especially in the substantia
nigra pars compacta (SN)?, that are caused by oxidative and nitrative
stress®®, enhanced mitophagy’, impaired autophagy?®, neuroinflam-
mation and dopaminergic/cholinergic imbalance’.

fested as severe motor impairments, such as bradykinesia, rigidity
and tremors'’. However, earlier symptoms, including smell loss and
rapid eye movement sleep disorders, may appear years beforehand.
Molecular changes characteristic of this early disease phase may con-
stitute a basis for a pre-symptomatic diagnostic test. Such atest should
be cost-effective, rapid and capable of detecting changesin biomarker
levels at the earliest disease stages, confirming true-positive cases
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and minimizing false-positive ones. Recent PD diagnostic tests have
focused onelevated cerebrospinal fluid (CSF) levels of the a-synuclein
(a-Syn) protein or reduced blood mitochondrial DNA as biomarkers' ™.
However, CSF sampling is invasive; purification and detection of
a-Syn are cumbersome and insufficiently sensitive; and measure-
ments of specific proteins show high inter-individual variability. In
contrast, quantification of multiple molecules, rather than one, can
improve signal-to-noise ratios and overcome the variability between
patients'®?.. Attempting to prevent invasive tests, certain blood
molecules were proven to reflect cerebral pathology?. Ideally, an
easy, safeand affordable diagnosis should be based on multiple highly
sensitive and specific blood biomarkers®.

Transfer RNA fragments (tRFs) are 16-50 nucleotide (nt)-long,
non-coding RNAs originating from multiple nuclear or mitochondrial
transfer RNA (tRNA) genes. Several enzymes cleave tRNAs toyield tRFs:
angiogenin (Ang) generates 5'-halfand 3’-halftRFs, whereas Ang, Dicer***
and other nucleasesyield 5’-tRFs, i-tRFs and 3’-tRFs*. Because tRFs harbor
repetitive sequence motifsinherited fromtheir parental tRNAs, changes
canbedetectedinanentire family of closely related transcripts, albeit of
different origins and types, produced by different endonucleases***”,
and originating from either nuclear or mitochondrial genomes. Corre-
spondingly, tRFs may reflect transcriptional changes or malfunctions
in both the nucleus and the mitochondria”, whose DNA is known to
be damaged in PD'*?*%, Intriguingly, altered Ang levels, Ang mutations
and Ang-produced tRFs may exert both PD-protective and cytotoxic
roles®***, Furthermore, blood cell tRF levels present diagnostic value
in various diseases, including ischemic stroke**, amyotrophic lateral
sclerosis®, epilepsy* and cellular or organismal stress?***. Accordingly,
tRFs emerge as the perfect candidates for ablood-based PD biomarker.

To challenge the hypothesis that multiple tRF-derived sequences
could yield informative PD biomarkers, we searched for tRF families
that share common sequence motifs whose levels are changed in
the brain, blood and/or CSF of patients with PD—all biofluids known
to reflect cerebral pathologies, including PD**?. Using different
datasets that account for distinct biofluids and stages of the disease
allowed us to study the PD links of those tRFs whose levels had been
altered in unrelated cohorts of different population origins.

Results

tRF levels in CSF show PD-specific changes

Toseek PD-characteristic tRF profiles, we analyzed ashort RNA sequenc-
ing (RNA-seq) dataset (phs.000727)*® consisting of postmortem (PM)
CSF samples from 46 patients with PD, from 53 patients with Alzheimer’s
disease (AD) and from 53 healthy controls (15,27 and 24 females, respec-
tively; Fig. 1a, Extended Data Fig. 1a,b and Supplementary Table 1a,b).
Accounting for patients’ age, sex and PMinterval (Extended Data Fig. 2a;
edgeR; Methods), we identified elevated levels of nuclear-originated
tRFs in patients with PD compared to controls (N-tRFs; average lev-
els in control (Ctrl) and PD: 980,165 and 990,387 counts per million
(CPM), respectively). All but one of these were 3’-tRFs or i-tRFs that
were over 35 ntlong, excluding them from functioning as microRNAs®
(Fig.1b and Extended DataFig. 2b,c). We also detected reduced levels
of mitochondrial-originated tRFs (MT-tRFs; average levels in Ctrl and
PD: 19,834 and 9,612 CPM, respectively; Fig. 1b)'**®, most of which are
long 3’-tRFs (Extended Data Fig. 2d,e). The PD-elevated N-tRFs and
reduced MT-tRFs phenomena were consistentin both sexes (Extended
DataFig. 2b,c) but were absent in AD (Fig. 1c), reflecting non-random
PD-altered CSF tRF profiles”.

N-tRFs elevated in PD CSF share acommon RGTTCRA motif

Pursuing PD RNA biomarkers, we sought common motifs shared by the
elevated N-tRFs using the Multiply Elicited Motif Entities (MEME) tool*.
Thistool detected multiple tRFs sharing the sequence [A/GIGTTC[A/G]
A (RGTTCRA-tRFs; Fig. 1b and Extended Data Fig. 1c), most of which
were over 30 bases long (average levels: Ctrl =79,901, PD = 92,836,

AD = 83,068, CPM for RGTTCRA-tRFs >30 bases). Binomial tests con-
firmed that RGTTCRA-tRFs are mostly elevated and MT-tRFs are mostly
reduced also when analyzing each sex separately (Extended DataFig. 2
and supplementary information for Extended Data Fig. 2). Notably,
RGTTCRA-tRFs were derived from numerous nuclear-originated tRNA
genes, none of which was downregulated in the CSF of patients with PD,
andall of the CSF-elevated tRFslacking this motif were shorter than 30
bases (Fig.1b). Together, thisindicates that the shared motif embedded
inRGTTCRA-tRFs might reflect disease-related features (Supplemen-
tary Table 2 lists all of the tRNA genes carrying the PD motif).

Parallel analysis comparing patients with AD to controlsin the same
dataset revealed unchanged profiles of MT-tRFs and RGTTCRA-tRFs
(Fig. 1c). Moreover, the median levels of RGTTCRA-tRFs longer
than 30 bases were higher in patients with PD than in either healthy
controls or patients with AD (P<0.038 and P < 0.062, respectively,
Dunnett test, false discovery rate (FDR)). The PD-specific accumula-
tion of RGTTCRA-tRFs and decrease of MT-tRFsin CSF identified both
of these subfamilies as promising PD biomarker candidates.

RGTTCRA-tRFs co-accumulate with Lewy bodies in the SN of
patients with PD

To seek pathological implications of RGTTCRA-tRF accumulation, we
conducted small RNA-seq of SN from eight PM patients with PD sourced
from the Netherlands Brain Bank (NBB) (Supplementary Figs. 1a,b
and 2h and Supplementary Table 3; data deposited in GSE256334).
Supporting our CSF findings, elevation of RGTTCRA-tRFs (average
levels = 91,856 CPM) and reduction of MT-tRFs (average levels = 54,123
CPM) accompanied higher Braak Lewy body scores in patients with
PD (Fig. 1d).

Ang is sufficient but not essential for production of
RGTTCRA-tRFs

Seekingthe cleavage enzymes responsible for the altered RGTTCRA-tRFs
and MT-tRFs (Fig. 2a), we analyzed a dataset of Ang overexpressionin
HEK293T and knockout in U20S cells (GSE130764; Supplementary
Table4)*. Ang overexpression elevated the percentage of RGTTCRA-tRFs,
but not of MT-tRFs, in HEK293 cells (P < 0.0093 and P < 0.375, respec-
tively, t-test, FDR; Fig. 2b—d). However, Ang knockout had no overt
effects on these tRF families (Extended Data Fig. 3a,b and supplemen-
tary information for Extended Data Fig. 3). Therefore, Ang emerged as
sufficient but not essential for producing RGTTCRA-tRFs or MT-tRFs.

Blood RGTTCRA-tRFs and MT-tRFs reflect disease features in
early and advanced PD patients

To test the utility of RGTTCRA-tRF and MT-tRF levels as diagnostic
biomarkers, we performed small RNA-seq of NBB PM blood sam-
ples from patients with PD and controls (Ctrl, n=16 and PD, n =21;
Fig.2e and Supplementary Table 5; data deposited in GSE256334) and
used Parkinson’s Progression Markers Initiative (PPMI) data (Sup-
plementary Table 6) from idiopathic non-deep brain stimulation
(DBS)-treated patients from timepoint VO8 (2 years after first evalua-
tion; Idiopathic; PD, n =252 and Ctrl, n =133) and the latest timepoint
available for PD-related mutation carriers with or without symptoms
(Genetic; PD, n =55 and Ctrl, n=16).

Mutation-carrying living PPMI PD patients showed a trend of
reduction in blood MT-tRF levels compared to unaffected mutation-
carrying controls (P < 0.057, Mann-Whitney, FDR; Fig. 2g). In com-
parison, PM blood samples from advanced NBB PD patients presented
elevated RGTTCRA-tRFs and MT-tRFs (P<0.00015and P<8 x 107",
respectively, ANOVA; ‘Advanced’; Fig. 2f,g).

The observed PM elevationin blood MT-tRF levels contrasts with
the MT-tRF reduction seen in the PD CSF and SN (Fig. 1b,d) and may
reflect mitochondrial degradation in PM blood, which yields higher
levels of mitochondrial RNA fragments*. Indeed, although levels of
RGTTCRA-tRFs were not affected by sample RNA integrity number
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Fig.1|Nuclear-originated RGTTCRA-tRFs are elevated and MT-tRFs decrease
in the CSF and SN of patients with PD. a, Schematic representation of N-tRFs and
MT-tRFsin PM CSF and SN samples. b, Levels of MT-tRFs (left; green background)
and N-tRFs containing and lacking the RGTTCRA motif (right and middle; blue
background) in PD CSF. Each dot represents a tRF. x: log,(fold change (FC))

of PD versus Ctrllevels. y: -log,,(FDR-adjusted Pvalue). Horizontal blue line:

log,(FC Lewy body score)

FDR = 0.05. Vertical dashed lines: log,(FC) > 1 or log,(FC) < -1. Dot colors: tRF
lengths. ¢, As described in b for AD versus Ctrl. d, MT-tRFs decrease and elevation
of RGTTCRA-tRFs associates with Lewy body scores in the SN. x axis: log,(FC) for
high versus low Lewy body score (that is, prevalence and localization of brain
Lewy bodies). y axis: -log,,(FDR-adjusted Pvalues). Colors areasinb.

