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Pre-symptomatic Parkinson’s disease blood 
test quantifying repetitive sequence motifs 
in transfer RNA fragments
 

Nimrod Madrer    1,2, Shani Vaknine-Treidel    1,2, Tamara Zorbaz1,2, Yonat Tzur1,2, 
Estelle R. Bennett1,2, Paz Drori2, Nitzan Suissa    3, David S. Greenberg1,2, 
Eitan Lerner    2,4, Eyal Soreq5,6,7, Iddo Paldor    2,3   & Hermona Soreq    1,2 

Early, efficient Parkinson’s disease (PD) tests may facilitate pre-symptomatic 
diagnosis and disease-modifying therapies. Here we report elevated levels 
of PD-specific transfer RNA fragments carrying a conserved sequence motif 
(RGTTCRA-tRFs) in the substantia nigra, cerebrospinal fluid and blood of 
patients with PD. A whole blood qPCR test detecting elevated RGTTCRA-tRFs 
and reduced mitochondrial-originated tRFs (MT-tRFs) segregated 
pre-symptomatic patients with PD from controls (area under the receiver 
operating characteristic curve (ROC-AUC) of 0.75 versus 0.71 based on 
traditional clinical scoring). Strengthening PD relevance, patients carrying 
PD-related mutations presented higher blood RGTTCRA-tRFs/MT-tRFs ratios 
than mutation-carrying non-symptomatic controls, and RGTTCRA-tRF 
levels decreased in patients’ blood after deep brain stimulation. 
Furthermore, RGTTCRA-tRFs complementarity to ribosomal RNA and the 
translation-supporting LeuCAG3-tRF might aggravate PD via translational 
inhibition, as reflected by disrupted ribosomal association of RGTTCRA-tRFs 
in depolarized neuroblastoma cells. Our findings show tRF involvement in PD 
and suggest a potential simple and safe blood test that may aid clinicians in 
pre-symptomatic PD diagnosis after validation in larger independent cohorts.

Parkinson’s disease (PD) is the second most prevalent neurodegenera-
tive disease1. PD poses major clinical, social and financial burdens to 
society2 and is characterized by progressive movement disabilities, 
tremors and cognitive impairments. These symptoms result from pre-
mature death of dopaminergic neurons, especially in the substantia 
nigra pars compacta (SN)3, that are caused by oxidative and nitrative 
stress3–6, enhanced mitophagy7, impaired autophagy8, neuroinflam-
mation and dopaminergic/cholinergic imbalance9.

PD diagnosis often follows considerable neuronal damage mani-
fested as severe motor impairments, such as bradykinesia, rigidity 
and tremors10. However, earlier symptoms, including smell loss and 
rapid eye movement sleep disorders, may appear years beforehand. 
Molecular changes characteristic of this early disease phase may con-
stitute a basis for a pre-symptomatic diagnostic test. Such a test should 
be cost-effective, rapid and capable of detecting changes in biomarker 
levels at the earliest disease stages, confirming true-positive cases 
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AD = 83,068, CPM for RGTTCRA-tRFs >30 bases). Binomial tests con-
firmed that RGTTCRA-tRFs are mostly elevated and MT-tRFs are mostly 
reduced also when analyzing each sex separately (Extended Data Fig. 2 
and supplementary information for Extended Data Fig. 2). Notably, 
RGTTCRA-tRFs were derived from numerous nuclear-originated tRNA 
genes, none of which was downregulated in the CSF of patients with PD, 
and all of the CSF-elevated tRFs lacking this motif were shorter than 30 
bases (Fig. 1b). Together, this indicates that the shared motif embedded 
in RGTTCRA-tRFs might reflect disease-related features (Supplemen-
tary Table 2 lists all of the tRNA genes carrying the PD motif).

Parallel analysis comparing patients with AD to controls in the same 
dataset revealed unchanged profiles of MT-tRFs and RGTTCRA-tRFs 
(Fig. 1c). Moreover, the median levels of RGTTCRA-tRFs longer  
than 30 bases were higher in patients with PD than in either healthy 
controls or patients with AD (P < 0.038 and P < 0.062, respectively, 
Dunnett test, false discovery rate (FDR)). The PD-specific accumula-
tion of RGTTCRA-tRFs and decrease of MT-tRFs in CSF identified both 
of these subfamilies as promising PD biomarker candidates.

RGTTCRA-tRFs co-accumulate with Lewy bodies in the SN of 
patients with PD
To seek pathological implications of RGTTCRA-tRF accumulation, we 
conducted small RNA-seq of SN from eight PM patients with PD sourced 
from the Netherlands Brain Bank (NBB) (Supplementary Figs. 1a,b 
and 2h and Supplementary Table 3; data deposited in GSE256334). 
Supporting our CSF findings, elevation of RGTTCRA-tRFs (average 
levels = 91,856 CPM) and reduction of MT-tRFs (average levels = 54,123 
CPM) accompanied higher Braak Lewy body scores in patients with 
PD (Fig. 1d).

Ang is sufficient but not essential for production of 
RGTTCRA-tRFs
Seeking the cleavage enzymes responsible for the altered RGTTCRA-tRFs 
and MT-tRFs (Fig. 2a), we analyzed a dataset of Ang overexpression in 
HEK293T and knockout in U2OS cells (GSE130764; Supplementary 
Table 4)41. Ang overexpression elevated the percentage of RGTTCRA-tRFs, 
but not of MT-tRFs, in HEK293 cells (P < 0.0093 and P < 0.375, respec-
tively, t-test, FDR; Fig. 2b–d). However, Ang knockout had no overt  
effects on these tRF families (Extended Data Fig. 3a,b and supplemen-
tary information for Extended Data Fig. 3). Therefore, Ang emerged as 
sufficient but not essential for producing RGTTCRA-tRFs or MT-tRFs.

Blood RGTTCRA-tRFs and MT-tRFs reflect disease features in 
early and advanced PD patients
To test the utility of RGTTCRA-tRF and MT-tRF levels as diagnostic 
biomarkers, we performed small RNA-seq of NBB PM blood sam-
ples from patients with PD and controls (Ctrl, n = 16 and PD, n = 21; 
Fig. 2e and Supplementary Table 5; data deposited in GSE256334) and  
used Parkinson’s Progression Markers Initiative (PPMI) data (Sup-
plementary Table 6) from idiopathic non-deep brain stimulation 
(DBS)-treated patients from timepoint V08 (2 years after first evalua-
tion; Idiopathic; PD, n = 252 and Ctrl, n = 133) and the latest timepoint 
available for PD-related mutation carriers with or without symptoms 
(Genetic; PD, n = 55 and Ctrl, n = 16).

Mutation-carrying living PPMI PD patients showed a trend of  
reduction in blood MT-tRF levels compared to unaffected mutation- 
carrying controls (P < 0.057, Mann–Whitney, FDR; Fig. 2g). In com-
parison, PM blood samples from advanced NBB PD patients presented 
elevated RGTTCRA-tRFs and MT-tRFs (P < 0.00015 and P < 8 × 10−11, 
respectively, ANOVA; ‘Advanced’; Fig. 2f,g).

The observed PM elevation in blood MT-tRF levels contrasts with 
the MT-tRF reduction seen in the PD CSF and SN (Fig. 1b,d) and may 
reflect mitochondrial degradation in PM blood, which yields higher 
levels of mitochondrial RNA fragments42. Indeed, although levels of 
RGTTCRA-tRFs were not affected by sample RNA integrity number 

and minimizing false-positive ones. Recent PD diagnostic tests have 
focused on elevated cerebrospinal fluid (CSF) levels of the α-synuclein 
(α-Syn) protein or reduced blood mitochondrial DNA as biomarkers11–14. 
However, CSF sampling is invasive; purification and detection of 
α-Syn are cumbersome and insufficiently sensitive15; and measure-
ments of specific proteins show high inter-individual variability. In 
contrast, quantification of multiple molecules, rather than one, can 
improve signal-to-noise ratios and overcome the variability between 
patients16–21. Attempting to prevent invasive tests, certain blood  
molecules were proven to reflect cerebral pathology22. Ideally, an 
easy, safe and affordable diagnosis should be based on multiple highly  
sensitive and specific blood biomarkers23.

Transfer RNA fragments (tRFs) are 16–50 nucleotide (nt)-long, 
non-coding RNAs originating from multiple nuclear or mitochondrial 
transfer RNA (tRNA) genes. Several enzymes cleave tRNAs to yield tRFs: 
angiogenin (Ang) generates 5′-half and 3′-half tRFs, whereas Ang, Dicer24,25 
and other nucleases yield 5′-tRFs, i-tRFs and 3′-tRFs26. Because tRFs harbor 
repetitive sequence motifs inherited from their parental tRNAs, changes 
can be detected in an entire family of closely related transcripts, albeit of 
different origins and types, produced by different endonucleases20,21,27, 
and originating from either nuclear or mitochondrial genomes. Corre-
spondingly, tRFs may reflect transcriptional changes or malfunctions 
in both the nucleus and the mitochondria27, whose DNA is known to  
be damaged in PD14,28,29. Intriguingly, altered Ang levels, Ang mutations 
and Ang-produced tRFs may exert both PD-protective and cytotoxic 
roles30–33. Furthermore, blood cell tRF levels present diagnostic value 
in various diseases, including ischemic stroke34, amyotrophic lateral 
sclerosis35, epilepsy36 and cellular or organismal stress26,34. Accordingly, 
tRFs emerge as the perfect candidates for a blood-based PD biomarker.

To challenge the hypothesis that multiple tRF-derived sequences 
could yield informative PD biomarkers, we searched for tRF families  
that share common sequence motifs whose levels are changed in  
the brain, blood and/or CSF of patients with PD—all biofluids known  
to reflect cerebral pathologies, including PD22,37. Using different  
datasets that account for distinct biofluids and stages of the disease 
allowed us to study the PD links of those tRFs whose levels had been 
altered in unrelated cohorts of different population origins.

