Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Aging reshapes the adaptive immune system from healer to saboteur

Abstract

The classical role of adaptive immunity as a protector against external threats has expanded to include its functions in cancer surveillance, tissue repair and regeneration, and, more recently, it has emerged as a regulator of the aging process. In this Perspective, we discuss the mechanisms by which the deterioration of adaptive immunity contributes to inflammaging, cellular senescence and age-associated pathologies. We propose that age-related changes in lymphocytes contribute to aging through two distinct mechanisms. First, adaptive immune function worsens with age, impairing immunosurveillance of damaged or senescent cells and diminishing tissue regenerative potential, thereby indirectly disrupting tissue homeostasis. This disruption is particularly important in the gut, where maintaining tissue and microbiota homeostasis is crucial for overall health during aging. Second, adaptive immune cells often acquire pro-inflammatory and autoaggressive phenotypes with age, directly driving tissue damage, promoting senescence and exacerbating inflammaging. Finally, we explore the therapeutic potential of strategies aimed at enhancing the protective functions of lymphocytes or modulating their pathogenic phenotypes to promote healthy aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hallmarks of adaptive immune aging.
Fig. 2: Loss of protective and regenerative functions.
Fig. 3: Acquisition of pathogenic features.
Fig. 4: Geroscience-based interventions to improve immune function.

Similar content being viewed by others

References

  1. Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Chi, H., Pepper, M. & Thomas, P. G. Principles and therapeutic applications of adaptive immunity. Cell 187, 2052–2078 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Farber, D. L., Netea, M. G., Radbruch, A., Rajewsky, K. & Zinkernagel, R. M. Immunological memory: lessons from the past and a look to the future. Nat. Rev. Immunol. 16, 124–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Carpenter, R. S. & Maryanovich, M. Systemic and local regulation of hematopoietic homeostasis in health and disease. Nat. Cardiovasc. Res. 3, 651–665 (2024).

    Google Scholar 

  6. Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Mol, J., Kuiper, J., Tsiantoulas, D. & Foks, A. C. The dynamics of B cell aging in health and disease. Front. Immunol. 12, 733566 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Elyahu, Y. et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci. Adv. 5, eaaw8330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smit, V. et al. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc. Res. 119, 2508–2521 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Z. et al. A panoramic view of cell population dynamics in mammalian aging. Science 387, eadn3949 (2025).

  12. Luo, Y. et al. Single-cell genomics identifies distinct B1 cell developmental pathways and reveals aging-related changes in the B-cell receptor repertoire. Cell Biosci. 12, 57 (2022).

  13. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).

  14. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  15. Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 1, 598–615 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carrasco, E. et al. The role of T cells in age-related diseases. Nat. Rev. Immunol. 22, 97–111 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Ma, S., Wang, C., Mao, X. & Hao, Y. B cell dysfunction associated with aging and autoimmune disease. Front. Immunol. 10, 318 (2019).

  18. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rafii, P. et al. Constitutive activation of gp130 in T cells results in senescence and premature aging. J. Immunol. 210, 1641–1652 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, L. et al. Excessive apoptosis of Rip1‐deficient T cells leads to premature aging. EMBO Rep. 24, e57925 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Desdín-Micó, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371–1376 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang, W., Hickson, L. T. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sturmlechner, I. et al. p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science 374, eabb3420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marin, I. et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discov. 13, 410–431 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Suda, M. et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging 1, 1117–1126 (2021).

    Article  PubMed  Google Scholar 

  27. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, D. et al. NKG2D-CAR T cells eliminate senescent cells in aged mice and nonhuman primates. Sci. Transl. Med. 15, eadd1951 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Pereira, B. I. et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun. 10, 2387 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hasegawa, T. et al. Cytotoxic CD4+ T cells eliminate senescent cells by targeting cytomegalovirus antigen. Cell 186, 1417–1431 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Majewska, J. & Krizhanovsky, V. Immune surveillance of senescent cells in aging and disease. Nat. Aging https://doi.org/10.1038/s43587-025-00910-5 (2025).

  33. Wang, Y. et al. Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age. Nat. Immunol. 26, 308–322 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo, Z. et al. DCAF1 regulates Treg senescence via the ROS axis during immunological aging. J. Clin. Invest. 130, 5893–5908 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dikiy, S. & Rudensky, A. Y. Principles of regulatory T cell function. Immunity 56, 240–255 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Soto-Heredero, G. et al. KLRG1 identifies regulatory T cells with mitochondrial alterations that accumulate with aging. Nat. Aging 5, 799–815 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, L. et al. Centenarians alleviate inflammaging by changing the ratio and secretory phenotypes of T helper 17 and regulatory T cells. Front. Pharmacol. 13, 877709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bozec, A. & Zaiss, M. M. T regulatory cells in bone remodelling. Curr. Osteoporos. Rep. 15, 121–125 (2017).