(RIN), MT-tRF levels were negatively correlated with the sample’s RIN
(MT-tRFs: r=-0.4, P< 0.025; RGTTCRA-tRFs: r=-0.14, P< 0.4; FDR,
Spearman correlation), indicating that the elevated levels stem from
the PM status rather than the PD status. Supporting this notion, SN
tissues revealed reduced mitochondrial tRNA levels, which continued
declining with disease duration (r= 0.4, P < 0.05, Spearman correlation;
PD versus Ctrl P < 0.039, Mann-Whitney test; Extended DataFig. 3c).
To develop a biomarker assay that can easily compare among
patients regardless of the need to account for RNA concentrations
andlibrary depth, we calculated the ratiobetween RGTTCRA-tRFs and
MT-tRFs. This ratio was elevated in PD versus Ctrl (Fig. 2h; P< 0.0013,
ANOVA), especially in early mutation-carrying patients (Early Idio-
pathic patients P < 0.02, Early Genetic patients P < 0.00044, ANOVA).
Strengthening the notion that blood tRFs have the capability of captur-
ing inter-individual variations, we found that blood tRF levels create
a patient-specific fingerprint that maintains stability over time, posi-
tioning them as promising candidates for biomarkers (Supplementary
Information: ‘Blood tRF levels create a patient-specific fingerprint’).

Feature selection-based in silico tRF probes outperform
clinical measurements in separating prodromal PD from
control patients

We next challenged the value of the RGTTCRA-tRFs/MT-tRFs ratio for
pre-symptomatic PD detection. To do so, we compared prodromal PPMI

patients (showing pre-symptomatic PD signs, albeit without a clini-
cal PD diagnosis) at the earliest tested timepoint (n = 60) to matched
healthy controls (n =128) (Fig. 3a and Supplementary Table 7). A subset
of 60 controls optimally matched to the prodromal patients was formed
based on sex, age and collection batch of patients.

To create a primer-based separation reflecting the variability
between controls and prodromal PD patients, we sought two singlein
silico polymerase chainreaction (PCR) primer pairs that can recognize
numerous RGTTCRA-tRFs or MT-tRFs. We designed quantitative PCR
(qPCR)-suitable 14-nt-long sequences that include the PD motif and
are shared among at least 100 different RGTTCRA-tRFs (Methods).
For every patient, we summed the counts of all RGTTCRA-tRFs, includ-
ing each 14-nt sequence, and selected the one that led to the largest
median difference between PPMI prodromal patients and healthy
controls (GGTCCCTGGTTCAA, shared among 285 RGTTCRA-tRFs
from different tRNAs of distinct chromosomal origins, average levels
of 550 CPM; P < 0.013, Mann-Whitney). Next, we similarly selected
asequence shared between the maximum number of MT-tRFs that
maximizes the median difference between prodromal and controls
and minimized the standard deviation within each group (TAACTTAG-
CATTAACCTTTTAA, shared among106 Lys tRNA-originated MT-tRFs,
average levels of 90 CPM).

For each patient, we divided the sum of RGTTCRA-tRF counts (all
carrying the GGTCCCTGGTTCAA sequence) by the sum of MT-tRF
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Fig.2| Ang overexpression elevates RGTTCRA-tRFs, and RGTTCRA-tRFs/
MT-tRFsratio segregates early PD patients from controls. a, Scheme of

tRNA cleavage by Ang and Dicer. b, tRFs were quantified in Ctrl and Ang-
overexpressing (OE) HEK293T cells. ¢,d, RGTTCRA-tRF (c, purple) and MT-tRF

(d, green) percentages in Ang-OE versus Ctrl. Each dot represents a biological
replicate (n =3 in each condition).**P<0.0093 and P< 0.375for cand d,
respectively, two-sided ¢-test, FDR correction. e, Numbers of blood samples from
live controls and early PD patients with and without PD-related mutations (PPMI)
and PM advanced PD patients (NBB). f,g, Percentage of RGTTCRA-tRFs (f, purple)
and MT-tRFs (g, green) in Ctrl and PD samples (PPMI, ‘Early’; Idiopathic, carrying
no PD-related mutations; Genetic, carrying LRRK2, GBA or SNCA mutations; NBB,

‘Advanced’). Each dot represents a patient (n =133, 252,16, 55,16 and 21; from
leftmost box plot to rightmost one). For RGTTCRA-tRFs and MT-tRFs in advanced
patients: ***P < 0.00015 and ****P < 8 x 10", respectively, two-way ANOVA. For
MT-tRFsin early Genetic patients: P < 0.057, two-sided Mann-Whitney test, FDR
correction. h, RGTTCRA-tRFs/MT-tRFs ratio in the above six groups.*P < 0.02
and ***P < 0.00044 for early Idiopathic and Genetic patients, respectively, and
P<0.0013 for PD versus Ctrlin all groups. Two-way ANOVA. All box plotsin this
figure are defined so that the central line of the box plot represents the median;
the lower and upper box bounds represent 0.25 and 0.75 quantiles; and lower and
upper whisker bounds represent 0 and 1 quantiles.

counts (all carrying the TAACTTAGCATTAACCTTTTAA sequence) to
yield an RGTTCRA/MT score. The RGTTCRA/MT score of each con-
trol or prodromal patient from a matched pair was then divided by
the pair’s mean to yield a normalized score (hereafter ‘tRF-score’).
Next, we employed a gradient boosted machine learning (GBM) clas-
sification algorithm (five cross-validations; Methods) to subgroup
the samples into prodromal PD patients and controls, considering
their ethnicity, by clinical measurements of Unified PD Rating Scale
(UPDRS) motor scores and Hoehn and Yahr (H&Y) scores or by the
tRF-score described above. This resulted in areas under the curve
(AUCs; representing the ability to segregate the patients into control
and prodromal groups) of 0.73 for the clinical measurement (specific-
ity = 0.78, sensitivity = 0.583, positive predictive value (PPV) = 0.761,
negative predictive value (NPV) = 0.61) compared to an AUC of
0.86 (specificity = 0.867, sensitivity = 0.7, PPV = 0.84, NPV = 0.743)
for the tRF-score (Fig. 3a,b). In comparison, classification using
mixed labels (null) in both clinical and tRF measurements yielded a
non-significant AUC value of 0.43. Further validation using 10,000
permutations, each time sampling 60 different controls, con-
firmed these results, as did a logistic regression algorithm replacing
GBM (receiver operating characteristic (ROC)-AUC of 0.83 compared
to 0.70 using clinical measurements; Extended Data Fig. 4a).

To test if our findings reflect the biological role of these motifs
rather thantraining of the algorithm, we ran the exact same GBM-based

process 10,000 times on ratios between random motifs (lacking the
RGTTCRA sequence and appearing in at least the same number of
tRFs as the RGTTCRA motifs and the MT motifs; Methods). The
mean AUC received for the ratio between random motifs was 0.768
(s.d.=0.0537),and 99% of the AUCs were lower than 0.81 (Fig. 3c). These
findings support the notion that the AUC resulting from the tRF-score
reflects abiological rather than a mere training phenomenon.

PD symptoms often reflect patients’ genetics and ethnic origins.
Therefore, we tested the ability to segregate patients to prodromal and
control groups based on their genetic and ethnic backgrounds. The
tRF-score enabled segregating all subpopulations (Fig. 3d; P<2 x107°,
ANOVA), even when examining the non-normalized ratio (Extended
Data Fig. 4b; P<5x107%, ANOVA). Thus, two-thirds of prodromal
patients scored as 6 or higher, whereas two-thirds of controls scored
lowerthan6 (P<4 x 1075, chi-square test). An exception was Black con-
troland prodromal patients who had similar tRF-scores. However, their
UPDRS scoresrevealed the same trend (Extended Data Fig. 4c), poten-
tially suggesting that our test reflected real-life clinical measurements
inthese patients as well. Nonetheless, although the tRF-score measure-
ment was similar between prodromal and diagnosed PD patients, the
UPDRS score of prodromal patients was akin to that of controls and
differed dramatically from that of patients with PD (Extended Data
Fig.4d). Furtherindicating alink between our two motifs and the clini-
cal measurements, the tRF-scores of the optimally matched prodromal
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upper whisker bounds represent 0 and 1 quantiles.
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and control patients presented positive correlation with the total
UPDRS score (r=0.27,P<0.01; FDR, Spearman correlation; Extended
DataFig.4e) and with the scores of subsections Il and Il of the UPDRS
test(l:r=0.19,P<0.06;1l: r=0.245,P < 0.0163; 11l:r= 0.318, P < 0.004;
FDR, Spearman correlation; Extended Data Fig. 4f).