Results
tRF levels in CSF show PD-specific changes
To seek PD-characteristic tRF profiles, we analyzed a short RNA sequenc-
ing (RNA-seq) dataset (phs.000727)38 consisting of postmortem (PM) 
CSF samples from 46 patients with PD, from 53 patients with Alzheimer’s 
disease (AD) and from 53 healthy controls (15, 27 and 24 females, respec-
tively; Fig. 1a, Extended Data Fig. 1a,b and Supplementary Table 1a,b). 
Accounting for patients’ age, sex and PM interval (Extended Data Fig. 2a; 
edgeR; Methods), we identified elevated levels of nuclear-originated 
tRFs in patients with PD compared to controls (N-tRFs; average lev-
els in control (Ctrl) and PD: 980,165 and 990,387 counts per million 
(CPM), respectively). All but one of these were 3′-tRFs or i-tRFs that 
were over 35 nt long, excluding them from functioning as microRNAs39 
(Fig. 1b and Extended Data Fig. 2b,c). We also detected reduced levels 
of mitochondrial-originated tRFs (MT-tRFs; average levels in Ctrl and 
PD: 19,834 and 9,612 CPM, respectively; Fig. 1b)14,28, most of which are 
long 3′-tRFs (Extended Data Fig. 2d,e). The PD-elevated N-tRFs and 
reduced MT-tRFs phenomena were consistent in both sexes (Extended 
Data Fig. 2b,c) but were absent in AD (Fig. 1c), reflecting non-random 
PD-altered CSF tRF profiles37.

N-tRFs elevated in PD CSF share a common RGTTCRA motif
Pursuing PD RNA biomarkers, we sought common motifs shared by the 
elevated N-tRFs using the Multiply Elicited Motif Entities (MEME) tool40. 
This tool detected multiple tRFs sharing the sequence [A/G]GTTC[A/G]
A (RGTTCRA-tRFs; Fig. 1b and Extended Data Fig. 1c), most of which 
were over 30 bases long (average levels: Ctrl = 79,901, PD = 92,836, 
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(RIN), MT-tRF levels were negatively correlated with the sample’s RIN 
(MT-tRFs: r = −0.4, P < 0.025; RGTTCRA-tRFs: r = −0.14, P < 0.4; FDR, 
Spearman correlation), indicating that the elevated levels stem from 
the PM status rather than the PD status. Supporting this notion, SN 
tissues revealed reduced mitochondrial tRNA levels, which continued 
declining with disease duration (r = 0.4, P < 0.05, Spearman correlation; 
PD versus Ctrl P < 0.039, Mann–Whitney test; Extended Data Fig. 3c).

To develop a biomarker assay that can easily compare among 
patients regardless of the need to account for RNA concentrations 
and library depth, we calculated the ratio between RGTTCRA-tRFs and 
MT-tRFs. This ratio was elevated in PD versus Ctrl (Fig. 2h; P < 0.0013, 
ANOVA), especially in early mutation-carrying patients (Early Idio-
pathic patients P < 0.02, Early Genetic patients P < 0.00044, ANOVA). 
Strengthening the notion that blood tRFs have the capability of captur-
ing inter-individual variations, we found that blood tRF levels create 
a patient-specific fingerprint that maintains stability over time, posi-
tioning them as promising candidates for biomarkers (Supplementary 
Information: ‘Blood tRF levels create a patient-specific fingerprint’).

Feature selection-based in silico tRF probes outperform 
clinical measurements in separating prodromal PD from 
control patients
We next challenged the value of the RGTTCRA-tRFs/MT-tRFs ratio for 
pre-symptomatic PD detection. To do so, we compared prodromal PPMI 

patients (showing pre-symptomatic PD signs, albeit without a clini-
cal PD diagnosis) at the earliest tested timepoint (n = 60) to matched 
healthy controls (n = 128) (Fig. 3a and Supplementary Table 7). A subset 
of 60 controls optimally matched to the prodromal patients was formed 
based on sex, age and collection batch of patients.

To create a primer-based separation reflecting the variability 
between controls and prodromal PD patients, we sought two single in 
silico polymerase chain reaction (PCR) primer pairs that can recognize 
numerous RGTTCRA-tRFs or MT-tRFs. We designed quantitative PCR 
(qPCR)-suitable 14-nt-long sequences that include the PD motif and 
are shared among at least 100 different RGTTCRA-tRFs (Methods). 
For every patient, we summed the counts of all RGTTCRA-tRFs, includ-
ing each 14-nt sequence, and selected the one that led to the largest 
median difference between PPMI prodromal patients and healthy 
controls (GGTCCCTGGTTCAA, shared among 285 RGTTCRA-tRFs 
from different tRNAs of distinct chromosomal origins, average levels 
of 550 CPM; P < 0.013, Mann–Whitney). Next, we similarly selected 
a sequence shared between the maximum number of MT-tRFs that 
maximizes the median difference between prodromal and controls 
and minimized the standard deviation within each group (TAACTTAG-
CATTAACCTTTTAA, shared among 106 Lys tRNA-originated MT-tRFs, 
average levels of 90 CPM).

For each patient, we divided the sum of RGTTCRA-tRF counts (all 
carrying the GGTCCCTGGTTCAA sequence) by the sum of MT-tRF 
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Fig. 1 | Nuclear-originated RGTTCRA-tRFs are elevated and MT-tRFs decrease 
in the CSF and SN of patients with PD. a, Schematic representation of N-tRFs and 
MT-tRFs in PM CSF and SN samples. b, Levels of MT-tRFs (left; green background) 
and N-tRFs containing and lacking the RGTTCRA motif (right and middle; blue 
background) in PD CSF. Each dot represents a tRF. x: log2(fold change (FC)) 
of PD versus Ctrl levels. y: −log10(FDR-adjusted P value). Horizontal blue line: 

FDR = 0.05. Vertical dashed lines: log2(FC) > 1 or log2(FC) < −1. Dot colors: tRF 
lengths. c, As described in b for AD versus Ctrl. d, MT-tRFs decrease and elevation 
of RGTTCRA-tRFs associates with Lewy body scores in the SN. x axis: log2(FC) for 
high versus low Lewy body score (that is, prevalence and localization of brain 
Lewy bodies). y axis: −log10(FDR-adjusted P values). Colors are as in b.
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counts (all carrying the TAACTTAGCATTAACCTTTTAA sequence) to 
yield an RGTTCRA/MT score. The RGTTCRA/MT score of each con-
trol or prodromal patient from a matched pair was then divided by 
the pair’s mean to yield a normalized score (hereafter ‘tRF-score’). 
Next, we employed a gradient boosted machine learning (GBM) clas-
sification algorithm (five cross-validations; Methods) to subgroup 
the samples into prodromal PD patients and controls, considering 
their ethnicity, by clinical measurements of Unified PD Rating Scale 
(UPDRS) motor scores and Hoehn and Yahr (H&Y) scores or by the 
tRF-score described above. This resulted in areas under the curve 
(AUCs; representing the ability to segregate the patients into control 
and prodromal groups) of 0.73 for the clinical measurement (specific-
ity = 0.78, sensitivity = 0.583, positive predictive value (PPV) = 0.761, 
negative predictive value (NPV) = 0.61) compared to an AUC of  
0.86 (specificity = 0.867, sensitivity = 0.7, PPV = 0.84, NPV = 0.743) 
for the tRF-score (Fig. 3a,b). In comparison, classification using 
mixed labels (null) in both clinical and tRF measurements yielded a 
non-significant AUC value of 0.43. Further validation using 10,000 
permutations, each time sampling 60 different controls, con-
firmed these results, as did a logistic regression algorithm replacing  
GBM (receiver operating characteristic (ROC)-AUC of 0.83 compared 
to 0.70 using clinical measurements; Extended Data Fig. 4a).

To test if our findings reflect the biological role of these motifs 
rather than training of the algorithm, we ran the exact same GBM-based 

process 10,000 times on ratios between random motifs (lacking the 
RGTTCRA sequence and appearing in at least the same number of  
tRFs as the RGTTCRA motifs and the MT motifs; Methods). The 
mean AUC received for the ratio between random motifs was 0.768 
(s.d. = 0.0537), and 99% of the AUCs were lower than 0.81 (Fig. 3c). These 
findings support the notion that the AUC resulting from the tRF-score 
reflects a biological rather than a mere training phenomenon.

PD symptoms often reflect patients’ genetics and ethnic origins. 
Therefore, we tested the ability to segregate patients to prodromal and 
control groups based on their genetic and ethnic backgrounds. The 
tRF-score enabled segregating all subpopulations (Fig. 3d; P < 2 × 10−10, 
ANOVA), even when examining the non-normalized ratio (Extended 
Data Fig. 4b; P < 5 × 10−6, ANOVA). Thus, two-thirds of prodromal 
patients scored as 6 or higher, whereas two-thirds of controls scored 
lower than 6 (P < 4 × 10−5, chi-square test). An exception was Black con-
trol and prodromal patients who had similar tRF-scores. However, their 
UPDRS scores revealed the same trend (Extended Data Fig. 4c), poten-
tially suggesting that our test reflected real-life clinical measurements 
in these patients as well. Nonetheless, although the tRF-score measure-
ment was similar between prodromal and diagnosed PD patients, the 
UPDRS score of prodromal patients was akin to that of controls and 
differed dramatically from that of patients with PD (Extended Data 
Fig. 4d). Further indicating a link between our two motifs and the clini-
cal measurements, the tRF-scores of the optimally matched prodromal 
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and PD patients from healthy controls. a, GBM machine learning (ML) 
algorithm segregated PPMI prodromal patients from controls using the 
ratio between RGTTCRA-tRFs (GGTCCCTGGTTCAA sequence) and MT-tRFs 
(TAACTTAGCATTAACCTTTTAA sequence), compared to clinical measurements. 
b, ROC of optimally matched prodromal patients and controls (n = 60 of each), 
using tRF-score (orange) or clinical UPDRS and H&Y measurements (turquoise) 
and mixed labels combining tRFs and clinical measurements (gray). c, Density 
plot of AUCs from 10,000 training events, each using a different pair of random 
14-nt and 22-nt motifs (without RGTTCRA motif) to calculate ‘tRF-score’ and 
GBM-based AUCs. Red area: s.d. d, tRF-score in control (gray) and prodromal 
patients (orange) of different ethnic and genetic backgrounds. Dots represent 
patients. Prodromal versus Ctrl P < 2 × 10−10, two-way ANOVA. e, As in b for 

