Abstract
Immune responses underlying autoimmune diseases follow the same principles that protect individuals from infection and malignancies. However, while protective immunity wanes with progressive age, the risk for autoimmune disease steadily increases; incidence rates for many autoimmune diseases peak in later life. Here, we discuss whether aging predisposes to autoimmunity, arguing that disease progression in the autoimmune vasculitis giant cell arteritis is driven by age-inappropriate sustenance of immune competence. Stem-like memory CD4+ T cells (TSCM) that reside near the vasculitic lesions provide a continuous supply of pathogenic effector T cells. Antigen-presenting cells lacking inhibitory ligands further impede peripheral tolerance mechanisms. In the context of aging-associated accumulation of neoantigens, this incessant immune competence sets the stage for unopposed autoimmunity. We propose that sustained immune youthfulness can be detrimental to the aging host, while immune aging may be a beneficial adaptation to balance reactivity to self-antigens and non-self-antigens and thus protect from autoimmunity in aging.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
References
Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).
Goronzy, J. J. & Weyand, C. M. Successful and maladaptive T cell aging. Immunity 46, 364–378 (2017).
Soto-Heredero, G., Gomez de Las Heras, M. M., Escrig-Larena, J. I. & Mittelbrunn, M. Extremely differentiated T cell subsets contribute to tissue deterioration during aging. Annu. Rev. Immunol. 41, 181–205 (2023).
Duggal, N. A., Niemiro, G., Harridge, S. D. R., Simpson, R. J. & Lord, J. M. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat. Rev. Immunol. 19, 563–572 (2019).
Moqri, M. et al. Validation of biomarkers of aging. Nat. Med. 30, 360–372 (2024).
Ferrari, A. F. S. D. et al. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2133–2161 (2024).
Shen, X. et al. Nonlinear dynamics of multi-omics profiles during human aging. Nat. Aging 4, 1619–1634 (2024).
Weyand, C. M. & Goronzy, J. J. Aging of the immune system. Mechanisms and therapeutic targets. Ann. Am. Thorac. Soc. 13 Suppl 5, S422–S428 (2016).
Abel, L. & Casanova, J.-L. Human determinants of age-dependent patterns of death from infection. Immunity 57, 1457–1465 (2024).
Sender, R. et al. The total mass, number, and distribution of immune cells in the human body. Proc. Natl Acad. Sci. USA 120, e2308511120 (2023).
de Boer, R. J., Tesselaar, K. & Borghans, J. A. M. Better safe than sorry: naive T-cell dynamics in healthy ageing. Semin. Immunol. 70, 101839 (2023).
Qi, Q., Zhang, D. W., Weyand, C. M. & Goronzy, J. J. Mechanisms shaping the naive T cell repertoire in the elderly — thymic involution or peripheral homeostatic proliferation? Exp. Gerontol. 54, 71–74 (2014).
Summers, C. et al. Neutrophil kinetics in health and disease. Trends Immunol. 31, 318–324 (2010).
Fujino, T., Asada, S., Goyama, S. & Kitamura, T. Mechanisms involved in hematopoietic stem cell aging. Cell. Mol. Life Sci. 79, 473 (2022).
Kapadia, C. D. & Goodell, M. A. Tissue mosaicism following stem cell aging: blood as an exemplar. Nat. Aging 4, 295–308 (2024).
Conrad, N. et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet 401, 1878–1890 (2023).
Neuberger, M. S. Antigen receptor signaling gives lymphocytes a long life. Cell 90, 971–973 (1997).
Martin, B., Becourt, C., Bienvenu, B. & Lucas, B. Self-recognition is crucial for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment. Blood 108, 270–277 (2006).
Aiello, A. E., Chiu, Y. L. & Frasca, D. How does cytomegalovirus factor into diseases of aging and vaccine responses, and by what mechanisms? Geroscience 39, 261–271 (2017).
Lanfermeijer, J. et al. Age and CMV-infection jointly affect the EBV-specific CD8+ T-cell repertoire. Front. Aging 2, 665637 (2021).