    Article  PubMed  Google Scholar 

  40. Xia, N. et al. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 142, 1956–1973 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Ding, C. et al. A Treg-specific long noncoding RNA maintains immune–metabolic homeostasis in aging liver. Nat. Aging 3, 813–828 (2023).

    Article  PubMed  Google Scholar 

  42. Kuswanto, W. et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44, 355–367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sousa, N. S. et al. The immune landscape of murine skeletal muscle regeneration and aging. Cell Rep. 43, 114975 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. de la Fuente, A. G. et al. Ageing impairs the regenerative capacity of regulatory T cells in mouse central nervous system remyelination. Nat. Commun. 15, 1870 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Underhill, D. M., Gordon, S., Imhof, B. A., Núñez, G., & Bousso, P. Élie Metchnikoff (1845–1916): celebrating 100 years of cellular immunology and beyond. Nat. Rev. Immunol. 16, 651–656 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Ghosh, T. S., Shanahan, F. & O’Toole, P. W. The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 19, 565–584 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rera, M., Clark, R. I. & Walker, D. W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc. Natl Acad. Sci. USA 109, 21528–21533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huus, K. E., Petersen, C. & Finlay, B. B. Diversity and dynamism of IgA−microbiota interactions. Nat. Rev. Immunol. 21, 514–525 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Sage, P. T., Tan, C. L., Freeman, G. J., Haigis, M. & Sharpe, A. H. Defective TFH cell function and increased TFR cells contribute to defective antibody production in aging. Cell Rep. 12, 163–171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Conway, J. et al. Age-related loss of intestinal barrier integrity plays an integral role in thymic involution and T cell ageing. Aging Cell 24, e14401 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Širvinskas, D. et al. Single-cell atlas of the aging mouse colon. iScience 25, 104202 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kjhn, R., Löhler, I., Rennick, D., Rajewsky, K. & Moiler, W. Interleukin-LO-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  Google Scholar 

  53. Neumann, C. et al. c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host–microbiota homeostasis. Nat. Immunol. 20, 471–481 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Omrani, O. et al. IFNγ–Stat1 axis drives aging-associated loss of intestinal tissue homeostasis and regeneration. Nat. Commun. 14, 6109 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fransen, F. et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front. Immunol. 8, 1385 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Stebegg, M. et al. Heterochronic faecal transplantation boosts gut germinal centres in aged mice. Nat. Commun. 10, 2443 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kawamoto, S. et al. Bacterial induction of B cell senescence promotes age-related changes in the gut microbiota. Nat. Cell Biol. 25, 865–876 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Yang, H. et al. Gut microbial-derived phenylacetylglutamine accelerates host cellular senescence. Nat. Aging 5, 401–418 (2025).

    Article  CAS  PubMed  Google Scholar 

  59. Yang, W. & Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell. Mol. Immunol. 18, 866–877 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, J. L. & Linterman, M. A. Mechanisms underpinning poor antibody responses to vaccines in ageing. Immunol. Lett. 241, 1–14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Frasca, D. & Blomberg, B. B. Aging induces B cell defects and decreased antibody responses to influenza infection and vaccination. Immun. Ageing 17, 37 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ma, S. et al. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell 187, 7025–7044 (2024).

    Article  CAS  PubMed  Google Scholar 

  63. Yu, L. et al. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab. 36, 793–807 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gudelj, I., Lauc, G. & Pezer, M. Immunoglobulin G glycosylation in aging and diseases. Cell. Immunol. 333, 65–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Plomp, R. et al. Subclass-specific IgG glycosylation is associated with markers of inflammation and metabolic health. Sci. Rep. 7, 12325 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Giron, L. B. et al. Immunoglobulin G N-glycan markers of accelerated biological aging during chronic HIV infection. Nat. Commun. 15, 3035 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Streng, B. M. M. et al. IgG1 glycosylation highlights premature aging in Down syndrome. Aging Cell 23, e14167 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mogilenko, D. A. et al. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity 54, 99–115 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Frasca, D. et al. B cells with a senescent-associated secretory phenotype accumulate in the adipose tissue of individuals with obesity. Int. J. Mol. Sci. 22, 1839 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cancro, M. P. Age-associated B cells. Annu. Rev. Immunol. 38, 315–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Bharath, L. P. et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 32, 44–55 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Baixauli, F. et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 22, 485–498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Terekhova, M. et al. Single-cell atlas of healthy human blood unveils age-related loss of NKG2C+GZMBCD8+ memory T cells and accumulation of type 2 memory T cells. Immunity 56, 2836–2854 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Callender, L. A. et al. Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell 17, e12675 (2018).