a holdout validation sample (33 prodromal and 33 Ctrl). f, GBM algorithm 
trained in b applied to holdout validation sample (n = 33 in each group). x: 
true classification. y: GBM-based prediction of prodromal patient diagnosis. 
***P < 0.0004, two-sided t-test. g, tRF-score in control (gray) and 21 prodromal 
patients, later diagnosed as PD (orange). *****P < 1.1 × 10−5, two-sided t-test, FDR. 
h, As in f for UPDRS scores. ***P < 7 × 10−3, two-sided t-test, FDR. i, Cohorts used 
for the qPCR test. j, RGTTCRA/MT-tRF qPCR-based separation in fresh blood 
samples of PD or trauma patients and controls (10 of each). PD versus Ctrl: 
*P < 0.05, PD versus trauma: *P < 0.013, Dunnett test. k, As in i using 23 SN samples 
from the NIH NeuroBioBank. *P < 0.0452, two-sided t-test. All box plots in this 
figure are defined so that the central line of the box plot represents the median; 
the lower and upper box bounds represent 0.25 and 0.75 quantiles; and lower and 
upper whisker bounds represent 0 and 1 quantiles.
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and control patients presented positive correlation with the total 
UPDRS score (r = 0.27, P < 0.01; FDR, Spearman correlation; Extended 
Data Fig. 4e) and with the scores of subsections II and III of the UPDRS 
test (I: r = 0.19, P < 0.06; II: r = 0.245, P < 0.0163; III: r = 0.318, P < 0.004; 
FDR, Spearman correlation; Extended Data Fig. 4f).

The tRF-score strengthens clinical measurements in 
predicting PD pre-symptomatically
Next, we tested the GBM algorithms trained on the optimally matched 
data (60 prodromal, 60 controls) on the fully matched data (60 prodro-
mal, 128 controls) (Methods). Both algorithms, whether trained on the 
tRF-score or on clinical parameters, presented far better classification 
abilities than random classification (Extended Data Fig. 4g; P < 5 × 10−14, 
P < 3 × 10−7, chi-square test, FDR). However, the tRF-based measure-
ments performed better than the clinical ones (P < 0.0081, chi-square 
test). To re-challenge these observations, we tested the tRF-score-based 
algorithm on a holdout validation sample, including 33 prodromal  
samples and 33 matched control samples consisting of the second- 
earliest timepoint of the patients used for cross-validation  
(discovery sample) (Methods and Supplementary Table 7). The algo-
rithm successfully distinguished prodromal patients from controls 
(P < 0.0004, t-test; AUC of 0.75, confidence interval (CI) = 0.63–0.86, 
specificity = 0.727, sensitivity = 0.606, PPV = 0.69, NPV = 0.649; 
Fig. 3e,f), re-demonstrating the algorithm’s efficacy and the ability of 
the tRF-score to identify prodromal patients. In comparison, testing 
the algorithm trained on the clinical measurement on the holdout 
validation sample yielded a weaker separation between control and 
prodromal patients (AUC of 0.71, CI = 0.65–0.78, specificity = 0.523, 
sensitivity = 0.777, PPV = 0.58, NPV = 0.734; Methods). Together, the 
tRF-score performed at least as well as the clinical measurement and,  
in certain cases, better than the clinical tests, both on the cross-validated 
discovery sample and on the holdout validation sample.

In subsequent tests, PD diagnosis was established for 21 of those 60 
studied prodromal PPMI patients (with the rest yet undiagnosed). Com-
paring the tRF and UPDRS scores of these 21 patients to those of con-
trols yielded a more significant separation by the tRF-score (P < 1.1 × 10−5 
versus P < 7 × 10−3, t-test, FDR; Fig. 3g,h). Furthermore, 18 of the  
21 patients whose PD diagnosis had been confirmed were ranked  
higher by their tRF-score than by their UPDRS score (Extended  
Data Fig. 4h), again emphasizing the advantage of using the dual 
tRFs measurement. In later stages of PD with overt motor symptoms 
(Supplementary Table 8), clinical measurements perfectly separated 
patients from controls (AUC of 1), which left no room for added value 
of other biomarkers. We conclude that the two-primer-based tRF-score 
emerges as a reliable PD biomarker already in the earliest disease 
stages and especially in combination with clinical or other available 
measurements.

A dual qPCR of RGTTCRA-tRFs and MT-tRFs segregated PD 
from controls in fresh blood and PM SN samples
To segregate patients with PD from controls based on a manual 
qPCR-based tRF test, we drew blood from 10 patients with PD, from 
10 patients with head trauma and from 10 controls from the Jerusalem 
Shaare Zedek Medical Center ( JLM cohort; Supplementary Table 9). We 
used the two probes described above (ΔCq = RGTTCRA-tRF − MT-tRF; 
Methods) and normalized the ΔΔCq separately for each sex (Methods 
and Extended Data Fig. 1j). Notably, patients with PD presented signifi-
cantly higher ratios of RGTTCRA-tRFs/MT-tRFs than either controls or 
patients with trauma, which showed similar values (Fig. 3i,j; P < 0.05, 
P < 0.013, Dunnett test).

To further validate the capacity of our qPCR test to selectively 
amplify the RGTTCRA motif, we subjected the amplicons of two 
qPCR reactions ( JLM cohort, one patient with PD and one patient 
with trauma) to small RNA-seq. In both samples, over 50% of the reads 
(compared to 0.3–10% in biological samples) were mapped to tRFs,  

all carrying the RGTTCRA motif, with most derived from the same  
tRNA region but from different tRFs (Extended Data Fig. 4i and Sup-
plementary Table 10). These findings provide experimental evidence 
supporting the notion that our qPCR test primarily detects tRFs  
that include the RGTTCRA motif and can quantify their levels in 
patients’ blood.

To address the consistency of our findings in other tissues, 
we tested 17 PD SN samples (six females) and six matched control  
SN samples (three females) from the National Institutes of Health  
(NIH) NeuroBioBank collection (Supplementary Table 11). Because  
tRFs expressed in the brain are slightly different than those in 
the blood, we designed a brain-adapted RGTTCRA-tRF primer 
(CGGGTTCGATTCCC; Methods) to maximize the number of detected 
RGTTCRA-tRFs. Our qPCR assay identified higher RGTTCRA-tRFs/
MT-tRFs ratios in PD than in Ctrl (Fig. 3i,k; P < 0.0452, t-test). Together, 
our findings in blood and brain demonstrated that the signal  
of motif-carrying tRFs identified in sequenced blood samples from 
prodromal and PD patients can be translated into simple dual qPCR 
blood tests.

RGTTCRA-tRFs show ‘dual-lock’ sequence complementarity to 
rRNAs and to the translation-essential LeuCAG3′ tRF
Although MT-tRF reduction reflects well-studied PD-related mito
chondrial dysfunction28,29 that potentially leads to reduction in 
MT-tRFs, our finding of RGTTCRA-tRF accumulation might reflect 
biological activities accelerating PD progression. In this context, 
four different tRFs in Saccharomyces cerevisiae were shown to  
interrupt translation by interacting with ribosomal RNA (rRNA), in 
regions other than tRNA binding sites43. Interestingly, we found all  
four to include the PD motif. Furthermore, we identified a region  
complementary to the RGTTCRA-tRF sequence in the leucine 
tRNA-derived tRF (LeuCAG3′) that was reported to be essen-
tial for assembly of the translation complex, protein translation  
and cellular viability44 (Fig. 4a,b). Correspondingly, minimal energy 
assessment (RNAup)45 predicted a thermodynamically preferred  
interaction (total energy of −10.46 kcal mol−1) of RGTTCRA-tRFs  
with the ribosome-essential LeuCAG3′ tRF (Fig. 4b), far lower bind-
ing energy than all other 1,017 CSF-identified tRFs (P < 1 × 10−30,  
t-test; Fig. 4b).

Supporting the ribosome-binding prediction, we found sequences 
complementary to the PD motif that are not involved in a secondary 
structure in both the 18S and 28S rRNAs and are, hence, amenable  
to hybridization (Fig. 4a,c). Correspondingly, RGTTCRA-tRFs  
were predicted to bind more strongly to 18S and 28S rRNAs than all 
other CSF tRFs (P < 2 × 10−25, P < 3 × 10−67, t-test, FDR; Fig. 4c). The 
predicted binding of RGTTCRA-tRFs to both the LeuCAG3′ tRF and 
the rRNA may lead to a ‘dual-lock’ mechanism interrupting both ini-
tiation and execution of translational processes (Fig. 4a). Indeed, 
3 h of translation-interfering arginine or leucine starvation in three 
human-originated cell lines46 led to enrichment of ribosome-bound 
RGTTCRA-tRFs (P < 0.023, P < 0.027, Dunnett test; Extended Data Fig. 5a 
and supplementary text).

We next employed Förster resonance energy transfer (FRET) 
fluorescence lifetime imaging (FLIM)47 with pulsed interleaved  
excitation (PIE) (Extended Data Fig. 5b,c) to assess the proximi-
ties between RGTTCRA-tRF (that is, donor fluorophore-labeled 
RGTTCRA-tRF probe) and ribosomes (that is, acceptor fluorophore 
tagging an antibody to the ribosomal protein RPL24) (Extended  
Data Fig. 5c). The fluorescence lifetime (τ) of the acceptor fluoro-
phore was longer after donor excitation (FRET-sensitized accep-
tor fluorescence) than after direct acceptor excitation (directly 
excited acceptor fluorescence; 1.36 ns versus 1.00 ns; Extended Data 
Fig. 5d). The delayed acceptor fluorescence after donor excitation may  
reflect a signature of FRET between the donor–acceptor pairs48 and, 
hence, close proximity (<10 nm) of RGTTCRA-tRFs with ribosomes 
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(Extended Data Fig. 5d,f), supporting direct interaction between 
RGTTCRA-tRFs and the ribosome.