Verdon, D. J. & Jenkins, M. R. Identification and targeting of mutant peptide neoantigens in cancer immunotherapy. Cancers 13, 4245 (2021).
Wang, S. J., Dougan, S. K. & Dougan, M. Immune mechanisms of toxicity from checkpoint inhibitors. Trends Cancer 9, 543–553 (2023).
Ibis, B., Aliazis, K., Cao, C., Yenyuwadee, S. & Boussiotis, V. A. Immune-related adverse effects of checkpoint immunotherapy and implications for the treatment of patients with cancer and autoimmune diseases. Front. Immunol. 14, 1197364 (2023).
Abad Lopez, A. P., Trilleras, J., Arana, V. A., Garcia-Alzate, L. S. & Grande-Tovar, C. D. Atmospheric microplastics: exposure, toxicity, and detrimental health effects. RSC Adv. 13, 7468–7489 (2023).
Finch, C. E. & Thorwald, M. A. Inhaled pollutants of the gero-exposome and later-life health. J. Gerontol. A Biol. Sci. Med. Sci. 79, glae107 (2024).
Finch, C. E. Air pollution, dementia, and lifespan in the socio-economic gradient of aging: perspective on human aging for planning future experimental studies. Front. Aging 4, 1273303 (2023).
Jin, J. et al. CISH impairs lysosomal function in activated T cells resulting in mitochondrial DNA release and inflammaging. Nat. Aging 3, 600–616 (2023).
Jin, J., Zhang, H., Weyand, C. M. & Goronzy, J. J. Lysosomes in T cell immunity and aging. Front. Aging 2, 809539 (2021).
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).
Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).
Gressler, A. E., Leng, H., Zinecker, H. & Simon, A. K. Proteostasis in T cell aging. Semin. Immunol. 70, 101838 (2023).
Adkar, S. S. & Leeper, N. J. Efferocytosis in atherosclerosis. Nat. Rev. Cardiol. 21, 762–779 (2024).
Weyand, C. M. & Goronzy, J. J. The immunology of rheumatoid arthritis. Nat. Immunol. 22, 10–18 (2021).
Gorisse, L. et al. Protein carbamylation is a hallmark of aging. Proc. Natl Acad. Sci. USA 113, 1191–1196 (2016).
Nicolas, C. et al. Carbamylation and glycation compete for collagen molecular aging in vivo. Sci. Rep. 9, 18291 (2019).
Schmelzer, C. E. H. & Duca, L. Elastic fibers: formation, function, and fate during aging and disease. FEBS J. 289, 3704–3730 (2022).
Doue, M. et al. Carbamylation of elastic fibers is a molecular substratum of aortic stiffness. Sci. Rep. 11, 17827 (2021).
Palatella, M., Guillaume, S. M., Linterman, M. A. & Huehn, J. The dark side of Tregs during aging. Front. Immunol. 13, 940705 (2022).
Rocamora-Reverte, L., Melzer, F. L., Wurzner, R. & Weinberger, B. The complex role of regulatory T cells in immunity and aging. Front. Immunol. 11, 616949 (2020).
Darrigues, J., van Meerwijk, J. P. M. & Romagnoli, P. Age-dependent changes in regulatory T lymphocyte development and function: a mini-review. Gerontology 64, 28–35 (2018).
Jin, K. et al. NOTCH-induced rerouting of endosomal trafficking disables regulatory T cells in vasculitis. J. Clin. Invest. 131, e136042 (2021).
Donato, A. J., Machin, D. R. & Lesniewski, L. A. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ. Res. 123, 825–848 (2018).
Vatner, S. F. et al. Vascular stiffness in aging and disease. Front. Physiol. 12, 762437 (2021).
Fritze, O. et al. Age-related changes in the elastic tissue of the human aorta. J. Vasc. Res. 49, 77–86 (2012).
Tembely, D. et al. The elastin receptor complex: an emerging therapeutic target against age-related vascular diseases. Front. Endocrinol. 13, 815356 (2022).
Weyand, C. M. & Goronzy, J. J. Immune mechanisms in medium and large-vessel vasculitis. Nat. Rev. Rheumatol. 9, 731–740 (2013).