The tRF-score strengthens clinical measurements in
predicting PD pre-symptomatically
Next, we tested the GBM algorithms trained on the optimally matched
data (60 prodromal, 60 controls) on the fully matched data (60 prodro-
mal, 128 controls) (Methods). Both algorithms, whether trained on the
tRF-score or on clinical parameters, presented far better classification
abilities than random classification (Extended DataFig. 4g; P<5x 107,
P<3x107, chi-square test, FDR). However, the tRF-based measure-
ments performed better than the clinical ones (P < 0.0081, chi-square
test). Tore-challenge these observations, we tested the tRF-score-based
algorithm on a holdout validation sample, including 33 prodromal
samples and 33 matched control samples consisting of the second-
earliest timepoint of the patients used for cross-validation
(discovery sample) (Methods and Supplementary Table 7). The algo-
rithm successfully distinguished prodromal patients from controls
(P<0.0004, t-test; AUC of 0.75, confidence interval (Cl) = 0.63-0.86,
specificity = 0.727, sensitivity = 0.606, PPV = 0.69, NPV = 0.649;
Fig.3e,f), re-demonstrating the algorithm’s efficacy and the ability of
the tRF-score to identify prodromal patients. In comparison, testing
the algorithm trained on the clinical measurement on the holdout
validation sample yielded a weaker separation between control and
prodromal patients (AUC of 0.71, CI = 0.65-0.78, specificity = 0.523,
sensitivity = 0.777, PPV = 0.58, NPV = 0.734; Methods). Together, the
tRF-score performed at least as well as the clinical measurement and,
incertain cases, better thanthe clinical tests,both onthe cross-validated
discovery sample and on the holdout validation sample.
Insubsequent tests, PD diagnosis was established for 21 of those 60
studied prodromal PPMlI patients (with the rest yet undiagnosed). Com-
paring the tRF and UPDRS scores of these 21 patients to those of con-
trolsyielded amore significant separation by the tRF-score (P<1.1x107
versus P<7 %1073, t-test, FDR; Fig. 3g,h). Furthermore, 18 of the
21 patients whose PD diagnosis had been confirmed were ranked
higher by their tRF-score than by their UPDRS score (Extended
Data Fig. 4h), again emphasizing the advantage of using the dual
tRFs measurement. In later stages of PD with overt motor symptoms
(Supplementary Table 8), clinical measurements perfectly separated
patients from controls (AUC of 1), which left no room for added value
of other biomarkers. We conclude that the two-primer-based tRF-score
emerges as a reliable PD biomarker already in the earliest disease
stages and especially in combination with clinical or other available
measurements.

A dual qPCR of RGTTCRA-tRFs and MT-tRFs segregated PD
from controls in fresh blood and PM SN samples

To segregate patients with PD from controls based on a manual
qPCR-based tRF test, we drew blood from 10 patients with PD, from
10 patients with head traumaand from 10 controls from the Jerusalem
Shaare Zedek Medical Center (JLM cohort; Supplementary Table 9). We
used the two probes described above (ACq = RGTTCRA-tRF - MT-tRF;
Methods) and normalized the AACq separately for each sex (Methods
and Extended DataFig. 1j). Notably, patients with PD presented signifi-
cantly higher ratios of RGTTCRA-tRFs/MT-tRFs than either controls or
patients with trauma, which showed similar values (Fig. 3i,j; P< 0.05,
P <0.013, Dunnett test).

To further validate the capacity of our qPCR test to selectively
amplify the RGTTCRA motif, we subjected the amplicons of two
qPCR reactions (JLM cohort, one patient with PD and one patient
with trauma) tosmall RNA-seq. Inboth samples, over 50% of the reads
(compared to 0.3-10% in biological samples) were mapped to tRFs,

all carrying the RGTTCRA motif, with most derived from the same
tRNA region but from different tRFs (Extended Data Fig. 4i and Sup-
plementary Table 10). These findings provide experimental evidence
supporting the notion that our qPCR test primarily detects tRFs
that include the RGTTCRA motif and can quantify their levels in
patients’ blood.

To address the consistency of our findings in other tissues,
we tested 17 PD SN samples (six females) and six matched control
SN samples (three females) from the National Institutes of Health
(NIH) NeuroBioBank collection (Supplementary Table 11). Because
tRFs expressed in the brain are slightly different than those in
the blood, we designed a brain-adapted RGTTCRA-tRF primer
(CGGGTTCGATTCCC; Methods) to maximize the number of detected
RGTTCRA-tRFs. Our qPCR assay identified higher RGTTCRA-tRFs/
MT-tRFsratiosin PD thanin Ctrl (Fig. 3i k; P < 0.0452, t-test). Together,
our findings in blood and brain demonstrated that the signal
of motif-carrying tRFs identified in sequenced blood samples from
prodromal and PD patients can be translated into simple dual qPCR
blood tests.

RGTTCRA-tRFs show ‘dual-lock’ sequence complementarity to
rRNAs and to the translation-essential LeuCAG3’ tRF

Although MT-tRF reduction reflects well-studied PD-related mito-
chondrial dysfunction®®* that potentially leads to reduction in
MT-tRFs, our finding of RGTTCRA-tRF accumulation might reflect
biological activities accelerating PD progression. In this context,
four different tRFs in Saccharomyces cerevisiae were shown to
interrupt translation by interacting with ribosomal RNA (rRNA), in
regions other than tRNA binding sites®. Interestingly, we found all
four to include the PD motif. Furthermore, we identified a region
complementary to the RGTTCRA-tRF sequence in the leucine
tRNA-derived tRF (LeuCAG3’) that was reported to be essen-
tial for assembly of the translation complex, protein translation
and cellular viability** (Fig. 4a,b). Correspondingly, minimal energy
assessment (RNAup)* predicted a thermodynamically preferred
interaction (total energy of -10.46 kcal mol™) of RGTTCRA-tRFs
with the ribosome-essential LeuCAG3’ tRF (Fig. 4b), far lower bind-
ing energy than all other 1,017 CSF-identified tRFs (P<1x107°,
t-test; Fig. 4b).

Supporting the ribosome-binding prediction, we found sequences
complementary to the PD motif that are not involved in a secondary
structure in both the 18S and 28S rRNAs and are, hence, amenable
to hybridization (Fig. 4a,c). Correspondingly, RGTTCRA-tRFs
were predicted to bind more strongly to 18S and 28S rRNAs than all
other CSF tRFs (P<2x107%, P<3x107%, t-test, FDR; Fig. 4c). The
predicted binding of RGTTCRA-tRFs to both the LeuCAG3’ tRF and
the rRNA may lead to a ‘dual-lock’ mechanism interrupting both ini-
tiation and execution of translational processes (Fig. 4a). Indeed,
3 h of translation-interfering arginine or leucine starvation in three
human-originated cell lines*® led to enrichment of ribosome-bound
RGTTCRA-tRFs(P<0.023,P<0.027, Dunnett test; Extended DataFig. 5a
and supplementary text).

We next employed Forster resonance energy transfer (FRET)
fluorescence lifetime imaging (FLIM)* with pulsed interleaved
excitation (PIE) (Extended Data Fig. 5b,c) to assess the proximi-
ties between RGTTCRA-tRF (that is, donor fluorophore-labeled
RGTTCRA-tRF probe) and ribosomes (that is, acceptor fluorophore
tagging an antibody to the ribosomal protein RPL24) (Extended
Data Fig. 5¢c). The fluorescence lifetime (1) of the acceptor fluoro-
phore was longer after donor excitation (FRET-sensitized accep-
tor fluorescence) than after direct acceptor excitation (directly
excited acceptor fluorescence; 1.36 ns versus 1.00 ns; Extended Data
Fig.5d). The delayed acceptor fluorescence after donor excitation may
reflect a signature of FRET between the donor-acceptor pairs*® and,
hence, close proximity (<10 nm) of RGTTCRA-tRFs with ribosomes
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(Extended Data Fig. 5d,f), supporting direct interaction between
RGTTCRA-tRFs and the ribosome.

DBS is accompanied by reduced blood RGTTCRA-tRF levels
DBS of the subthalamic nucleus suppresses PD tremor symptoms
through an incompletely understood mechanism of action***°. To
search for RGTTCRA-tRF links to the disease symptoms, we studied
the effect of DBS on blood RGTTCRA-tRF levels in 19 DBS-treated
patients with PD of the PPMI cohort carrying LRRK2 (ref. 51) or GBA
mutations (Fig. 5a and Supplementary Table 12). Non-DBS-treated
PD patient carriers of the same PD-causing mutations (n = 11) showed
higher RGTTCRA-tRF levels than apparently healthy carriers of
these mutations (n=9; P<0.027, ANOVA). In comparison, the DBS-
treated mutation-carrying patients presented lower RGTTCRA-tRF
levels than non-DBS-treated patients (P < 0.095, ANOVA; Fig. 5b),
equivalent to the levels of the apparently healthy mutation-carrying
controls (P < 0.6, ANOVA; Fig. 5b). MT-tRFs showed no significant
difference between DBS-treated and the other groups (Extended
DataFig. 6a). The clinical capacity of DBS to effectively co-suppress
blood RGTTCRA-tRF levels and tremor symptoms suggests that
RGTTCRA-tRF blood levels may be related to the tremor profiles
of PD patients.

Seeking potential causes for the reduced percentage of
RGTTCRA-tRFs out of total tRFs, and considering that DBS alters blood
transcript profiles® as well as the effect of Ang on RGTTCRA-tRF levels,
we measured Ang levelsin DBS-treated patients and controls. For this
purpose, we used our microarray dataset, GSE23676 (ref. 52), consisting
ofblood taken from six controls and seven patients with PD (all males),
where PD blood was drawn before DBS surgery or several months after
DBStreatment (Fig. 5a, Soreq dataset; Methods, Extended Data Fig. 1k
and Supplementary Table 13). Interestingly, Ang mRNA levels were
similarin controls and patients with PD (before DBS) but decreased in
six of the seven patients with PD after DBS (P < 0.019, ANOVA; Fig. 5¢),
possibly reflecting a limited post-DBS capacity to produce tRFs.

Depolarization of cultured cells reduces RGTTCRA-tRFs and
impairs their ribosomal association

To examine the effects of electrical stimulation (such as DBS) on
RGTTCRA-tRFs, we mined ashort RNA-seq and ribosomal profiling data-
set (GSE155727)% from SHSY-5Y neuroblastoma cells harvested before,
immediately after or 2 h after electrophysiological depolarization
(2 hpost depolarization (pDP); Fig. 5d and Supplementary Table 14).
Immediately after depolarization, the cytosolic fraction of these cells
showed reduced RGTTCRA-tRF shares, followed by re-elevation 2 h
later (reminiscent of our findings in DBS-treated patients; Fig. 5e; rest-
ing versus depolarization, P < 0.01; resting versus 2 h pDP, P< 0.015;
depolarizationversus2 hpDP, P <0.0001, ANOVA). There-elevation of
RGTTCRA-tRFs share was accompanied by reduced cytosolic MT-tRFs
share (Fig. 5f; P< 0.0033, ANOVA). Although depolarization did not
immediately change the ribosomal-bound fraction of RGTTCRA-tRFs,
this fraction was reduced 2 h later (Fig. 5e; 2 h pDP versus resting,
P<0.015; 2 h pDP versus depolarization, P < 0.0065, ANOVA). The
distribution of tRFs to MT-tRFs, RGTTCRA-tRFs and all other tRFs was
furtheraltered 2 hpDPin theribosome-bound fraction of three samples
compared to the mean distributions of this fraction in resting cells
(P<0.006,P<0.022,P<0.024, chi-square, FDR; Fig. 5f).

Because RGTTCRA-tRFs mainly belong to the 3’ and i-tRF sub-
types, we compared the fraction of RGTTCRA-tRFs in these specific
subtypes and found the same association patterns as described above
(Extended DataFig. 6b and supplementary information for Extended
DataFig. 6). Although RGTTCRA-tRFs constituted asmall portion of the
total cytoplasmic short RNAs, their share of the ribosomal-associated
RNAswas roughly 10-fold higher (P< 8 x 10, ANOVA; Fig. 5f). Our FRET
findings, together with the selectively weakened ribosomal association
of RGTTCRA-tRFs within 2 h after electrophysiological depolariza-
tion, suggest that the depolarizing qualities of DBS may impact the
ribosomal association of RGTTCRA-tRFs. Altogether, RGTTCRA-tRFs
and MT-tRFs showed selective and distinct co-regulation under elec-
trophysiological stimuli at both the cellular and organismal levels.
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PPMI and Soreq datasets. b, RGTTCRA-tRF levels in control carriers of PD-related
mutations (gray) and PD carriers of mutated LRRK2 or GBA genes (blue) with
and without DBS (red and black outlines), n=9,11,19. y: percentage of RGTTCRA-
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PD versus DBS #P < 0.095, one-way ANOVA. ¢, Ang levels in blood samples of
controls and patients with PD before and after DBS treatment, from the Soreq
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one-way ANOVA. d, Small RNA-seq and ribosome-bound RNA-seq fractions of
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*P<0.015, Dep versus 2 h pDP ***P < 0.0001; ribosome fraction: 2 h pDP versus
resting *P < 0.015,2 h pDP versus Dep *P < 0.0065; two-way ANOVA. f, Total and
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Discussion
Fromour study, tRFs carrying arepetitive motif emerged as potentially
suitable biomarkers that may constitute patient-specific ‘fingerprints’
and carry short conserved sequence motifs that enable single measure-
ment of multiple tRFs. Intriguingly, we found that RGTTCRA-tRFs accu-
mulatein the brain, CSF and blood of male and female patients with PD
atdiverse disease stages but notin matched controls or in patients with
AD.Moreover, motif-carrying RGTTCRA-tRFs consistently showed link-
ageto PD symptoms and disease stages, and their levels were elevated
incorrelation with Lewy body scoresin patients’ SN. Additionally, part
of the identified RGTTCRA-tRFs stem from tRNAs that carry phenyl-
alanine or cysteine amino acids, known to be the rate-limiting factors
in the dopamine synthesis and in glutathione reductase antioxidant
mechanism, respectively. Thus, shortage of these intact tRNAs (as
they are enzymatically cut into the observed tRFs) may correspond
to impaired dopamine synthesis®* or to processes that limit cellular
antioxidation®. Compatible with the known mitochondrial damage
in PD?® (which leads to general reduction in mitochondrial transcript
levels), we further found reduced levels of MT-tRFs in the CSF and SN
ofidiopathic PD patients and in the blood of early PD patients carrying
disease-related mutations.

Our segregation algorithm focused on prodromal patients rather
thanpatients at later stages of PD because it is these early disease stages

that call for biomarker development, especially as, in later stages,
clinical measurements suffice to determine a clear diagnosis of PD. Cor-
respondingly, the ratio of RGTTCRA-tRFs to MT-tRFs segregated early
prodromal patients from healthy controls as well as or evenbetter than
those of the gold standard clinical UPDRS and H&Y measurements. This
could indicate that the ratio of RGTTCRA-tRFs to MT-tRFs may serve
asapotential diagnostic tool for the earliest stages of PD, especially in
combination with other available pre-symptomatic detectors. To our
knowledge, this evaluation, which is based on publicly available data
sources and manual tests, is the first to identify the power of blood
tRFsas PD biomarkers. Nonetheless, this cross-sectional study calls for
longitudinal studies following patients throughout disease progres-
sionto offer insights into biomarker changes and treatment outcome.

Asmodernmedicine aims toachieve patient-specific therapeutics,
itis crucial for biomarker assays tocompensate for inter-individual vari-
abilitiesin measured values. Capturing multiple nuclear-originated and
mitochondrial-originated tRFs using a dual primer qPCR blood-based
assay may fulfill this demand. Specifically, our tRF-based score was
designed to enable patient-tailored diagnosis, where the qPCR values
determined for a certain patient will be compared to those of healthy
volunteers or patients with PD of the same sex, ethnicity and genetic
background, thus sparing the need for complex matching and normali-
zation.Indeed, manual running of this dual qPCR test showed that the
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tRF-score segregated patients with PD from controls without the need
for machine learning algorithms.

Notably, our study relied predominantly on samples from
specific demographics, and, as such, the results might not be uni-
versally applicable to all populations. Thus, that the tRF-score was
similarin prodromal African American patients and matched controls
paralleled an identical trend in H&Y and UPDRS scores in this cohort,
strengthening the notion that this score represents a true effect and
calling for further studies of such patient-matched tests and validation
indiverse patient cohorts.

Notably, too, blood RGTTCRA-tRF levels were effectively reduced
under DBS stimulation, suggesting alinkage among tremor symptoms,
electrical stimulus and the cellular localization and activities of these
tRFs. Furthermore, yeast tRF research done by others* and interaction
predictions suggest that RGTTCRA-tRFs bind to the ribosome, poten-
tiallyinan evolutionarily conserved translation-arresting manner. These
findings are compatible with our FRET measurements and with the
observation of ribosomal association and depolarization-triggered ribo-
somal dissociation of RGTTCRA-tRFsin cultured neuroblastoma cells.
Moreover, as Ang may contribute to the synthesis of RGTTCRA-tRFs,
our findings call for in-depth examination of the therapeutic potential
of carefully adjustingits activity in the brains of patients with PD.

Mitochondrial death is a hallmark characteristic of many neuro-
degenerative diseases**” and was suggested as a blood biomarker
in AD***°, However, recent blood-based tests of mitochondrial dys-
function in PD" reported that, in genetic cases, mitochondrial DNA
damage was observed irrespective of a PD diagnosis*, highlighting
the need to add other biomarkers to such tests. In this context, our
combined nuclear/mitochondrial RGTTCRA-tRFs/MT-tRFs meas-
urements enable segregating genetic PD patients from apparently
healthy unaffected controls carrying the same PD-related mutations.
Anin-depth comprehensive analysis of larger patient cohorts will be
needed tobetter determine the efficacy of our tRF-based measurement
in comparison to other blood-based PD biomarkers.

Theavailability of anearly, reliable and rapid blood test for PD diag-
nosis may potentially alleviate the burden of uncertainty from suffering
individuals, assist clinicians’ care of those patients early in the disease
process and openroutes for developing and testing new therapeutics.
To achieve these goals, an efficient diagnostic test should (1) provide
accurate and disease-specificresults, (2) avoid complex neurosurgical
procedures, (3) entail minimal risks to the tested patients, (4) be easy
to performand (5) be inexpensive. Unlike CSF-based tests that can be
risky, costly and dependent on complex molecular and biochemical
procedures, qPCR-based blood tests are minimally invasive, do not
depend on hospital care and offer quick procedures based on easily
amplifiable signals. Our tRF-based blood measurement proved efficient
in separating prodromal PD patients from controls by a simple dual
gqPCR assay, suggesting that it may equip clinicians with an informa-
tive diagnostic tool based onasingle individual blood test, alone orin
combination with other non-invasive measurements. The reliability,
sensitivity, speed and low cost of our assay may all indicate its value for
enabling an improved universal, pre-symptomatic PD diagnosis that
can improve detection rates and offer beneficial clinical approaches
to patients with PD at diverse stages of their disease.

Methods

Ethics statement

Ethics approval for this study was confirmed by the Hebrew University’s
committee for research involving human-derived materials. Blood
samples of theJLM cohort were collected at the Shaare Zedek Medical
CenterinJerusalem under Helsinki approval number SZMC-0029-20.

Study population
This study consists of human brain (n = 8) and blood (n =37) samples
obtained fromthe NBB and of human brain samples (n = 23) obtained

from the NIH NeuroBioBank, each under the relevant institution’s
ethics and guidelines. Blood samples were further collected at the
Shaare Zedek Medical Center (n = 30) under Helsinkiapproval number
SZMC-0029-20. Other human data were downloaded from the PPMI
(blood; n=475) and the NIH (CSF; n =152) and from GSE23676 (blood;
n=20),allunder relevant ethics approval. Further details can be found
in Extended Data Fig. 1 and in Supplementary Tables 1a, 3, 5-9 and
11-13. Written informed consent was obtained for all human samples
includedinthis study.

Small RNA-seq of human SN samples

Braintissues were obtained fromthe NBB as described inHananetal.”.
RNA from eight male PD patient samples (see Supplementary Table 3
for patient information) was extracted using an miRNeasy Mini Kit
(Qiagen, 217004) according to the manufacturer’s protocol, followed
by RNA concentration determination (NanoDrop 2000; Thermo Fisher
Scientific), standard gel electrophoresis for quality assessment and RIN
determination (Bioanalyzer 6000; Agilent). Libraries were generated
from1,200 ng of RNA (NEBNext Multiplex Small RNA Library Prep Set
for lllumina; New England Biolabs, E7560S), and the small RNA fraction
was sequenced on a NextSeq 500 system (Illumina) at the Center for
Genomic Technologies, Hebrew University of Jerusalem. Data were
depositedinthe Gene Expression Omnibus (GEO) (GSE256334). THand
DAT levels for these samples are taken from previously published data®.

Small RNA-seq of PM blood samples

Wholeblood samples were obtained fromthe NBB (see Supplementary
Table 5 for patientinformation). RNA was extracted using a NucleoSpin
RNA Blood Mini Kit for RNA from blood (Machery-Nagel, 740200)
according to the manufacturer’s protocol, followed by RNA concen-
tration and quality determination as above. Libraries were generated
from100 ng of total RNA (NEBNext Multiplex Small RNA Library Prep
Set for lllumina, as above), and the small RNA fraction was sequenced
onaNextSeq2000 system (Illumina) at the Center for Genomic Tech-
nologies, Hebrew University of Jerusalem. Data were deposited in
GSE256334 asabove.

Alignment of tRFs

FASTQfiles (of bothin-house sequencing and of publicly available data)
were checked for quality using FastQC®, and adaptors (if present)
were removed using FLEXBAR® according to the pipeline manual.
Adaptor-less output FASTQ files were then aligned to tRFs using
MINTmap (version1.0)%% See Extended Data Fig. 1 for elaboration.

Analysis of the CSF (ventricular) dataset

The CSF database phs000727 (downloaded from the National Center
for Biotechnology Information (NCBI) database of Genotypes and
Phenotypes (dbGaP)) included 66 patients with PD (20 removed as
detailed below), 67 patients with AD (14 removed) and 69 healthy
controls (16 removed). Before differential expression analysis, a prin-
cipal component analysis was run based on tRF expression data, and
samples that did not cluster were removed from the analysis. Those
included six patients with PD, four patients with AD and six controls.
Another five controls were removed because they had moderate SN
depigmentation compared to no or mild depigmentationin other con-
trols, and two additional controls were removed due to a combination
of high AB plaque density (frequent) and high Tau tangle score (above
10). Likewise, 13 patients with PD were removed due to AD-like Braak,
plaques or tangles scores. Seven patients with AD were removed due to
severe SN depigmentation. Lastly, one control and one patient with AD
were removed due to age younger than 60 years, and two controls, two
patients with AD and one patient with PD were excluded due to excep-
tionally low tRF coverage (these patients had 21-1,627 counts, whereas
the next lowest coverage patient had 11,745 counts). All eliminations
were done before performing any analysis. See Supplementary Table 1a
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for general data of the CSF dataset and Supplementary Table 1b for alist
ofexcluded samples. To further prevent any potential bias, differential
expression analysis accounted for patient age, sex and PM interval.

Analysis of the PPMI dataset

Small RNA-seq was obtained in February 2021 from the PPMI database
(https://www.ppmi-info.org/access-dataspecimens/download-data),
RRID: SCR 006431. Updated participant status was re-downloaded in
October 2023. For up-to-date information on the study, see https://
www.ppmi-info.org/. Only samples with RIN > 6 were analyzed, and
we additionally filtered out samples of participants who were disquali-
fied by the PPMI or who had undetermined sex®. See Supplementary
Tables 6-8 and 11 for elaboration.

Data preparation and feature selection. To test our hypothesis
that tRFs can constitute a patient-specific fingerprint, we used all the
samples of PPMI patients having tRF counts from four different time-
points (n =318). Tofocus onthe mostinformative features, we selected
thetop 0.5% of enriched tRFs, resulting in a set of 253 tRFs for analysis.
The datawere splitinto training and test sets, with the test set compris-
ingthe last available sample from each patient, to evaluate the model’s
performance across timepoints. Leveraging multiple timepoints per
patient aimed to test whether blood-quantified tRFs might serve as a
unique, patient-specific fingerprint and determine if the tRF values
fromapatient’s first three timepoints could accurately identify which
of the remaining samples belonged to that patient. We implemented
aMultiClassModel class to trainand evaluate multiple machine learn-
ing classifiers, including XGBoost, HistGradientBoostingClassifier,
RandomForestClassifier, Support Vector Classifiers (linear and non-
linear), K-Nearest Neighbors, Gaussian Naive Bayes and OneVsRest
(OVR) Logistic Regression. The OvR approach, also called One-vs-All,
extends binary classifiers such as logistic regression to handle multi-
class problems by training a separate binary classifier for each class. In
thissetup, the class of interest is treated as the positive label, whereas
all other classes are grouped as negative. During prediction, the
classifier with the highest probability score is selected as the final
output. OvRis computationally efficient and straightforward, although
it may not capture interactions between classes as comprehensively
as multinomial logistic regression or One-vs-One approaches. As
supported by Rifkin and Klautau®*, OvR can achieve accuracy simi-
lar to more complex methods, especially when binary classifiers are
welltuned, makingit arobustand widely used solutionin practice. All
features were standardized using StandardScaler before model train-
ing. The Matthews correlation coefficient (MCC) was chosen as the
primary evaluation metric due to its robustness in assessing both
binary and multiclass classifications. After identifying the
best-performing classifier, we conducted hyperparameter tuning
using GridSearchCV with predefined parameter grids, optimizing for
the MCC score. To validate the assumption that the model’s perfor-
mance was not due to chance, we compared the best-tuned classifier
against adummy model trained on shuffled labels. This comparison
served to confirmthe presence of agenuine, individual-specific signal
inthe tRF profiles.

For prodromal (pre-symptomatic) patient analysis, we subdivided,
from the above-described PPMI data, prodromal and control patients
with known genetic background (idiopathic or GBA®), known ethnicity,
without prescribed PD medications and older than 58 years. Further-
more, patients with psychiatric anxiety, muscleinflammation, urinary
bladderimpairments and diabetes were excluded (due tounderrepre-
sentationineither the prodromal or the control group). Toexamine the
earliest possible stage, we only selected patients with sequencing data
from timepoints ‘BL’,‘V02’ or ‘V04’ (corresponding to initial diagnosis,
6 monthslater and 12 months later). For each of these patients, we used
the earliest timepoint available for the discovery sample (60 prodromal
patients and 110 controls) and the second-earliest timepoint for the

holdoutvalidation sample (33 prodromal patients and 33 controls). The
single Asian control meeting the above criteria was excluded because
there was no Asian prodromal patient (see Supplementary Table 7 for
sample information and the ‘Statistics and reproducibility’ subsec-
tion for classification processes). Additionally, to prevent biological
outliers, we used only idiopathic patients of White ethnicity (as none
ofthe other ethnicities or genetic backgrounds presented inboth the
prodromal and control groups to enable proper matching). Of note, as
only one of the control patientsin the test data had clinical scores (the
rest of the controls had neither UPDRS nor H&Y scores), we imputed
the UPDRS and the H&Y scores of the control patients. For each patient,
we calculated the mean value of all the timepoints of that patient for
each of these measurements. Because these were needed only for the
control patients, theimputed values were anyway close to zeroinboth
of the measurements.

To produce ROC curves for patients with PD, we selected patients
and controls with known genetic background and without prescribed
PD medications. Toreduce variationbetween the groups, we selected
patients only from ‘Phase 1’and the following ethnicities: ‘White’,‘Black
or African American’,‘Hispanic or Latino’ or ‘AshkenaziJewish’. Further-
more, to analyze the early stages of diagnosed PD patients, we used
only timepoint ‘BL" and PD patients for whom PD duration was 0. See
Supplementary Table 8 for patient information.

To analyze DBS effects, we used small RNA-seq from the 19 patients
withPDwho were treated with DBS, all from the ‘Phase 2’ group and hav-
ing familial PD, 14 with LRRK2 mutations and five with GBA mutations.
Levels of RGTTCRA-tRFs in the DBS-treated patients were compared
tothosein PD patients with the above mutations who did not undergo
DBSsurgery (n=11) and to those in control patients carrying the same
mutations (n=9). Non-DBS PD patients and controls were selected
from the latest timepoint (V8) to account for the length of time most
DBS-treated PD patients have beenill. See Supplementary Table 11 for
sample information.

PPMI—a public-private partnership—is funded by the Michael
J. Fox Foundation for Parkinson’s Research and by funding partners,
including 4D Pharma, AbbVie, AcureX, Allergan, Amathus Therapeu-
tics, Aligning Science Across Parkinson’s, AskBio, Avid Radiopharma-
ceuticals, BIAL, BioArctic, Biogen, Biohaven, BioLegend, BlueRock
Therapeutics, Bristol Myers Squibb, Calico Labs, Capsida Biothera-
peutics, Celgene, Cerevel Therapeutics, Coave Therapeutics, DaCapo
Brainscience, Denali, the Edmond J. Safra Foundation, Eli Lilly, Gain
Therapeutics, GE Healthcare, Genentech, GlaxoSmithKline, Golub
Capital, Handl Therapeutics, Insitro,Janssen Neuroscience,Jazz Phar-
maceuticals, Lundbeck, Merck, Meso Scale Discovery, Mission Thera-
peutics, Neurocrine Biosciences, Neuropore, Pfizer, Piramal, Prevail
Therapeutics, Roche, Sanofi, Servier, Sun Pharma Advanced Research
Company, Takeda, Teva, UCB, Vanqua Bio, Verily, Voyager Therapeutics,
the Weston Family Foundation and Yumanity Therapeutics.

JLM blood sample set

Blood from 10 patients with PD, 10 patients with head trauma and
10 controls was taken in Jerusalem under Helsinki approval number
SZMC-0029-20. Each group consisted of males and females, and all
three had asimilar average age (PD, 72 + 7.5; Trauma, 73 + 12; Control,
68 +5.6).See Supplementary Table 9 for detailed patientinformation.
Samples were collected in Tempus Blood RNA Tubes (Thermo Fisher
Scientific,4342792), and RNA was extracted using aNorgen Preserved
Blood RNA Purification Kit I (Norgen Biotek, 43400). Concentration
was determined (NanoDrop 2000; Thermo Fisher Scientific), and
quality was assessed by standard agarose gel electrophoresis. cDNA
synthesis (from 250 ng) and qPCR are described below.