DBS is accompanied by reduced blood RGTTCRA-tRF levels
DBS of the subthalamic nucleus suppresses PD tremor symptoms 
through an incompletely understood mechanism of action49,50. To 
search for RGTTCRA-tRF links to the disease symptoms, we studied 
the effect of DBS on blood RGTTCRA-tRF levels in 19 DBS-treated 
patients with PD of the PPMI cohort carrying LRRK2 (ref. 51) or GBA 
mutations (Fig. 5a and Supplementary Table 12). Non-DBS-treated 
PD patient carriers of the same PD-causing mutations (n = 11) showed 
higher RGTTCRA-tRF levels than apparently healthy carriers of  
these mutations (n = 9; P < 0.027, ANOVA). In comparison, the DBS- 
treated mutation-carrying patients presented lower RGTTCRA-tRF  
levels than non-DBS-treated patients (P < 0.095, ANOVA; Fig. 5b), 
equivalent to the levels of the apparently healthy mutation-carrying  
controls (P < 0.6, ANOVA; Fig. 5b). MT-tRFs showed no significant  
difference between DBS-treated and the other groups (Extended  
Data Fig. 6a). The clinical capacity of DBS to effectively co-suppress 
blood RGTTCRA-tRF levels and tremor symptoms suggests that 
RGTTCRA-tRF blood levels may be related to the tremor profiles  
of PD patients.

Seeking potential causes for the reduced percentage of 
RGTTCRA-tRFs out of total tRFs, and considering that DBS alters blood 
transcript profiles52 as well as the effect of Ang on RGTTCRA-tRF levels, 
we measured Ang levels in DBS-treated patients and controls. For this 
purpose, we used our microarray dataset, GSE23676 (ref. 52), consisting 
of blood taken from six controls and seven patients with PD (all males), 
where PD blood was drawn before DBS surgery or several months after 
DBS treatment (Fig. 5a, Soreq dataset; Methods, Extended Data Fig. 1k 
and Supplementary Table 13). Interestingly, Ang mRNA levels were 
similar in controls and patients with PD (before DBS) but decreased in 
six of the seven patients with PD after DBS (P < 0.019, ANOVA; Fig. 5c), 
possibly reflecting a limited post-DBS capacity to produce tRFs.

Depolarization of cultured cells reduces RGTTCRA-tRFs and 
impairs their ribosomal association
To examine the effects of electrical stimulation (such as DBS) on 
RGTTCRA-tRFs, we mined a short RNA-seq and ribosomal profiling data-
set (GSE155727)53 from SHSY-5Y neuroblastoma cells harvested before, 
immediately after or 2 h after electrophysiological depolarization 
(2 h post depolarization (pDP); Fig. 5d and Supplementary Table 14). 
Immediately after depolarization, the cytosolic fraction of these cells 
showed reduced RGTTCRA-tRF shares, followed by re-elevation 2 h 
later (reminiscent of our findings in DBS-treated patients; Fig. 5e; rest-
ing versus depolarization, P < 0.01; resting versus 2 h pDP, P < 0.015; 
depolarization versus 2 h pDP, P < 0.0001, ANOVA). The re-elevation of 
RGTTCRA-tRFs share was accompanied by reduced cytosolic MT-tRFs 
share (Fig. 5f; P < 0.0033, ANOVA). Although depolarization did not 
immediately change the ribosomal-bound fraction of RGTTCRA-tRFs, 
this fraction was reduced 2 h later (Fig. 5e; 2 h pDP versus resting, 
P < 0.015; 2 h pDP versus depolarization, P < 0.0065, ANOVA). The 
distribution of tRFs to MT-tRFs, RGTTCRA-tRFs and all other tRFs was 
further altered 2 h pDP in the ribosome-bound fraction of three samples 
compared to the mean distributions of this fraction in resting cells 
(P < 0.006, P < 0.022, P < 0.024, chi-square, FDR; Fig. 5f).

Because RGTTCRA-tRFs mainly belong to the 3′ and i-tRF sub-
types, we compared the fraction of RGTTCRA-tRFs in these specific 
subtypes and found the same association patterns as described above 
(Extended Data Fig. 6b and supplementary information for Extended 
Data Fig. 6). Although RGTTCRA-tRFs constituted a small portion of the 
total cytoplasmic short RNAs, their share of the ribosomal-associated 
RNAs was roughly 10-fold higher (P < 8 × 10−11, ANOVA; Fig. 5f). Our FRET 
findings, together with the selectively weakened ribosomal association 
of RGTTCRA-tRFs within 2 h after electrophysiological depolariza-
tion, suggest that the depolarizing qualities of DBS may impact the 
ribosomal association of RGTTCRA-tRFs. Altogether, RGTTCRA-tRFs 
and MT-tRFs showed selective and distinct co-regulation under elec-
trophysiological stimuli at both the cellular and organismal levels.
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Discussion
From our study, tRFs carrying a repetitive motif emerged as potentially 
suitable biomarkers that may constitute patient-specific ‘fingerprints’ 
and carry short conserved sequence motifs that enable single measure-
ment of multiple tRFs. Intriguingly, we found that RGTTCRA-tRFs accu-
mulate in the brain, CSF and blood of male and female patients with PD 
at diverse disease stages but not in matched controls or in patients with 
AD. Moreover, motif-carrying RGTTCRA-tRFs consistently showed link-
age to PD symptoms and disease stages, and their levels were elevated 
in correlation with Lewy body scores in patients’ SN. Additionally, part 
of the identified RGTTCRA-tRFs stem from tRNAs that carry phenyl
alanine or cysteine amino acids, known to be the rate-limiting factors 
in the dopamine synthesis and in glutathione reductase antioxidant 
mechanism, respectively. Thus, shortage of these intact tRNAs (as 
they are enzymatically cut into the observed tRFs) may correspond 
to impaired dopamine synthesis54 or to processes that limit cellular 
antioxidation55. Compatible with the known mitochondrial damage 
in PD28 (which leads to general reduction in mitochondrial transcript 
levels), we further found reduced levels of MT-tRFs in the CSF and SN 
of idiopathic PD patients and in the blood of early PD patients carrying 
disease-related mutations.

Our segregation algorithm focused on prodromal patients rather 
than patients at later stages of PD because it is these early disease stages 

that call for biomarker development, especially as, in later stages, 
clinical measurements suffice to determine a clear diagnosis of PD. Cor-
respondingly, the ratio of RGTTCRA-tRFs to MT-tRFs segregated early 
prodromal patients from healthy controls as well as or even better than 
those of the gold standard clinical UPDRS and H&Y measurements. This 
could indicate that the ratio of RGTTCRA-tRFs to MT-tRFs may serve 
as a potential diagnostic tool for the earliest stages of PD, especially in 
combination with other available pre-symptomatic detectors. To our 
knowledge, this evaluation, which is based on publicly available data 
sources and manual tests, is the first to identify the power of blood 
tRFs as PD biomarkers. Nonetheless, this cross-sectional study calls for 
longitudinal studies following patients throughout disease progres-
sion to offer insights into biomarker changes and treatment outcome.

As modern medicine aims to achieve patient-specific therapeutics, 
it is crucial for biomarker assays to compensate for inter-individual vari-
abilities in measured values. Capturing multiple nuclear-originated and 
mitochondrial-originated tRFs using a dual primer qPCR blood-based 
assay may fulfill this demand. Specifically, our tRF-based score was 
designed to enable patient-tailored diagnosis, where the qPCR values 
determined for a certain patient will be compared to those of healthy 
volunteers or patients with PD of the same sex, ethnicity and genetic 
background, thus sparing the need for complex matching and normali-
zation. Indeed, manual running of this dual qPCR test showed that the 
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PPMI and Soreq datasets. b, RGTTCRA-tRF levels in control carriers of PD-related 
mutations (gray) and PD carriers of mutated LRRK2 or GBA genes (blue) with 
and without DBS (red and black outlines), n = 9, 11, 19. y: percentage of RGTTCRA-
tRFs from total tRF counts (rhombuses indicate mean). PD versus Ctrl *P < 0.027, 
PD versus DBS #P < 0.095, one-way ANOVA. c, Ang levels in blood samples of 
controls and patients with PD before and after DBS treatment, from the Soreq 
dataset (GSE23676), colors as in b. Dashed lines connect pre-DBS and post-DBS 
samples of each patient (six Ctrl, seven PD). PD pre-DBS versus DBS *P < 0.019, 
one-way ANOVA. d, Small RNA-seq and ribosome-bound RNA-seq fractions of 
depolarized SHSY-5Y cells (GSE155727) conducted at resting, immediately after 
depolarization (Dep) and 2 h pDP. e, RGTTCRA-tRF (y axis) fractions in each of 

the cases described in d (x axis). Four biological replicates in each condition. 
Cytosolic small RNA: resting versus Dep *P < 0.01, resting versus 2 h pDP 
*P < 0.015, Dep versus 2 h pDP ***P < 0.0001; ribosome fraction: 2 h pDP versus 
resting *P < 0.015, 2 h pDP versus Dep *P < 0.0065; two-way ANOVA. f, Total and 
ribosome-bound fractions of RGTTCRA-tRFs (purple), MT-tRFs (green) and 
all other tRFs (gray) in whole cells (left) and ribosome-bound fractions (right). 
Columns: samples and black lines represent mean RGTTCRA-tRF or MT-tRF 
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in this figure are defined so that the central line of the box plot represents the 
median; the lower and upper box bounds represent 0.25 and 0.75 quantiles; and 
lower and upper whisker bounds represent 0 and 1 quantiles.
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tRF-score segregated patients with PD from controls without the need 
for machine learning algorithms.

Notably, our study relied predominantly on samples from  
specific demographics, and, as such, the results might not be uni-
versally applicable to all populations. Thus, that the tRF-score was 
similar in prodromal African American patients and matched controls 
paralleled an identical trend in H&Y and UPDRS scores in this cohort, 
strengthening the notion that this score represents a true effect and 
calling for further studies of such patient-matched tests and validation 
in diverse patient cohorts.