Weyand, C. M., Liao, Y. J. & Goronzy, J. J. The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. J. Neuroophthalmol. 32, 259–265 (2012).
Sato, Y., Tada, M., Goronzy, J. J. & Weyand, C. M. Immune checkpoints in autoimmune vasculitis. Best Pract. Res. Clin. Rheumatol. 38, 101943 (2024).
Kaymakci, M. S. et al. Subclinical aortic inflammation in patients with polymyalgia rheumatica. Rheumatology 63, 3289–3296 (2024).
Kaymakci, M. S. et al. Persistent aortic inflammation in patients with giant cell arteritis. Autoimmun. Rev. 22, 103411 (2023).
Jin, K. et al. Regulatory T cells in autoimmune vasculitis. Front. Immunol. 13, 844300 (2022).
Watanabe, R., Berry, G. J., Liang, D. H., Goronzy, J. J. & Weyand, C. M. Pathogenesis of giant cell arteritis and takayasu arteritis—similarities and differences. Curr. Rheumatol. Rep. 22, 68 (2020).
Weyand, C. M. & Goronzy, J. J. Immunology of giant cell arteritis. Circ. Res. 132, 238–250 (2023).
Jakobsson, K. et al. Body mass index and the risk of giant cell arteritis: results from a prospective study. Rheumatology 54, 433–440 (2015).
Sato, Y. et al. Stem-like CD4+ T cells in perivascular tertiary lymphoid structures sustain autoimmune vasculitis. Sci. Transl. Med. 15, eadh0380 (2023).
Watanabe, R. et al. MMP (matrix metalloprotease)-9-producing monocytes enable T cells to invade the vessel wall and cause vasculitis. Circ. Res. 123, 700–715 (2018).
Gattinoni, L., Klebanoff, C. A. & Restifo, N. P. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12, 671–684 (2012).
Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).
Im, S. J. et al. Characteristics and anatomic location of PD-1+TCF1+ stem-like CD8 T cells in chronic viral infection and cancer. Proc. Natl Acad. Sci. USA 120, e2221985120 (2023).
Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019).
Sturmlechner, I., Jain, A., Mu, Y., Weyand, C. M. & Goronzy, J. J. T cell fate decisions during memory cell generation with aging. Semin. Immunol. 69, 101800 (2023).
Jain, A., Sturmlechner, I., Weyand, C. M. & Goronzy, J. J. Heterogeneity of memory T cells in aging. Front. Immunol. 14, 1250916 (2023).
Zhang, H. et al. Aging-associated HELIOS deficiency in naive CD4+ T cells alters chromatin remodeling and promotes effector cell responses. Nat. Immunol. 24, 96–109 (2023).
Durand, M. & Thomas, S. L. Incidence of infections in patients with giant cell arteritis: a cohort study. Arthritis Care Res. 64, 581–588 (2012).
Schmidt, J. et al. Incidence of severe infections and infection-related mortality during the course of giant cell arteritis: a multicenter, prospective, double-cohort study. Arthritis Rheumatol. 68, 1477–1482 (2016).
Zhou, Z. et al. The five major autoimmune diseases increase the risk of cancer: epidemiological data from a large-scale cohort study in China. Cancer Commun. 42, 435–446 (2022).
Giat, E., Ehrenfeld, M. & Shoenfeld, Y. Cancer and autoimmune diseases. Autoimmun. Rev. 16, 1049–1057 (2017).
Kermani, T. A. et al. Malignancy risk in patients with giant cell arteritis: a population-based cohort study. Arthritis Care Res. 62, 149–154 (2010).
Kendziora, R. W. et al. Age-related histopathological findings in temporal arteries. Histopathology 83, 782–790 (2023).
Broomfield, B. J. & Groom, J. R. Defining the niche for stem-like CD8+ T cell formation and function. Curr. Opin. Immunol. 89, 102454 (2024).
Duckworth, B. C., Qin, R. Z. & Groom, J. R. Spatial determinates of effector and memory CD8+ T cell fates. Immunol. Rev. 306, 76–92 (2022).