NIH NeuroBioBank sample set
SN tissue samples (left hemisphere) were obtained from the NIH
NeuroBioBank. Alldonors died of natural cause at age 71-79 years and
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were of ‘White’ ethnicity. For elaboration, see Supplementary Table 10.
RNA was extracted using the miRNeasy Mini Kit as above, followed by
RNA concentration determination and quality assessment as above.
cDNA synthesis (from 500 ng) and qPCR are described below.

cDNA synthesis and qPCR

cDNA was prepared using a qScript microRNA cDNA Synthesis Kit
(Quantabio, 95107). qPCRs were performed in 96-well (Bio-Rad,
HSP9601) or 384-well (Bio-Rad, HSP3805) plates, using PerfeCTa
SYBR Green FastMix Low ROX (Quantabio, 95074) and primers (Merck)
as below, on a Bio-Rad CFX384 Touch Real-Time PCR System with
CFX Maestro software (Bio-Rad, version 4.1.2433.1219). The qPCR
was programmed for 30 s of annealing/extension at 50 °C due to the
short primer length. ACq for each sample was calculated as ‘mean
(RGTTCRA-tRF triplicate) - mean (MT-tRF triplicate)’. AACq was
calculated by dividing each ACq value by the mean ACq of the control
patients. Expression of each sample was calculated as 2*4<9,

Forward primer sequences:

a. RGTTCRA-tRF primer for blood samples: GGTCCCTGGTTCAA

b. RGTTCRA-tRF primer for brain samples: CGGGTTCGATTCCC

¢. MT-tRF primer for blood and brain samples:
TAACTTAGCATTAACCTTTTAA

gqPCR amplicon sequencing

The products of two qPCR amplicons (PD1 and T7) were sequenced
as follows. Small RNA libraries were prepared from 500 ng of cDNA
(blunting with NEB-E1201, followed by poly(A) and library preparation
with KAPA (KK8420) mRNA-seqKit) and sequenced using the NextSeq
2000 system (lllumina) as described above. FASTQ files were aligned
to tRFsas described above.

Soreq DBS long-RNA array

Sequencing data of blood taken from six controls and seven patients
with PD (all males) were downloaded from GEO dataset GSE23676.
Blood from patients with PD was drawn before DBS surgery and several
months after surgery, upon optimal stimulation (Supplementary
Table 12). Affymetrix probes of Ang were found using biomaRt®, and
allthe Ang probes were summed to yield the expression of the gene.

Binding energy of tRFs to the ribosome-essential tRF and
rRNAs

To assess the affinity of the CSF-expressed tRFs (1,017 tRFs in the
CSF dataset that were expressed above a median of 10 CPM) to the
Ribo-essential tRF** and to rRNAs®, we used the RNAup web server®.
We checked each of the expressed tRFs against the sequences of the
Ribo-essential tRFs and against the openregionsinthe rRNAs that we
found to contain reverse complement sequences to the RGTTCRA
sequence (see sequences below), and we retrieved the total energy for
each tRF (total energy equals the sum of melting energies of each of the
sequences minus their binding energy to each other):

a. Ribo-essential tRF: TCGAATCCCACTCCTGACACCA

b. 18S RGTTCRA reverse complement open region:
AGGGGCGAAAGACTAATCGAACCAUTCTA

c. 28SRGTTCRA reverse complement open region:
TAACCCGTTGAACCCCAT

Cell culture

The human-derived neuroblastoma cell line LAN-5 was cultured
under standard conditions (37 °C, 5% CO,) in RPMI (Merck, RO883)
supplemented with FCS (10% final concentration; Sartorius, 04-127),
L-glutamine (2 mM final concentration; Sartorius, 03-020) and
penicillin-streptomycin-amphotericin (100 U ml™, 0.1 mg ml™?,
0.25 ug ml™, final concentrations, respectively; Sartorius, 03-033).

Cells were mycoplasma free (MycoBlue Mycoplasma Detection Kit;
Vazyme, D101) and were used between passages 5 and 8.

Immunofluorescence and in situ hybridization

Cells were plated on glass coverslips in 24-well plates at 30,000
cells per well. Six days later, cells were fixed with 4% paraformalde-
hyde and permeabilized with methanol at —20 °C. Blocking solution
(PBS with 5% normal donkey serum) was added to the wells for1 h
at room temperature, followed by 1-h incubation with primary anti-
body against human RPL24 (Proteintech, 17082-1-AP; rabbit poly-
clonal, 1:1,000) and secondary antibody labeled with Alexa Fluor 568
(Thermo Fisher Scientific, A10042; donkey anti-rabbit, 1:1,000) for 2 h.
Cells were then washed with FISH buffer (1:1 of 2x SCC and 50%
formamide and containing 50 ug ml™ heparin), followed by overnight
incubation at 37 °C with Affinity Plus (Integrated DNA Technologies)
insitu probe, ataconcentration of 200 nM. The probes were 5’-labeled
with Alexa Fluor 488 and contained locked nucleic acids at the bases
marked ‘+:

a. Probe sequence: ACT + CGAA+ CCCA + CAAC+CTT

FRET-FLIM with PIE

To assess interactions with donor-acceptor proximity of less than
10 nm (refs. 48,67-69) between RGTTCRA-tRFs and ribosomes, we
used FRET-FLIM with PIE”°”7? (Extended Data Fig. 5). This allowed col-
lecting fluorescence photon absolute detection times and detection
times relative to moments of excitation for donor fluorescence after
donor excitation, for acceptor fluorescence after donor excitation
and FRET and for acceptor fluorescence after acceptor direct excita-
tion. This was achieved with a confocal-based setup (ISS) assembled
on top of a modified Olympus IX71 inverted microscope, as previ-
ously reported”’*. Donor and acceptor PIE was achieved by 488-nm
and 532-nm picosecond pulsed lasers (A =488 nm, pulse width 80 ps
full width at half maximum (FWHM), A =532 nm, pulse of 100 ps
FWHM, rate; QuixX 488-60 PS, Omicron-Laserage, and FL-532-PICO,
CNI), operating at 20-MHz repetition rate and interleaved by 25 ns.
Of note, levels of donor fluorescence leakage into the acceptor
fluorescence detection channel were negligible*. The laser beams
passed through a single-mode polarization maintaining optical fiber
(P1-405BPM-FC-Custom, specifications similar to those of PM-5405-XP,
Thorlabs), acollimating lens (AC080-016-A-ML, Thorlabs), a halfwave
plate (WPMP2-20(OD)-BB 550 nm, Karl Lambrecht Corp.) and a
linear polarizer (DPM-100-VIS, Meadowlark Optics). Laser beams
for acquiring images in laser scanning mode were reflected through
galvo-scanning mirrors (6215H XY, Novanta Corp.) and scan lens
(30 mm diameter x 50 mm focal length (FL), VIS-NIR Coated, Achro-
matic Lens, Edmund Optics) using adichroicbeam splitter at 405 nm,
488 nm, 532 nmand 640 nm (ZT405/488/532/640rpc-XT, Chroma). A
x100/1.45numerical aperture (NA) oil objective (UPLSAPO100X0 x100
/1.45/ 0il /= /0.17/ OFN 26.5, Olympus) focused the light onto a small
effective excitation volume. Scattered light was imaged on a CMOS
camera (ThorCam, Thorlabs) using Airy ring pattern visualization.
Fluorescence was collected through the same objective and focused
withanachromaticlens (25 mmdiameter x100 mmFL, VIS-NIR Coated,
Edmund Optics) onto a 100-pm-diameter pinhole and re-collimated
with another achromatic lens (f=100 mm; AC254-060-A, Thorlabs).
Fluorescence was then split into two detection channels, 510/20 for
AF488 and 698/70 for AF568, using a dichroic mirror (555-nm cutoff,
FF555-Di03-25 x 36, Semrock) followed by bandpass filter 510/20 nm
forwavelength <555 nmand 698/70 nm for wavelength >555 nm (FFO3-
510/20-25 and ff01-697/58-25, Semrock). Photons were detected using
cooled hybrid photomultipliers (model R10467U-40, Hamamatsu)
routed to a time-correlated single-photon counting module (SPC-
150, Becker & Hickl) as its START signal (STOP signal was routed from
the pulsed laser controller). For data acquisition, we used VistaVision
software (version 4.2.095, 64-bit, ISS) in time-tagged time-resolved
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(TTTR) file format, and images were obtained using a laser scanning
modaule in which a three-axis DAC module (ISS) synchronized data
acquisition and control over the galvo-scanning mirrors. Images for
FLIM measurements were obtained by tail-fitting fluorescence decays
of each pixel in each photon stream (combination of excitation laser
and detection channel), ifithad atleast 50 photons. FLIM images were
acquired with10-ms pixel dwell times in15 x 15-pm?image dimensions
and 128 x 128-pixel resolutions.