Notably, too, blood RGTTCRA-tRF levels were effectively reduced 
under DBS stimulation, suggesting a linkage among tremor symptoms, 
electrical stimulus and the cellular localization and activities of these 
tRFs. Furthermore, yeast tRF research done by others43 and interaction 
predictions suggest that RGTTCRA-tRFs bind to the ribosome, poten-
tially in an evolutionarily conserved translation-arresting manner. These 
findings are compatible with our FRET measurements and with the 
observation of ribosomal association and depolarization-triggered ribo-
somal dissociation of RGTTCRA-tRFs in cultured neuroblastoma cells. 
Moreover, as Ang may contribute to the synthesis of RGTTCRA-tRFs, 
our findings call for in-depth examination of the therapeutic potential 
of carefully adjusting its activity in the brains of patients with PD.

Mitochondrial death is a hallmark characteristic of many neuro
degenerative diseases56,57 and was suggested as a blood biomarker  
in AD58,59. However, recent blood-based tests of mitochondrial dys
function in PD14 reported that, in genetic cases, mitochondrial DNA 
damage was observed irrespective of a PD diagnosis14, highlighting  
the need to add other biomarkers to such tests. In this context, our  
combined nuclear/mitochondrial RGTTCRA-tRFs/MT-tRFs meas-
urements enable segregating genetic PD patients from apparently 
healthy unaffected controls carrying the same PD-related mutations. 
An in-depth comprehensive analysis of larger patient cohorts will be 
needed to better determine the efficacy of our tRF-based measurement 
in comparison to other blood-based PD biomarkers.

The availability of an early, reliable and rapid blood test for PD diag-
nosis may potentially alleviate the burden of uncertainty from suffering 
individuals, assist clinicians’ care of those patients early in the disease 
process and open routes for developing and testing new therapeutics. 
To achieve these goals, an efficient diagnostic test should (1) provide 
accurate and disease-specific results, (2) avoid complex neurosurgical 
procedures, (3) entail minimal risks to the tested patients, (4) be easy 
to perform and (5) be inexpensive. Unlike CSF-based tests that can be 
risky, costly and dependent on complex molecular and biochemical 
procedures, qPCR-based blood tests are minimally invasive, do not 
depend on hospital care and offer quick procedures based on easily 
amplifiable signals. Our tRF-based blood measurement proved efficient 
in separating prodromal PD patients from controls by a simple dual 
qPCR assay, suggesting that it may equip clinicians with an informa-
tive diagnostic tool based on a single individual blood test, alone or in 
combination with other non-invasive measurements. The reliability, 
sensitivity, speed and low cost of our assay may all indicate its value for 
enabling an improved universal, pre-symptomatic PD diagnosis that 
can improve detection rates and offer beneficial clinical approaches 
to patients with PD at diverse stages of their disease.

Methods
Ethics statement
Ethics approval for this study was confirmed by the Hebrew University’s 
committee for research involving human-derived materials. Blood 
samples of the JLM cohort were collected at the Shaare Zedek Medical 
Center in Jerusalem under Helsinki approval number SZMC-0029-20.

Study population
This study consists of human brain (n = 8) and blood (n = 37) samples 
obtained from the NBB and of human brain samples (n = 23) obtained 

from the NIH NeuroBioBank, each under the relevant institution’s 
ethics and guidelines. Blood samples were further collected at the 
Shaare Zedek Medical Center (n = 30) under Helsinki approval number 
SZMC-0029-20. Other human data were downloaded from the PPMI 
(blood; n = 475) and the NIH (CSF; n = 152) and from GSE23676 (blood; 
n = 20), all under relevant ethics approval. Further details can be found 
in Extended Data Fig. 1 and in Supplementary Tables 1a, 3, 5–9 and 
11–13. Written informed consent was obtained for all human samples 
included in this study.

Small RNA-seq of human SN samples
Brain tissues were obtained from the NBB as described in Hanan et al.4. 
RNA from eight male PD patient samples (see Supplementary Table 3 
for patient information) was extracted using an miRNeasy Mini Kit 
(Qiagen, 217004) according to the manufacturer’s protocol, followed 
by RNA concentration determination (NanoDrop 2000; Thermo Fisher 
Scientific), standard gel electrophoresis for quality assessment and RIN 
determination (Bioanalyzer 6000; Agilent). Libraries were generated 
from 1,200 ng of RNA (NEBNext Multiplex Small RNA Library Prep Set 
for Illumina; New England Biolabs, E7560S), and the small RNA fraction 
was sequenced on a NextSeq 500 system (Illumina) at the Center for 
Genomic Technologies, Hebrew University of Jerusalem. Data were 
deposited in the Gene Expression Omnibus (GEO) (GSE256334). TH and 
DAT levels for these samples are taken from previously published data4.

Small RNA-seq of PM blood samples
Whole blood samples were obtained from the NBB (see Supplementary 
Table 5 for patient information). RNA was extracted using a NucleoSpin 
RNA Blood Mini Kit for RNA from blood (Machery-Nagel, 740200) 
according to the manufacturer’s protocol, followed by RNA concen-
tration and quality determination as above. Libraries were generated 
from 100 ng of total RNA (NEBNext Multiplex Small RNA Library Prep 
Set for Illumina, as above), and the small RNA fraction was sequenced 
on a NextSeq 2000 system (Illumina) at the Center for Genomic Tech-
nologies, Hebrew University of Jerusalem. Data were deposited in 
GSE256334 as above.

Alignment of tRFs
FASTQ files (of both in-house sequencing and of publicly available data) 
were checked for quality using FastQC60, and adaptors (if present) 
were removed using FLEXBAR61 according to the pipeline manual.  
Adaptor-less output FASTQ files were then aligned to tRFs using  
MINTmap (version 1.0)62. See Extended Data Fig. 1 for elaboration.

Analysis of the CSF (ventricular) dataset
The CSF database phs000727 (downloaded from the National Center 
for Biotechnology Information (NCBI) database of Genotypes and 
Phenotypes (dbGaP)) included 66 patients with PD (20 removed as 
detailed below), 67 patients with AD (14 removed) and 69 healthy 
controls (16 removed). Before differential expression analysis, a prin-
cipal component analysis was run based on tRF expression data, and 
samples that did not cluster were removed from the analysis. Those 
included six patients with PD, four patients with AD and six controls. 
Another five controls were removed because they had moderate SN 
depigmentation compared to no or mild depigmentation in other con-
trols, and two additional controls were removed due to a combination 
of high Aβ plaque density (frequent) and high Tau tangle score (above 
10). Likewise, 13 patients with PD were removed due to AD-like Braak, 
plaques or tangles scores. Seven patients with AD were removed due to 
severe SN depigmentation. Lastly, one control and one patient with AD 
were removed due to age younger than 60 years, and two controls, two 
patients with AD and one patient with PD were excluded due to excep-
tionally low tRF coverage (these patients had 21–1,627 counts, whereas 
the next lowest coverage patient had 11,745 counts). All eliminations 
were done before performing any analysis. See Supplementary Table 1a 
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for general data of the CSF dataset and Supplementary Table 1b for a list 
of excluded samples. To further prevent any potential bias, differential 
expression analysis accounted for patient age, sex and PM interval.

Analysis of the PPMI dataset
Small RNA-seq was obtained in February 2021 from the PPMI database 
(https://www.ppmi-info.org/access-dataspecimens/download-data), 
RRID: SCR 006431. Updated participant status was re-downloaded in 
October 2023. For up-to-date information on the study, see https://
www.ppmi-info.org/. Only samples with RIN ≥ 6 were analyzed, and 
we additionally filtered out samples of participants who were disquali-
fied by the PPMI or who had undetermined sex63. See Supplementary 
Tables 6–8 and 11 for elaboration.

Data preparation and feature selection. To test our hypothesis 
that tRFs can constitute a patient-specific fingerprint, we used all the  
samples of PPMI patients having tRF counts from four different time-
points (n = 318). To focus on the most informative features, we selected 
the top 0.5% of enriched tRFs, resulting in a set of 253 tRFs for analysis. 
The data were split into training and test sets, with the test set compris-
ing the last available sample from each patient, to evaluate the model’s 
performance across timepoints. Leveraging multiple timepoints per 
patient aimed to test whether blood-quantified tRFs might serve as a 
unique, patient-specific fingerprint and determine if the tRF values 
from a patient’s first three timepoints could accurately identify which 
of the remaining samples belonged to that patient. We implemented 
a MultiClassModel class to train and evaluate multiple machine learn-
ing classifiers, including XGBoost, HistGradientBoostingClassifier, 
RandomForestClassifier, Support Vector Classifiers (linear and non-
linear), K-Nearest Neighbors, Gaussian Naive Bayes and OneVsRest 
(OvR) Logistic Regression. The OvR approach, also called One-vs-All, 
extends binary classifiers such as logistic regression to handle multi-
class problems by training a separate binary classifier for each class. In 
this setup, the class of interest is treated as the positive label, whereas 
all other classes are grouped as negative. During prediction, the  
classifier with the highest probability score is selected as the final  
output. OvR is computationally efficient and straightforward, although 
it may not capture interactions between classes as comprehensively 
as multinomial logistic regression or One-vs-One approaches. As  
supported by Rifkin and Klautau64, OvR can achieve accuracy simi-
lar to more complex methods, especially when binary classifiers are  
well tuned, making it a robust and widely used solution in practice. All 
features were standardized using StandardScaler before model train-
ing. The Matthews correlation coefficient (MCC) was chosen as the  
primary evaluation metric due to its robustness in assessing both  
binary and multiclass classifications. After identifying the 
best-performing classifier, we conducted hyperparameter tuning 
using GridSearchCV with predefined parameter grids, optimizing for 
the MCC score. To validate the assumption that the model’s perfor-
mance was not due to chance, we compared the best-tuned classifier 
against a dummy model trained on shuffled labels. This comparison 
served to confirm the presence of a genuine, individual-specific signal 
in the tRF profiles.