Ge, Y. et al. The aging skin microenvironment dictates stem cell behavior. Proc. Natl Acad. Sci. USA 117, 5339–5350 (2020).
Wen, Z. et al. The microvascular niche instructs T cells in large vessel vasculitis via the VEGF–Jagged1–Notch pathway. Sci. Transl. Med. 9, eaal3322 (2017).
Smets, P. et al. Vascular endothelial growth factor levels and rheumatic diseases of the elderly. Arthritis Res. Ther. 18, 283 (2016).
Piggott, K. et al. Blocking the NOTCH pathway inhibits vascular inflammation in large-vessel vasculitis. Circulation 123, 309–318 (2011).
Shin, B. & Rothenberg, E. V. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front. Immunol. 14, 1108368 (2023).
Shin, B., Chang, S. J., MacNabb, B. W. & Rothenberg, E. V. Transcriptional network dynamics in early T cell development. J. Exp. Med. 221, e20230893 (2024).
Wilkens, A. B. et al. NOTCH1 signaling during CD4+ T-cell activation alters transcription factor networks and enhances antigen responsiveness. Blood 140, 2261–2275 (2022).
Shu, D. H. et al. Immunotherapy response induces divergent tertiary lymphoid structure morphologies in hepatocellular carcinoma. Nat. Immunol. 25, 2110–2123 (2024).
Kim, C. M. et al. The efficacy of immune checkpoint inhibitors in elderly patients: a meta-analysis and meta-regression. ESMO Open 7, 100577 (2022).
Yao, J. et al. Efficacy and safety of immune checkpoint inhibitors in elderly patients with advanced non-small cell lung cancer: a systematic review and meta-analysis. eClinicalMedicine 81, 103081 (2025).
Eochagain, C. M. et al. Management of immune checkpoint inhibitor-associated toxicities in older adults with cancer: recommendations from the International Society of Geriatric Oncology (SIOG). Lancet Oncol. 26, e90–e102 (2025).
Hysa, E. et al. Polymyalgia rheumatica and giant cell arteritis induced by immune checkpoint inhibitors: a systematic literature review highlighting differences from the idiopathic forms. Autoimmun. Rev. 23, 103589 (2024).
Rivellese, F., Pontarini, E. & Pitzalis, C. Tertiary lymphoid organs in rheumatoid arthritis. Curr. Top. Microbiol. Immunol. 426, 119–141 (2020).
Li, Y. et al. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab. 30, 477–492 (2019).
Weyand, C. M. & Goronzy, J. J. Immune aging in rheumatoid arthritis. Arthritis Rheum. https://doi.org/10.1002/art.43105 (2025).
Weyand, C. M. & Goronzy, J. J. Metabolic checkpoints in rheumatoid arthritis. Semin. Arthritis Rheum. 70S, 152586 (2025).
Zheng, Y., Liu, Q., Goronzy, J. J. & Weyand, C. M. Immune aging - a mechanism in autoimmune disease. Semin. Immunol. 69, 101814 (2023).
Weyand, C. M. & Goronzy, J. J. Immunometabolism in the development of rheumatoid arthritis. Immunol. Rev. 294, 177–187 (2020).
Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).
Zeng, Z., Wei, F. & Ren, X. Exhausted T cells and epigenetic status. Cancer Biol. Med. 17, 923–936 (2020).
Zu, H. & Chen, X. Epigenetics behind CD8+ T cell activation and exhaustion. Genes Immun. 25, 525–540 (2024).
Maggi, E. et al. T cell landscape in the microenvironment of human solid tumors. Immunol. Lett. 270, 106942 (2024).
Khan, N., Vidyarthi, A., Amir, M., Mushtaq, K. & Agrewala, J. N. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit. Rev. Microbiol. 43, 133–141 (2017).
Minato, N., Hattori, M. & Hamazaki, Y. Physiology and pathology of T-cell aging. Int. Immunol. 32, 223–231 (2020).
Fukushima, Y., Ueno, R., Minato, N. & Hattori, M. Senescence-associated T cells in immunosenescence and diseases. Int. Immunol. 37, 143–152 (2025).