Statistics and reproducibility
All multiple comparisons were FDR corrected, and all visualizations
were done using ggplot2 (ref. 75) in R (version 4.0.3)7. All statistical
tests were conducted two-sided unless reported otherwise. All of the
box plots in this paper are defined so that the central line of the box
plotrepresents the median; the lower and upper box bounds represent
0.25 and 0.75 quantiles, respectively; and lower and upper whisker
boundsrepresent 0 and 1 quantiles, respectively. Differential analysis
was carried out using edgeR”” (version 4.0.14) with patient age, sex
and PM interval used as covariates in the design matrix of the edgeR
analysis. Data collection and analysis were not performed blinded to
the conditions of the experiments. No statistical methods were used to
pre-determine sample sizes, but our sample sizes are compatible with
those accepted in other publicationsin the field******, Due to the small
number of samplesin the SN data, we used the RNASeqPower pipeline”™
(version 1.42.0) to estimate the power of the differentially expressed
tRFsinthese samples. We found the power of each of the differentially
expressed tRFsto be higher than 0.87, with most of them (25th quantile
and above) having a power higher than 0.9, which may improve the
credibility of our findings in spite of the small number of samples.
Whenever the number of samples was smaller than 30, and the
data did not distribute normally (P < 0.05 in a Shapiro test), a non-
parametric test was run. Non-parametric tests were likewise used upon
the need to compare median rather than mean values. All correlation
tests conducted in this study (Extended Data Figs. 3c and 4e,f) are
Spearman correlations, as we were interested in any type rather than
linear correlation. Whenever comparing two groups to a third one,
we used a Dunnett test (Figs. 1b,c and 3g,h and Extended Data Fig. 5a)
Binomial test was run on the differentially expressed tRFs in the
CSF (Fig. 1b) and showed that they behave as a family and that most
of the tRFs carrying the motif change in the same way. Upon compar-
ing RGTTCRA-tRF and MT-tRF or RGTTCRA/MT-tRF ratio in blood of
living and PM patients (Fig. 2f-h), we used the Mann-Whitney test
(with FDR correcting for multiple comparisons) to compare the PD
effect (PD versus Ctrlin each subgroup of aspecific dataset and genetic
background), and we employed a two-way ANOVA test to estimate the
overall effect of PD while accounting for the dataset (that is, PM or alive)
and the genetic background as covariates. The reason for using Mann-
Whitney rather than a ¢-test for the first type of comparisons was that
both the genetic controls and the PD idiopathic groups included low
patient numbers (16 in each), and the data did not distribute normally
(P<0.0014,P<0.003,P<3x107, for PM RGTTCRA-tRF and MT-tRFs
and Live genetic MT-tRFs, respectively; Shapiro test).
Matchinganalysis was carried out using Matchlt” (version 4.6.0),
with matched factors being sex, age and batch (‘Study’), distance = ‘glm’
and link = ‘probit’. For each of the ROC calculations (either prodromal
and controls or PD and controls), we first used an ‘optimal’ matching
in which each prodromal or PD patient was matched with a control
(based on the above-mentioned factors). Next, the ratio between
RGTTCRA-tRFs to MT-tRFs was normalized for each matched pair of
prodromal and control or PD and control individuals, by dividing the
pair’s scores by the pair’s mean. Lastly, we used a machine learning
algorithmto calculate ROC (MLeval, version 0.3)*°. In the feature selec-
tion process, aMann-Whitney calculation was used to prevent outlier
patients from skewing the results (for this reasoning, we focused on
median rather than mean differences). The dimensions used for the

ROC calculations included ethnicity and either UPDRS Ill and H&Y
scores or the tRF normalized ratio (described above). The training
control was performed with five cross-validations using both GBM
and linear model (LM) machine learning algorithms (method = ‘cv’,
summaryFunction = twoClassSummary, number =5 and classProbs
and savePredictions = T). ROC curves were plotted using the pROC
package® (version1.18.5).

In training the model on randomly mixed labels, we received
an AUC of 0.43, which reflects systematic misclassification rather
than predictive power, as the model picked up on random patternsin
the data. This resultillustrates the random distribution expectedin a
sham model setup, with a marginal error. We further ran iterations of
a‘full’matchinginwhich patients were divided into clusters, each con-
taining at least one prodromal or PD patient and one control, and the
same pipeline as described above for the ‘optimal’ matching was used.

To compute the ability of the tRF-based and the clinical-based algo-
rithms to classify patients (Extended Data Fig. 4g), we ran chi-square,
first using the percentage of patients predicted by random distri-
bution and then using the percentage of patients predicted by the
clinical-based algorithm as the reference probability. This created a
confusion matrix of two columns (predicted to be prodromal, pre-
dicted to be control) and two rows (is indeed prodromal, is indeed
control). Comparing the matrix of the tRF-based algorithm to the
reference clinical-based matrix enabled proving that the tRF-based
algorithm predicted a higher number of true prodromal patients to
be prodromal.

Checking random motifs for the ability to segregate
prodromal from control patients

First, we extracted all options of 14-nt-long sequences found in the
PPMI-expressed tRFs. For example, for a tRF with the length of 30 nt, we
regarded each of the sequences produced from nucleotides1-14,2-15,
3-16...17-30 as a potential motif. We than created 10,000 couples of
randomly selected motifs and, for each couple, ran the same process
as described above (namely, for each patient, we summed the counts
for each of these motifs and calculated the ratio between the sums). We
thennormalized theratio for each pair of optimally matched prodromal
and control patients by dividing both by the mean of the pair’s ratio.
We ran GMB analysis and extracted the yielded AUC.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

AlIRNA sequencing data created for this study are availablein the GEO
under GSE256334. Data produced by others and used for this study are
available at the NIH under phs000727, in the PPMI consortium and in
the GEO under GSE130764, GSE23676 and GSE155727. Metadata and
column data for the used datasets are available in the supplementary
tables. Any other datareportedin this paper are available from the lead
contact uponreasonable request.

Code availability
The codes used for these data are available at https://github.com/
NimrodMd/PD_motif _codes.git.
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Extended Data Fig. 1| Technical representation of the datasets and methods.
a.The different datasets used in this work with total number of samplesin each.
All datasets were subjected to files quality check (using FASTQC), adaptor
removal (FLEXBAR) and alignment to tRFs (MINTmap). b. DE analysis using
EdgeR was applied on CSF (PD vs. Ctrl) and SN (high vs. low Lewy body score)
samples. c. The consensus motif sequence identified by the MEME tool. Letters
heights: Nucleotides conservation among upregulated N-tRFs. d. PPMI samples
were further divided to subgroups according to the relevant comparison, with
prodromal PD patients (n =189) divided to 60 + 60 optimally matched patients
and controls, 33 + 33 optimally matched test data, and 60 + 110 fully matched

patients and controls. e, f. Calculated sum (E) and percentage (F) for RGTTCRA-
tRFs and MT-tRFs (and their ratio - RGTTCRA-tRFs/MT-tRFs) from all blood
samples. g. Normalized calculated PD/MT-tRFs ratio for the two prodromal
groups. h. The optimally matched patients served as a training dataset (GBM,

k =5folds).i. Naive test data and Fully matched patients served as a testing
dataset. j. Blood samples collected in Jerusalem and SN samples obtained from
the NIH NeuroBioBank served to test QPCR segregation of PD from controls using
the primers designed based on the PPMI prodromal data. k. Long-RNA Affymetrix
data (GSE23676) served to map Angiogenin levels in 7 PD patients before and
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Extended Data Fig. 2| MTtRFs decline, NtRFs and RGTTCRA-tRFs elevate in

both Male and Female PD patients vs. controls. a. Density plots of post-mortem

interval in female and male samples (left, right) and patients’ age (upper and
lower panel). Note that PD, but not AD appears to shorten patients’ life span.

b, c. Volcano plots for male (A) and Female (B) CSF samples. Each dot is a tRF. X:
log2(Fold Change) of PD/Ctrllevels. Y: -loglO(FDR adjusted p value). Horizontal
and vertical lines: FDR < 0.05; log2(FC) > 1 or <-1. Left: NtRFs, right: MTtRFs. Dot
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adjusted p value). Background colors: NtRFs (blue), MTtRFs (green). f, g. Volcano

plots for male (E) and Female (F) CSF samples. PD CSF NtRFs segregated into

samples.

RGTTCRA-carrying and lacking tRFs. Blue thick line: FDR = 0.05. Grey line:
unadjusted p = 0.05. Each dot is a tRF. X:log2(Fold Change) of PD/Ctrl levels.
Y:-loglO(FDR adjusted p value). Dot colors: tRFs’ length. h. Asin A for 8 PD SN
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blood. MT-tRNA are reduced with PD duration. a. KO of Ang (green) in U2SO
cells with or without sodium arsenite (SA) exposure (purple and grey). Y axis:
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and SWEDD-like patients (orange) from a cohort of NBB Long-RNA-seq (n = 25).
Y axis: Logl0 of sum of all expressed MT-tRNAs. X axis: PD duration in years.
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Extended DataFig. 4| RGTTCRA/MT-tRF score separates prodromal and
controls even without normalization and UPDRS.IlI scores show similar,

yet less significant, trends to RGTTCRA/MT-tRFs scores. a. ROC curve of

the GLM algorithm classifying prodromal and control patients, based on only
tRFs (tRFs-score; orange), only clinical measurements (UPDRS section Il plus
Hoehn and Yahr; turquoise) or Null classification (tRFs + clinical measurements
albeit with mixed labels; grey). b. Ratio between RGTTCRA-tRFs to MT-tRFs in
Prodromal patients (orange; n = 60) and controls (grey; n =129) separated by
their ethnicity and genetic backgrounds. Prodromal vs. Ctrl p < 5x 107, two-way
ANOVA c. UPDRS.III (motor) score in optimally matched Prodromal patients
(orange; n = 60) and controls (grey; n = 60) separated by their ethnicity and
genetic backgrounds. d. UPDRS Il scores (top) and tRFs-score (bottom) for
control, prodromal and PD patients according to their ethnicities and genetic
backgrounds. UPDRS: Prodromal vs. Ctrl p <0.11, PD vs. Ctrlp <1x107%, PD vs.
prodromal p <1x107%, two-way ANOVA. tRFs-score: Prodromal vs. Ctrlp<1x107,
PDvs. Ctrlp <1x107, PD vs. prodromal p < 0.043, two-way ANOVA. e. Correlation
between total UPDRS scores (Y) and tRFs-score (X axis of E) in optimally matched

prodromal and control patients (n = 60 of each).r=0.27, p < 0.01; Spearman
correlation, FDR correction. f. As in E for motoric (section IlII) UPDRS and for
normalized RGTTCRA-tRF and MT-tRF levels (purple and green, X axis of F)
separately.l:r=0.19,p < 0.06; Il:r = 0.245, p < 0.0163; 11l: r = 0.318, p < 0.004;
Spearman correlation, FDR correction. g. GBM algorithm trained in Fig. 3b
applied onto fully-matched prodromal and control subjects (n = 60, n =110). X
axis: true classification. Y axis: prospects to be a prodromal PD patient based