For prodromal (pre-symptomatic) patient analysis, we subdivided, 
from the above-described PPMI data, prodromal and control patients 
with known genetic background (idiopathic or GBA+), known ethnicity, 
without prescribed PD medications and older than 58 years. Further-
more, patients with psychiatric anxiety, muscle inflammation, urinary 
bladder impairments and diabetes were excluded (due to underrepre-
sentation in either the prodromal or the control group). To examine the 
earliest possible stage, we only selected patients with sequencing data 
from timepoints ‘BL’, ‘V02’ or ‘V04’ (corresponding to initial diagnosis, 
6 months later and 12 months later). For each of these patients, we used 
the earliest timepoint available for the discovery sample (60 prodromal 
patients and 110 controls) and the second-earliest timepoint for the 

holdout validation sample (33 prodromal patients and 33 controls). The 
single Asian control meeting the above criteria was excluded because 
there was no Asian prodromal patient (see Supplementary Table 7 for 
sample information and the ‘Statistics and reproducibility’ subsec-
tion for classification processes). Additionally, to prevent biological 
outliers, we used only idiopathic patients of White ethnicity (as none 
of the other ethnicities or genetic backgrounds presented in both the 
prodromal and control groups to enable proper matching). Of note, as 
only one of the control patients in the test data had clinical scores (the 
rest of the controls had neither UPDRS nor H&Y scores), we imputed 
the UPDRS and the H&Y scores of the control patients. For each patient, 
we calculated the mean value of all the timepoints of that patient for 
each of these measurements. Because these were needed only for the 
control patients, the imputed values were anyway close to zero in both 
of the measurements.

To produce ROC curves for patients with PD, we selected patients 
and controls with known genetic background and without prescribed 
PD medications. To reduce variation between the groups, we selected 
patients only from ‘Phase 1’ and the following ethnicities: ‘White’, ‘Black 
or African American’, ‘Hispanic or Latino’ or ‘Ashkenazi Jewish’. Further-
more, to analyze the early stages of diagnosed PD patients, we used 
only timepoint ‘BL’ and PD patients for whom PD duration was 0. See 
Supplementary Table 8 for patient information.

To analyze DBS effects, we used small RNA-seq from the 19 patients 
with PD who were treated with DBS, all from the ‘Phase 2’ group and hav-
ing familial PD, 14 with LRRK2 mutations and five with GBA mutations. 
Levels of RGTTCRA-tRFs in the DBS-treated patients were compared 
to those in PD patients with the above mutations who did not undergo 
DBS surgery (n = 11) and to those in control patients carrying the same 
mutations (n = 9). Non-DBS PD patients and controls were selected 
from the latest timepoint (V8) to account for the length of time most 
DBS-treated PD patients have been ill. See Supplementary Table 11 for 
sample information.

PPMI—a public–private partnership—is funded by the Michael 
J. Fox Foundation for Parkinson’s Research and by funding partners, 
including 4D Pharma, AbbVie, AcureX, Allergan, Amathus Therapeu-
tics, Aligning Science Across Parkinson’s, AskBio, Avid Radiopharma-
ceuticals, BIAL, BioArctic, Biogen, Biohaven, BioLegend, BlueRock 
Therapeutics, Bristol Myers Squibb, Calico Labs, Capsida Biothera-
peutics, Celgene, Cerevel Therapeutics, Coave Therapeutics, DaCapo 
Brainscience, Denali, the Edmond J. Safra Foundation, Eli Lilly, Gain 
Therapeutics, GE Healthcare, Genentech, GlaxoSmithKline, Golub 
Capital, Handl Therapeutics, Insitro, Janssen Neuroscience, Jazz Phar-
maceuticals, Lundbeck, Merck, Meso Scale Discovery, Mission Thera-
peutics, Neurocrine Biosciences, Neuropore, Pfizer, Piramal, Prevail 
Therapeutics, Roche, Sanofi, Servier, Sun Pharma Advanced Research 
Company, Takeda, Teva, UCB, Vanqua Bio, Verily, Voyager Therapeutics, 
the Weston Family Foundation and Yumanity Therapeutics.

JLM blood sample set
Blood from 10 patients with PD, 10 patients with head trauma and 
10 controls was taken in Jerusalem under Helsinki approval number 
SZMC-0029-20. Each group consisted of males and females, and all 
three had a similar average age (PD, 72 ± 7.5; Trauma, 73 ± 12; Control, 
68 ± 5.6). See Supplementary Table 9 for detailed patient information. 
Samples were collected in Tempus Blood RNA Tubes (Thermo Fisher 
Scientific, 4342792), and RNA was extracted using a Norgen Preserved 
Blood RNA Purification Kit I (Norgen Biotek, 43400). Concentration 
was determined (NanoDrop 2000; Thermo Fisher Scientific), and 
quality was assessed by standard agarose gel electrophoresis. cDNA 
synthesis (from 250 ng) and qPCR are described below.

NIH NeuroBioBank sample set
SN tissue samples (left hemisphere) were obtained from the NIH  
NeuroBioBank. All donors died of natural cause at age 71–79 years and 
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were of ‘White’ ethnicity. For elaboration, see Supplementary Table 10. 
RNA was extracted using the miRNeasy Mini Kit as above, followed by 
RNA concentration determination and quality assessment as above. 
cDNA synthesis (from 500 ng) and qPCR are described below.

cDNA synthesis and qPCR
cDNA was prepared using a qScript microRNA cDNA Synthesis Kit 
(Quantabio, 95107). qPCRs were performed in 96-well (Bio-Rad, 
HSP9601) or 384-well (Bio-Rad, HSP3805) plates, using PerfeCTa 
SYBR Green FastMix Low ROX (Quantabio, 95074) and primers (Merck) 
as below, on a Bio-Rad CFX384 Touch Real-Time PCR System with 
CFX Maestro software (Bio-Rad, version 4.1.2433.1219). The qPCR 
was programmed for 30 s of annealing/extension at 50 °C due to the 
short primer length. ΔCq for each sample was calculated as ‘mean 
(RGTTCRA-tRF triplicate) − mean (MT-tRF triplicate)’. ΔΔCq was  
calculated by dividing each ΔCq value by the mean ΔCq of the control 
patients. Expression of each sample was calculated as 2ΔΔCq.

Forward primer sequences:

	 a.	 RGTTCRA-tRF primer for blood samples: GGTCCCTGGTTCAA
	 b.	 RGTTCRA-tRF primer for brain samples: CGGGTTCGATTCCC
	 c.	 MT-tRF primer for blood and brain samples: 

TAACTTAGCATTAACCTTTTAA

qPCR amplicon sequencing
The products of two qPCR amplicons (PD1 and T7) were sequenced 
as follows. Small RNA libraries were prepared from 500 ng of cDNA 
(blunting with NEB-E1201, followed by poly(A) and library preparation 
with KAPA (KK8420) mRNA-seq Kit) and sequenced using the NextSeq 
2000 system (Illumina) as described above. FASTQ files were aligned 
to tRFs as described above.

Soreq DBS long-RNA array
Sequencing data of blood taken from six controls and seven patients 
with PD (all males) were downloaded from GEO dataset GSE23676. 
Blood from patients with PD was drawn before DBS surgery and several  
months after surgery, upon optimal stimulation (Supplementary 
Table 12). Affymetrix probes of Ang were found using biomaRt65, and 
all the Ang probes were summed to yield the expression of the gene.

Binding energy of tRFs to the ribosome-essential tRF and 
rRNAs
To assess the affinity of the CSF-expressed tRFs (1,017 tRFs in the 
CSF dataset that were expressed above a median of 10 CPM) to the 
Ribo-essential tRF44 and to rRNAs66, we used the RNAup web server45. 
We checked each of the expressed tRFs against the sequences of the 
Ribo-essential tRFs and against the open regions in the rRNAs that we 
found to contain reverse complement sequences to the RGTTCRA 
sequence (see sequences below), and we retrieved the total energy for 
each tRF (total energy equals the sum of melting energies of each of the 
sequences minus their binding energy to each other):

	 a.	 Ribo-essential tRF: TCGAATCCCACTCCTGACACCA
	 b.	 18S RGTTCRA reverse complement open region: 

AGGGGCGAAAGACTAATCGAACCAUTCTA
	 c.	 28S RGTTCRA reverse complement open region: 

TAACCCGTTGAACCCCAT

Cell culture
The human-derived neuroblastoma cell line LAN-5 was cultured 
under standard conditions (37 °C, 5% CO2) in RPMI (Merck, R0883) 
supplemented with FCS (10% final concentration; Sartorius, 04-127), 
L-glutamine (2 mM final concentration; Sartorius, 03-020) and  
penicillin–streptomycin–amphotericin (100 U ml−1, 0.1 mg ml−1, 
0.25 µg ml−1, final concentrations, respectively; Sartorius, 03-033). 

Cells were mycoplasma free (MycoBlue Mycoplasma Detection Kit; 
Vazyme, D101) and were used between passages 5 and 8.

Immunofluorescence and in situ hybridization
Cells were plated on glass coverslips in 24-well plates at 30,000 
cells per well. Six days later, cells were fixed with 4% paraformalde-
hyde and permeabilized with methanol at −20 °C. Blocking solution  
(PBS with 5% normal donkey serum) was added to the wells for 1 h 
at room temperature, followed by 1-h incubation with primary anti-
body against human RPL24 (Proteintech, 17082-1-AP; rabbit poly-
clonal, 1:1,000) and secondary antibody labeled with Alexa Fluor 568 
(Thermo Fisher Scientific, A10042; donkey anti-rabbit, 1:1,000) for 2 h.  
Cells were then washed with FISH buffer (1:1 of 2× SCC and 50%  
formamide and containing 50 μg ml−1 heparin), followed by overnight 
incubation at 37 °C with Affinity Plus (Integrated DNA Technologies) 
in situ probe, at a concentration of 200 nM. The probes were 5′-labeled 
with Alexa Fluor 488 and contained locked nucleic acids at the bases 
marked ‘+’:
	 a.	 Probe sequence: ACT + CGAA + CCCA + CAAC + CTT

FRET-FLIM with PIE
To assess interactions with donor–acceptor proximity of less than 
10 nm (refs. 48,67–69) between RGTTCRA-tRFs and ribosomes, we  
used FRET-FLIM with PIE70–72 (Extended Data Fig. 5). This allowed col-
lecting fluorescence photon absolute detection times and detection 
times relative to moments of excitation for donor fluorescence after 
donor excitation, for acceptor fluorescence after donor excitation 
and FRET and for acceptor fluorescence after acceptor direct excita-
tion. This was achieved with a confocal-based setup (ISS) assembled 
on top of a modified Olympus IX71 inverted microscope, as previ-
ously reported73,74. Donor and acceptor PIE was achieved by 488-nm 
and 532-nm picosecond pulsed lasers (λ = 488 nm, pulse width 80 ps 
full width at half maximum (FWHM), λ = 532 nm, pulse of 100 ps 
FWHM, rate; QuixX 488-60 PS, Omicron-Laserage, and FL-532-PICO, 
CNI), operating at 20-MHz repetition rate and interleaved by 25 ns. 
Of note, levels of donor fluorescence leakage into the acceptor 
fluorescence detection channel were negligible47. The laser beams 
passed through a single-mode polarization maintaining optical fiber 
(P1-405BPM-FC-Custom, specifications similar to those of PM-S405-XP, 
Thorlabs), a collimating lens (AC080-016-A-ML, Thorlabs), a halfwave 
plate (WPMP2-20(OD)-BB 550 nm, Karl Lambrecht Corp.) and a  
linear polarizer (DPM-100-VIS, Meadowlark Optics). Laser beams 
for acquiring images in laser scanning mode were reflected through 
galvo-scanning mirrors (6215H XY, Novanta Corp.) and scan lens 
(30 mm diameter × 50 mm focal length (FL), VIS-NIR Coated, Achro-
matic Lens, Edmund Optics) using a dichroic beam splitter at 405 nm, 
488 nm, 532 nm and 640 nm (ZT405/488/532/640rpc-XT, Chroma). A 
×100/1.45 numerical aperture (NA) oil objective (UPLSAPO100XO ×100 
/ 1.45 / oil / ∞ / 0.17/ OFN 26.5, Olympus) focused the light onto a small 
effective excitation volume. Scattered light was imaged on a CMOS 
camera (ThorCam, Thorlabs) using Airy ring pattern visualization. 
Fluorescence was collected through the same objective and focused 
with an achromatic lens (25 mm diameter × 100 mm FL, VIS-NIR Coated, 
Edmund Optics) onto a 100-μm-diameter pinhole and re-collimated 
with another achromatic lens (f = 100 mm; AC254-060-A, Thorlabs). 
Fluorescence was then split into two detection channels, 510/20 for 
AF488 and 698/70 for AF568, using a dichroic mirror (555-nm cutoff, 
FF555-Di03-25 × 36, Semrock) followed by bandpass filter 510/20 nm 
for wavelength <555 nm and 698/70 nm for wavelength >555 nm (FF03-
510/20-25 and ff01-697/58-25, Semrock). Photons were detected using 
cooled hybrid photomultipliers (model R10467U-40, Hamamatsu) 
routed to a time-correlated single-photon counting module (SPC-
150, Becker & Hickl) as its START signal (STOP signal was routed from 
the pulsed laser controller). For data acquisition, we used VistaVision 
software (version 4.2.095, 64-bit, ISS) in time-tagged time-resolved 
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(TTTR) file format, and images were obtained using a laser scanning 
module in which a three-axis DAC module (ISS) synchronized data 
acquisition and control over the galvo-scanning mirrors. Images for 
FLIM measurements were obtained by tail-fitting fluorescence decays 
of each pixel in each photon stream (combination of excitation laser 
and detection channel), if it had at least 50 photons. FLIM images were 
acquired with 10-ms pixel dwell times in 15 × 15-μm2 image dimensions 
and 128 × 128-pixel resolutions.

Statistics and reproducibility
All multiple comparisons were FDR corrected, and all visualizations 
were done using ggplot2 (ref. 75) in R (version 4.0.3)76. All statistical 
tests were conducted two-sided unless reported otherwise. All of the 
box plots in this paper are defined so that the central line of the box 
plot represents the median; the lower and upper box bounds represent 
0.25 and 0.75 quantiles, respectively; and lower and upper whisker 
bounds represent 0 and 1 quantiles, respectively. Differential analysis 
was carried out using edgeR77 (version 4.0.14) with patient age, sex 
and PM interval used as covariates in the design matrix of the edgeR 
analysis. Data collection and analysis were not performed blinded to 
the conditions of the experiments. No statistical methods were used to 
pre-determine sample sizes, but our sample sizes are compatible with 
those accepted in other publications in the field34,38,63. Due to the small 
number of samples in the SN data, we used the RNASeqPower pipeline78 
(version 1.42.0) to estimate the power of the differentially expressed 
tRFs in these samples. We found the power of each of the differentially 
expressed tRFs to be higher than 0.87, with most of them (25th quantile 
and above) having a power higher than 0.9, which may improve the 
credibility of our findings in spite of the small number of samples.

Whenever the number of samples was smaller than 30, and the  
data did not distribute normally (P < 0.05 in a Shapiro test), a non- 
parametric test was run. Non-parametric tests were likewise used upon 
the need to compare median rather than mean values. All correlation 
tests conducted in this study (Extended Data Figs. 3c and 4e,f) are 
Spearman correlations, as we were interested in any type rather than 
linear correlation. Whenever comparing two groups to a third one, 
we used a Dunnett test (Figs. 1b,c and 3g,h and Extended Data Fig. 5a)

Binomial test was run on the differentially expressed tRFs in the 
CSF (Fig. 1b) and showed that they behave as a family and that most 
of the tRFs carrying the motif change in the same way. Upon compar-
ing RGTTCRA-tRF and MT-tRF or RGTTCRA/MT-tRF ratio in blood of  
living and PM patients (Fig. 2f–h), we used the Mann–Whitney test 
(with FDR correcting for multiple comparisons) to compare the PD 
effect (PD versus Ctrl in each subgroup of a specific dataset and genetic 
background), and we employed a two-way ANOVA test to estimate the 
overall effect of PD while accounting for the dataset (that is, PM or alive) 
and the genetic background as covariates. The reason for using Mann–
Whitney rather than a t-test for the first type of comparisons was that 
both the genetic controls and the PD idiopathic groups included low 
patient numbers (16 in each), and the data did not distribute normally 
(P < 0.0014, P < 0.003, P < 3 × 10−5, for PM RGTTCRA-tRF and MT-tRFs 
and Live genetic MT-tRFs, respectively; Shapiro test).

Matching analysis was carried out using MatchIt79 (version 4.6.0), 
with matched factors being sex, age and batch (‘Study’), distance = ‘glm’ 
and link = ‘probit’. For each of the ROC calculations (either prodromal 
and controls or PD and controls), we first used an ‘optimal’ matching 
in which each prodromal or PD patient was matched with a control 
(based on the above-mentioned factors). Next, the ratio between 
RGTTCRA-tRFs to MT-tRFs was normalized for each matched pair of 
prodromal and control or PD and control individuals, by dividing the 
pair’s scores by the pair’s mean. Lastly, we used a machine learning 
algorithm to calculate ROC (MLeval, version 0.3)80. In the feature selec-
tion process, a Mann–Whitney calculation was used to prevent outlier 
patients from skewing the results (for this reasoning, we focused on 
median rather than mean differences). The dimensions used for the 

ROC calculations included ethnicity and either UPDRS III and H&Y 
scores or the tRF normalized ratio (described above). The training 
control was performed with five cross-validations using both GBM 
and linear model (LM) machine learning algorithms (method = ‘cv‘, 
summaryFunction = twoClassSummary, number = 5 and classProbs 
and savePredictions = T). ROC curves were plotted using the pROC 
package81 (version 1.18.5).

In training the model on randomly mixed labels, we received 
an AUC of 0.43, which reflects systematic misclassification rather 
than predictive power, as the model picked up on random patterns in  
the data. This result illustrates the random distribution expected in a 
sham model setup, with a marginal error. We further ran iterations of 
a ‘full’ matching in which patients were divided into clusters, each con-
taining at least one prodromal or PD patient and one control, and the 
same pipeline as described above for the ‘optimal’ matching was used.

To compute the ability of the tRF-based and the clinical-based algo-
rithms to classify patients (Extended Data Fig. 4g), we ran chi-square, 
first using the percentage of patients predicted by random distri-
bution and then using the percentage of patients predicted by the 
clinical-based algorithm as the reference probability. This created a 
confusion matrix of two columns (predicted to be prodromal, pre-
dicted to be control) and two rows (is indeed prodromal, is indeed 
control). Comparing the matrix of the tRF-based algorithm to the 
reference clinical-based matrix enabled proving that the tRF-based 
algorithm predicted a higher number of true prodromal patients to 
be prodromal.

Checking random motifs for the ability to segregate 
prodromal from control patients
First, we extracted all options of 14-nt-long sequences found in the 
PPMI-expressed tRFs. For example, for a tRF with the length of 30 nt, we 
regarded each of the sequences produced from nucleotides 1–14, 2–15, 
3–16… 17–30 as a potential motif. We than created 10,000 couples of 
randomly selected motifs and, for each couple, ran the same process 
as described above (namely, for each patient, we summed the counts 
for each of these motifs and calculated the ratio between the sums). We 
then normalized the ratio for each pair of optimally matched prodromal 
and control patients by dividing both by the mean of the pair’s ratio. 
We ran GMB analysis and extracted the yielded AUC.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All RNA sequencing data created for this study are available in the GEO 
under GSE256334. Data produced by others and used for this study are 
available at the NIH under phs000727, in the PPMI consortium and in 
the GEO under GSE130764, GSE23676 and GSE155727. Metadata and 
column data for the used datasets are available in the supplementary 
tables. Any other data reported in this paper are available from the lead 
contact upon reasonable request.