Noll, J. H., Levine, B. L., June, C. H. & Fraietta, J. A. Beyond youth: understanding CAR T cell fitness in the context of immunological aging. Semin. Immunol. 70, 101840 (2023).
Han, S., Georgiev, P., Ringel, A. E., Sharpe, A. H. & Haigis, M. C. Age-associated remodeling of T cell immunity and metabolism. Cell Metab. 35, 36–55 (2023).
Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).
Iwama, S., Kobayashi, T. & Arima, H. Management, biomarkers and prognosis in people developing endocrinopathies associated with immune checkpoint inhibitors. Nat. Rev. Endocrinol. 21, 289–300 (2025).
Munir, A. Z., Gutierrez, A., Qin, J., Lichtman, A. H. & Moslehi, J. J. Immune-checkpoint inhibitor-mediated myocarditis: CTLA4, PD1 and LAG3 in the heart. Nat. Rev. Cancer 24, 540–553 (2024).
Ohtsuki, S. et al. Deficiency of the CD155–CD96 immune checkpoint controls IL-9 production in giant cell arteritis. Cell Rep. Med. 4, 101012 (2023).
Zhang, H. et al. CD28 signaling controls metabolic fitness of pathogenic T cells in medium and large vessel vasculitis. J. Am. Coll. Cardiol. 73, 1811–1823 (2019).
Zhang, H. et al. Inhibition of JAK–STAT signaling suppresses pathogenic immune responses in medium and large vessel vasculitis. Circulation 137, 1934–1948 (2018).
Watanabe, R., Zhang, H., Berry, G., Goronzy, J. J. & Weyand, C. M. Immune checkpoint dysfunction in large and medium vessel vasculitis. Am. J. Physiol. Heart Circ. Physiol. 312, H1052–H1059 (2017).
Zhang, H. et al. Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proc. Natl Acad. Sci. USA 114, E970–E979 (2017).
Deng, J., Younge, B. R., Olshen, R. A., Goronzy, J. J. & Weyand, C. M. TH17 and TH1 T-cell responses in giant cell arteritis. Circulation 121, 906–915 (2010).
Ghosh, A. K. et al. Elevated endoplasmic reticulum stress response contributes to adipose tissue inflammation in aging. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1320–1329 (2015).
van Beek, A. A., Van den Bossche, J., Mastroberardino, P. G., de Winther, M. P. J. & Leenen, P. J. M. Metabolic alterations in aging macrophages: ingredients for inflammaging? Trends Immunol. 40, 113–127 (2019).
Shaw, A. C., Goldstein, D. R. & Montgomery, R. R. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13, 875–887 (2013).
Zhao, T. V. et al. Hyperactivity of the CD155 immune checkpoint suppresses anti-viral immunity in patients with coronary artery disease. Nat. Cardiovasc. Res. 1, 634–648 (2022).
Acknowledgements
We thank the members of their research teams, the patients who donated research samples, the Encrantz Family Discovery Fund, the Southwell Family Discovery Fund and the Mary and Mark Davis Program in Autoimmunity. The work has received support from the National Institutes of Health (R01AR042527, R01AI108906, R01HL142068, U01AI179609, R01HL117913 to C.M.W. and R01AI108891, R01AG045779, R01AI129191, R01AI184360 to J.J.G.).
Author information
Authors and Affiliations
Contributions
C.M.W. and J.J.G. conceptualized the manuscript. C.M.W. wrote the manuscript, and C.M.W. and J.J.G. edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
C.M.W. has received consulting fees from AbbVie, Bristol Myers Squibb, Novartis, Ono Pharmaceutical, Boehringer Ingelheim and Sparrow Pharmaceuticals. J.J.G. has received consulting fees and stock options from Retro Biosciences.
Peer review
Peer review information
Nature Aging thanks Donatella De Feo, Claudio Mauro, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Weyand, C.M., Goronzy, J.J. Sustained immune youth risks autoimmune disease in the aging host. Nat Aging 5, 1404–1414 (2025). https://doi.org/10.1038/s43587-025-00919-w
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s43587-025-00919-w