on the algorithm. tRFs: p <5x10™,UPDRS: p <3 x107, Chi-square test, FDR
correction. h. Each dot represents a prodromal patient that was later diagnosed
as PD (n =21). X axis: UPDRS score (at basal level, not at diagnosis as PD), Y axis:
tRFs-score. i. Amplicons of two qPCR products (mixture of all three triplicates)
were sequenced and aligned to tRFs. >50% of the reads were mapped to different
tRFs (each color represents a single tRF. Note that the most prominent tRF in
sample PD1is hardly expressed in T7 and vice versa. Allboxplots in this figure are
defined so that the central line of the boxplot represents the median, the lower
and upper box bounds represent 0.25 and 0.75 quantiles and lower and upper
whiskers bounds represent 0 and 1 quantiles.
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Extended DataFig. 5| Ribosome profiling and FRET imaging suggest direct donor-labeled RGTTCRA-tRF and acceptor-labeled antibody-tagged RPL24
interaction of RGTTCRA-tRFs with the ribosome. a. Interaction of motif- ribosomal protein found at proximities <10 nm, and hence tRF and ribosomes
carrying tRFs with ribosomes based on the GSE113751 dataset of short RNA-seq interact. d, e. Fluorescence lifetime image of FRET-sensitized (C) or directly
from ribosomes pulldownin HeLa (red), HCT116 (green) and HEK293T (blue) excited (D) acceptor-labeled ribosomes. f. The acceptor dye labeled by an
cells. Cells were either untreated or starved for Arg(inine) or Leu(cine) for antibody tagging the ribosomal protein RPL24 presents acceptor fluorescence
3 or 6 hours. Left Y axis: Points show RGTTCRA- tRF fractions among all tRFs. decay of aregion of interest (green & red arrows) after direct (red) and FRET-
Right Y axis: total number of reads per sample. Horizontal dashed line: percent sensitized excitation, reflected as slower fluorescence decay of FRET-sensitized
RGTTCRA-tRFs among all tRFs. b. Fluorescence intensity image of RGTTCRA-tRF compared to direct excitation events. C, D, E: ROIs with tRFs-ribosome
(green), ribosomes (RPL24, red) and their colocalization (yellow). c. FRET- interactions (arrows).

sensitized fluorescence of the acceptor indicates a non-negligible amount of
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Extended Data Fig. 6 | Two hours depolarization impairs ribosome
enrichment of RGTTCRA-containing, 3’-tRFs and i-tRFs in cultured
neuroblastoma cells; but MT-tRFs do not present significant changes under
DBS stimuli. a. Blood MT-tRF levels in apparently healthy control carriers of
PD-related mutations (Ctrl; grey; n = 9) and in PD patients, carriers of mutations
inthe LRRK2 and GBA genes (PD; blue; n=30), with and without DBS (black and
redlines; n=11,n=19).Y axis: mean blood MT-tRFs levels (white rhombuses). No
significant changes, one-way ANOVA. b. GSE155727 dataset of ribosomal profiling

= No RGTTCRA = RGTTCRA-tRFs

and short-RNA-seq from SHSY cells. Counts per million of 3’-tRFs and i-tRFs
lacking our motif (green) and carrying it (purple), from ribosome associated
RNA-seq (left) or bulk short RNA-seq (right) in resting cells, or in cells right after
or two hours post depolarization (2 h pDP). All boxplots in this figure are defined
sothat the centralline of the boxplot represents the median, the lower and upper
box bounds represent 0.25and 0.75 quantiles and lower and upper whiskers
bounds represent 0 and 1 quantiles.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX O OO0 000F

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  no software was used to collect the data
Data analysis FASTQC v0.11.9, FLEXBAR v2.4, MINTMap v1.0, R v4.0.3, edgeR (version 4.0.14), Matchlt (version 4.6.0), MLeval (0.3), ggplot2 (version 4.0.3),
pROC (1.18.5), RNASeqgPower pipline (version 1.42.0).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All RNA sequencing data created for this paper is available in GEO under GSE256334. Data produced by others and utilized for this paper is available in NIH under
phs000727, in the PPMI consortium, and in GEO under GSE130764, GSE23676, GSE155727. Metadata and column data for the used datasets are available in the
supplemental tables.




Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender For all the datasets apart from the NBB substantia nigra contained both sexes. In the substantia nigra we had no available

female samples and all samples were of males. Sex was self reported in all datasets and in the PPMI data it was also
validated. Further, PPMI subjects with three sex chromosomes were a-priori disqualified according to PPMI suggestion in
other papers. Sex was accounted for and normalized in every differential expression or gPCR analysis, and whenever needed,
the test was ran separately on each sex. When samples were matched (between cases and controls) sex was a matching
category

Population characteristics Patients and controls were accounted and matched for ages and Parkinson's disease-related mutations and deep brain

Recruitment

Ethics oversight

stimulation treatment. Patients and controls with additional neurological diseases (Alzheimer etc.) were removed. In
matching processes, patients ethnicity (self reported) was accounted as well

All the covariates' data is available on the supplementary tables. For the inhouse recruited participants, covariates are
supplied in table TS9. Generally:

Controls — Females: n=6, mean age=65.5, Males: n=4, mean age=70.5; Trauma — Females: n=4, mean age=71.5, Males: n=6,
mean age=73.1; PD — Females: n=3, mean age=78.6, Males: n=7, mean age=68.7

In all statistic calculation covariates were accounted as described in the methods section

The participants (men and women) were recruited from three study groups: (1) Parkinson's disease (PD) patients, (2) Trauma
patients following head injury, with CT proven traumatic brain injury, treated conservatively —i.e. unoperated traumatic brain
bleed, (3) Non-trauma, non-patient control group (NTNPC). Inclusion criteria consisted of similar age and matched sexes
between patients and controls. PD patients were diagnosed with PD by a neurologist at Shaare Zedek Medical Center
Movement Disorders Clinic. The control population included volunteers recruited among visitors and hospital employees.
Each participant received an explanation of the study and signed a consent form. A blood sample was taken from a peripheral
vein from each participant. All participants of the in-house dataset were of the same ethnic background (Israeli), thus
potentially limiting the ability to deduce from this research to other populations. No other self-limitation or biases are known
to the researchers. However, we acknowledge that residual biases may still be present and could influence the
generalizability of our findings. Future studies could address this by employing broader recruitment strategies.

Ethical approval for this study was confirmed by the Hebrew University’s Committee for research involving human-derived
materials. Blood samples of the JLM cohort were collected in the Shaare Zedek Medical Center in Jerusalem under Helsinki
approval no. SZMC-0029-20.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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|:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Needed sample size was not determined. Available data were downloaded and used per their sample size. In certain cases (see details below)
patients were excluded from the data (always a-priory). In collected data, we recruited as many patients as possible.

In the CSF data 6 PD patients, 4 AD patients, and 6 controls were removed based on PCA test (they were too different from the rest of the
population). Another 5 controls were removed since they had moderate SN depigmentation, compared to no or mild depigmentation in other
controls, and 2 additional controls were removed due to combination of high AR plaque density (frequent) and high Tau tangle score (above
10). 13 PD patients were removed since they had AD-like Braak, plaques, or tangles scores. 7 AD patients were removed due to severe SN
depigmentation. Lastly, one control and one AD patient were removed due to age younger than 60, and 2 controls, 2 AD and 1 PD patients
were excluded due to exceptionally low tRF coverage (these patients had 21-1627 counts when the next lowest coverage patient had 11745
counts).

In the PPMI dataset, only samples with RIN > 6 were analyzed and we additionally filtered out samples of participants who were disqualified
by the PPMI or who had undetermined sex.

All of the above-mentioned exclusions are detailed in the paper's methods section

ROC curves were assessed for replicability using 10000 permutations. All gPCR tests were done using triplicates, and two different plates were
done (yielding the same result). All attempts to replicate the the results were successful

Patients were allocated based on the diagnosis (Parkinson or control) and data was matched (using the above-mentioned covariates) so that
patients or controls not meeting the matching criteria were excluded. For every data we made sure there is no sex or age biased and when
possible other covariates were regarded too.
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Blinding Irrelevant. All data went exactly through the same code and all exclusions were done a-priory to any analysis of the data.
For gPCR data - the code analyzing the data was written prior to data collection and by diffeernt person than the person running the
experiment, so that collected gPCR cycles were simply fed into the code without any stages in which data can be examined before receiving
the results output

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
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Palaeontology and archaeology |Z |:| MRI-based neuroimaging
Animals and other organisms
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Dual use research of concern

Antibodies
Antibodies used Antibody against human RPL24 (Proteintech, 17082-1-AP; rabbit polyclonal 1:1000) and secondary antibody labelled with Alexa Fluor
568 (Thermo Fisher, A10042; donkey anti rabbit, 1:1000). IN-situ probe with Alexa Fluor 488 (directly bound to the 5'-end; IDT)
Validation Proteintech, 17082-1-AP: was validated to IF (3 citation on manufacturer website: 10.1016/j.neuron.2018.06.004, 10.1016/

j.cell.2018.11.030, 10.1016/j.celrep.2023.112211) and for Human (10.1016/j.cell.2021.07.005, 10.1073/pnas.2014457118).
Secondary antibody (Thermo Fisher, A10042; donkey anti rabbit) has over 1000 publications in manufacturer's site (for example
10.21769/BioProtoc.4921). The insitu prob was tailor made for this research and was checked by us.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) LAN-5 (LA-N-5; LAN5), purchased from DSMZ # ACC 673, 2020
Established from the bone marrow metastasis of a 5-month-old boy with neuroblastoma
Seeger et al., Journal of Immunology 1982.

Authentication We did not authenticate the line

Mycoplasma contamination Cell-lines were tested negative for mycoplasma

Commonly misidentified lines  no commonly misidentified cell line were used in this study
(See ICLAC register)
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