    Article  PubMed  Google Scholar 

  75. Lan, F. et al. GZMK-expressing CD8+ T cells promote recurrent airway inflammatory diseases. Nature 638, 490–498 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guo, C.-L. et al. Granzyme K+CD8+ T cells interact with fibroblasts to promote neutrophilic inflammation in nasal polyps. Nat. Commun. 15, 10413 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, Z. et al. Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis. Nat. Cardiovasc. Res. 2, 290–306 (2023).

    CAS  Google Scholar 

  78. Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sulzer, D. et al. T cells of Parkinson’s disease patients recognize α-synuclein peptides. Nature 546, 656–661 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mittal, K. et al. CD4 T cells induce a subset of MHCII-expressing microglia that attenuates Alzheimer pathology. iScience 16, 298–311 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Su, W. et al. CXCR6 orchestrates brain CD8+ T cell residency and limits mouse Alzheimer’s disease pathology. Nat. Immunol. 24, 1735–1747 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kedia, S. et al. T cell-mediated microglial activation triggers myelin pathology in a mouse model of amyloidosis. Nat. Neurosci. 27, 1468–1474 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Panwar, A. et al. Antigen-specific age-related memory CD8 T cells induce and track Alzheimer’s-like neurodegeneration. Proc. Natl Acad. Sci. USA 121, e2401420121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Morales-Nebreda, L. et al. Aging imparts cell-autonomous dysfunction to regulatory T cells during recovery from influenza pneumonia. JCI Insight 6, e141690 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nishiyama, T. et al. Mechanisms of age-related Treg dysfunction in an arthritic environment. Clin. Immunol. 266, 110337 (2024).

    Article  CAS  PubMed  Google Scholar 

  86. Butcher, M. J. et al. Atherosclerosis-driven Treg plasticity results in formation of a dysfunctional subset of plastic IFNγ+ TH1/Tregs. Circ. Res. 119, 1190–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bapat, S. P. et al. Depletion of fat Tregs prevents age-associated insulin resistance. Nature 528, 137–141 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ratliff, M., Alter, S., Frasca, D., Blomberg, B. B. & Riley, R. L. In senescence, age-associated B cells secrete TNFα and inhibit survival of B-cell precursors. Aging Cell 12, 303–311 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Camell, C. D. et al. Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab. 30, 1024–1039 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rubtsov, A. V. et al. CD11c-expressing B cells are located at the T cell/B cell border in spleen and are potent APCs. J. Immunol. 195, 71–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Li, K. et al. B cells from old mice induce the generation of inflammatory T cells through metabolic pathways. Mech. Ageing Dev. 209, 111742 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Khan, S. et al. B cells promote T cell immunosenescence and mammalian aging parameters. Preprint at bioRxiv https://doi.org/10.1101/2023.09.12.556363 (2023).

  93. Goto, M. et al. Age-associated CD4+ T cells with B cell-promoting functions are regulated by ZEB2 in autoimmunity. Sci. Immunol. 9, eadk1643 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Carey, A. et al. Age-associated accumulation of B cells promotes macrophage inflammation and inhibits lipolysis in adipose tissue during sepsis. Cell Rep. 43, 113967 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaya, T. et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gabandé-Rodríguez, E. et al. Cytotoxic CD4+ T cells in the bone marrow compromise healthy ageing by enhancing granulopoiesis. Preprint at bioRxiv https://doi.org/10.1101/2024.01.26.577360 (2024).

  97. Hao, Y., O’Neill, P., Naradikian, M. S., Scholz, J. L. & Cancro, M. P. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118, 1294–1304 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rubtsov, A. V. et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood 118, 1305–1315 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pereira, B. I. et al. Sestrins induce natural killer function in senescent-like CD8+ T cells. Nat. Immunol. 21, 684–694 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dudek, M. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 592, 444–449 (2021).

  101. Takeuchi, A. & Saito, T. CD4 CTL, a cytotoxic subset of CD4+ T cells, their differentiation and function. Front. Immunol. 8, 194 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mucida, D. et al. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14, 281–289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hashimoto, K. et al. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc. Natl Acad. Sci. USA 116, 24242–24251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Oh, D. Y. & Fong, L. Cytotoxic CD4+ T cells in cancer: expanding the immune effector toolbox. Immunity 54, 2701–2711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, P. et al. Single-cell transcriptome and TCR profiling reveal activated and expanded T cell populations in Parkinson’s disease. Cell Discov. 7, 52 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Piehl, N. et al. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell 185, 5028–5039 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Di Francesco, A. et al. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 634, 684–692 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Messaoudi, I. et al. Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc. Natl Acad. Sci. USA 103, 19448–19453 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Spadaro, O. et al. Caloric restriction in humans reveals immunometabolic regulators of health span. Science 375, 671–677 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Eikawa, S. et al. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl Acad. Sci. USA 112, 1809–1814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang, J. et al. The effect of metformin on senescence of T lymphocytes. Immun. Ageing 20, 73 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mannick, J. B. & Lamming, D. W. Targeting the biology of aging with mTOR inhibitors. Nat. Aging 3, 642–660 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen, C., Liu, Y., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ando, S. et al. mTOR regulates T cell exhaustion and PD-1-targeted immunotherapy response during chronic viral infection. J. Clin. Invest. 133, e160025 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl. Med. 6, 268ra179 (2014).