Code availability
The codes used for these data are available at https://github.com/
NimrodMd/PD_motif_codes.git.
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Extended Data Fig. 1 | Technical representation of the datasets and methods. 
a. The different datasets used in this work with total number of samples in each. 
All datasets were subjected to files quality check (using FASTQC), adaptor 
removal (FLEXBAR) and alignment to tRFs (MINTmap). b. DE analysis using 
EdgeR was applied on CSF (PD vs. Ctrl) and SN (high vs. low Lewy body score) 
samples. c. The consensus motif sequence identified by the MEME tool. Letters 
heights: Nucleotides conservation among upregulated N-tRFs. d. PPMI samples 
were further divided to subgroups according to the relevant comparison, with 
prodromal PD patients (n = 189) divided to 60 + 60 optimally matched patients 
and controls, 33 + 33 optimally matched test data, and 60 + 110 fully matched 

patients and controls. e, f. Calculated sum (E) and percentage (F) for RGTTCRA-
tRFs and MT-tRFs (and their ratio – RGTTCRA-tRFs/MT-tRFs) from all blood 
samples. g. Normalized calculated PD/MT-tRFs ratio for the two prodromal 
groups. h. The optimally matched patients served as a training dataset (GBM, 
k = 5 folds). i. Naïve test data and Fully matched patients served as a testing 
dataset. j. Blood samples collected in Jerusalem and SN samples obtained from 
the NIH NeuroBioBank served to test qPCR segregation of PD from controls using 
the primers designed based on the PPMI prodromal data. k. Long-RNA Affymetrix 
data (GSE23676) served to map Angiogenin levels in 7 PD patients before and 
after DBS neurosurgery.
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Extended Data Fig. 2 | MTtRFs decline, NtRFs and RGTTCRA-tRFs elevate in 
both Male and Female PD patients vs. controls. a. Density plots of post-mortem 
interval in female and male samples (left, right) and patients’ age (upper and 
lower panel). Note that PD, but not AD appears to shorten patients’ life span.  
b, c. Volcano plots for male (A) and Female (B) CSF samples. Each dot is a tRF. X: 
log2(Fold Change) of PD/Ctrl levels. Y: -log10(FDR adjusted p value). Horizontal 
and vertical lines: FDR < 0.05; log2(FC) > 1 or <-1. Left: NtRFs, right: MTtRFs. Dot 
colors: tRFs’ length. d. Scheme of tRNA breakdown into tRF types by Angiogenin 

(Ang) or Dicer (DICR). e. Segregation of PD-modified tRFs (Fig. 1b) to subtypes 
as in A. Each dot is a tRF. X: log2(Fold Change) of PD/Ctrl levels. Y: -log10(FDR 
adjusted p value). Background colors: NtRFs (blue), MTtRFs (green). f, g. Volcano 
plots for male (E) and Female (F) CSF samples. PD CSF NtRFs segregated into 
RGTTCRA-carrying and lacking tRFs. Blue thick line: FDR = 0.05. Grey line: 
unadjusted p = 0.05. Each dot is a tRF. X: log2(Fold Change) of PD/Ctrl levels. 
Y: -log10(FDR adjusted p value). Dot colors: tRFs’ length. h. As in A for 8 PD SN 
samples.
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Extended Data Fig. 3 | Overexpression but not knockout of Ang selectively 
affect RGTTCRA-tRF levels which also correlate to Lewy bodies score in PD 
blood. MT-tRNA are reduced with PD duration. a. KO of Ang (green) in U2SO 
cells with or without sodium arsenite (SA) exposure (purple and grey). Y axis: 
percentage of RGTTCRA-tRFs out of all expressed tRFs. b. As A. for MT-tRFs 
percentage. Both A and B were analyzed with a two-way ANOVA test that yielded 
no significant results. c. SN samples of healthy controls with (grey) or without 
(pink) healthy-reflecting levels of TH in their SN, compared to PD patients (blue) 

and SWEDD-like patients (orange) from a cohort of NBB Long-RNA-seq (n = 25).  
Y axis: Log10 of sum of all expressed MT-tRNAs. X axis: PD duration in years. 
r = 0.4, p < 0.05, Spearman correlation; PD vs. Ctrl p < 0.039 two-sided Mann-
Whitney test. All boxplots in this figure are defined so that the central line of 
the boxplot represents the median, the lower and upper box bounds represent 
0.25 and 0.75 quantiles and lower and upper whiskers bounds represent 0 and 1 
quantiles.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | RGTTCRA/MT-tRF score separates prodromal and 
controls even without normalization and UPDRS.III scores show similar, 
yet less significant, trends to RGTTCRA/MT-tRFs scores. a. ROC curve of 
the GLM algorithm classifying prodromal and control patients, based on only 
tRFs (tRFs-score; orange), only clinical measurements (UPDRS section III plus 
Hoehn and Yahr; turquoise) or Null classification (tRFs + clinical measurements 
albeit with mixed labels; grey). b. Ratio between RGTTCRA-tRFs to MT-tRFs in 
Prodromal patients (orange; n = 60) and controls (grey; n = 129) separated by 
their ethnicity and genetic backgrounds. Prodromal vs. Ctrl p < 5 × 10−6, two-way 
ANOVA c. UPDRS.III (motor) score in optimally matched Prodromal patients 
(orange; n = 60) and controls (grey; n = 60) separated by their ethnicity and 
genetic backgrounds. d. UPDRS III scores (top) and tRFs-score (bottom) for 
control, prodromal and PD patients according to their ethnicities and genetic 
backgrounds. UPDRS: Prodromal vs. Ctrl p < 0.11, PD vs. Ctrl p < 1 × 10−8, PD vs. 
prodromal p < 1 × 10−8, two-way ANOVA. tRFs-score: Prodromal vs. Ctrl p < 1 × 10−7, 
PD vs. Ctrl p < 1 × 10−4, PD vs. prodromal p < 0.043, two-way ANOVA. e. Correlation 
between total UPDRS scores (Y) and tRFs-score (X axis of E) in optimally matched 

prodromal and control patients (n = 60 of each). r = 0.27, p < 0.01; Spearman 
correlation, FDR correction. f. As in E for motoric (section III) UPDRS and for 
normalized RGTTCRA-tRF and MT-tRF levels (purple and green, X axis of F) 
separately. I: r = 0.19, p < 0.06; II: r = 0.245, p < 0.0163; III: r = 0.318, p < 0.004; 
Spearman correlation, FDR correction. g. GBM algorithm trained in Fig. 3b 
applied onto fully-matched prodromal and control subjects (n = 60, n = 110). X 
axis: true classification. Y axis: prospects to be a prodromal PD patient based 
on the algorithm. tRFs: p < 5 × 10−14, UPDRS: p < 3 × 10−7, Chi-square test, FDR 
correction. h. Each dot represents a prodromal patient that was later diagnosed 
as PD (n = 21). X axis: UPDRS score (at basal level, not at diagnosis as PD), Y axis: 
tRFs-score. i. Amplicons of two qPCR products (mixture of all three triplicates) 
were sequenced and aligned to tRFs. >50% of the reads were mapped to different 
tRFs (each color represents a single tRF. Note that the most prominent tRF in 
sample PD1 is hardly expressed in T7 and vice versa. All boxplots in this figure are 
defined so that the central line of the boxplot represents the median, the lower 
and upper box bounds represent 0.25 and 0.75 quantiles and lower and upper 
whiskers bounds represent 0 and 1 quantiles.

http://www.nature.com/nataging


Nature Aging

Article https://doi.org/10.1038/s43587-025-00851-z

Extended Data Fig. 5 | Ribosome profiling and FRET imaging suggest direct 
interaction of RGTTCRA-tRFs with the ribosome. a. Interaction of motif-
carrying tRFs with ribosomes based on the GSE113751 dataset of short RNA-seq 
from ribosomes pulldown in HeLa (red), HCT116 (green) and HEK293T (blue) 
cells. Cells were either untreated or starved for Arg(inine) or Leu(cine) for  
3 or 6 hours. Left Y axis: Points show RGTTCRA- tRF fractions among all tRFs. 
Right Y axis: total number of reads per sample. Horizontal dashed line: percent 
RGTTCRA-tRFs among all tRFs. b. Fluorescence intensity image of RGTTCRA-tRF 
(green), ribosomes (RPL24, red) and their colocalization (yellow). c. FRET-
sensitized fluorescence of the acceptor indicates a non-negligible amount of 

donor-labeled RGTTCRA-tRF and acceptor-labeled antibody-tagged RPL24 
ribosomal protein found at proximities <10 nm, and hence tRF and ribosomes 
interact. d, e. Fluorescence lifetime image of FRET-sensitized (C) or directly 
excited (D) acceptor-labeled ribosomes. f. The acceptor dye labeled by an 
antibody tagging the ribosomal protein RPL24 presents acceptor fluorescence 
decay of a region of interest (green & red arrows) after direct (red) and FRET-
sensitized excitation, reflected as slower fluorescence decay of FRET-sensitized 
compared to direct excitation events. C, D, E: ROIs with tRFs-ribosome 
interactions (arrows).
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Extended Data Fig. 6 | Two hours depolarization impairs ribosome 
enrichment of RGTTCRA-containing, 3′-tRFs and i-tRFs in cultured 
neuroblastoma cells; but MT-tRFs do not present significant changes under 
DBS stimuli. a. Blood MT-tRF levels in apparently healthy control carriers of 
PD-related mutations (Ctrl; grey; n = 9) and in PD patients, carriers of mutations 
in the LRRK2 and GBA genes (PD; blue; n = 30), with and without DBS (black and 
red lines; n = 11, n = 19). Y axis: mean blood MT-tRFs levels (white rhombuses). No 
significant changes, one-way ANOVA. b. GSE155727 dataset of ribosomal profiling 

and short-RNA-seq from SHSY cells. Counts per million of 3′-tRFs and i-tRFs 
lacking our motif (green) and carrying it (purple), from ribosome associated 
RNA-seq (left) or bulk short RNA-seq (right) in resting cells, or in cells right after 
or two hours post depolarization (2 h pDP). All boxplots in this figure are defined 
so that the central line of the boxplot represents the median, the lower and upper 
box bounds represent 0.25 and 0.75 quantiles and lower and upper whiskers 
bounds represent 0 and 1 quantiles.
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