    Article  PubMed  Google Scholar 

  116. Girotra, M. et al. Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune systems. Nat. Aging 3, 1057–1066 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Zhao, J. et al. ATM is a key driver of NF-κB-dependent DNA-damage-induced senescence, stem cell dysfunction and aging. Aging 12, 4688–4710 (2020).

  118. Arora, S. et al. Invariant natural killer T cells coordinate removal of senescent cells. Med 2, 938–950 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Ma, S. et al. Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell 29, 990–1005 (2022).

    CAS  Google Scholar 

  120. Ho, T. T. et al. Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions. J. Exp. Med. 218, e20210223 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Davies, J. S., Thompson, H. L., Pulko, V., Padilla Torres, J. & Nikolich-Žugich, J. Role of cell-intrinsic and environmental age-related changes in altered maintenance of murine T cells in lymphoid organs. J. Gerontol. A Biol. Sci. Med. Sci. 73, 1018–1026 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dahlquist, K. J. V. et al. PD1 blockade improves survival and CD8+ cytotoxic capacity, without increasing inflammation, during normal microbial experience in old mice. Nat. Aging 4, 915–925 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hamilton, S. E. et al. New insights into the immune system using dirty mice. J. Immunol. 205, 3–11 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Ahuja, S. K. et al. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection. Nat. Commun. 14, 3286 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ross, J. B. et al. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 628, 162–170 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Delemarre, E. M. et al. Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells. Blood 127, 91–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Shim, H. S. et al. TERT activation targets DNA methylation and multiple aging hallmarks. Cell 187, 4030–4042 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Karagiannis, P., Iriguchi, S. & Kaneko, S. Reprogramming away from the exhausted T cell state. Semin. Immunol. 28, 35–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Lanna, A. et al. An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory. Nat. Cell Biol. 24, 1461–1474 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Baker, D. J., Arany, Z., Baur, J. A., Epstein, J. A. & June, C. H. CAR T therapy beyond cancer: the evolution of a living drug. Nature 619, 707–715 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Deng, Y. et al. Targeting senescent cells with NKG2D-CAR T cells. Cell Death Discov. 10, 217 (2024).

    CAS  Google Scholar 

  133. Amor, C. et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat. Aging 4, 336–349 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Eskiocak, O. et al. Senolytic CAR T cells reverse aging-associated defects in intestinal regeneration and fitness. Preprint at bioRxiv https://doi.org/10.1101/2024.03.19.585779 (2024).

  135. Ming, X. et al. A chimeric peptide promotes immune surveillance of senescent cells in injury, fibrosis, tumorigenesis and aging. Nat. Aging 5, 28–47 (2025).

    Article  CAS  PubMed  Google Scholar 

  136. Widjaja, A. A. et al. Inhibition of IL-11 signalling extends mammalian healthspan and lifespan. Nature 632, 157–165 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lainé, A. et al. Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation. Nat. Commun. 12, 6228 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funded by the European Union (M.M.). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. This work was supported by the European Research Council (ERC-2021-CoG 101044248-Let T Be) (M.M.) and Spanish Ministerio de Ciencia e Innovación (PID2022-141169OB-I00) grants (M.M.), NIH grant R21AG087361 (M.J.Y.), a Nelson Family Transplant Innovation Award (M.J.Y.), pilot projects from the New York Nutrition and Obesity Research Center and the CALERIE study (M.J.Y.). S.D.-P. was supported by a PIPF grant (PIPF-2022/SAL-GL-25208) from the Comunidad de Madrid (Spain).

Author information

Authors and Affiliations

Authors

Contributions

S.D.-P., M.J.Y. and M.M. contributed to the preparation of the Perspective.

Corresponding authors

Correspondence to Matthew J. Yousefzadeh or Maria Mittelbrunn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Alon Monsonego, Jessica Lancaster, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado-Pulido, S., Yousefzadeh, M.J. & Mittelbrunn, M. Aging reshapes the adaptive immune system from healer to saboteur. Nat Aging 5, 1393–1403 (2025). https://doi.org/10.1038/s43587-025-00906-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-025-00906-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing