Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Sustained immune youth risks autoimmune disease in the aging host

Subjects

Abstract

Immune responses underlying autoimmune diseases follow the same principles that protect individuals from infection and malignancies. However, while protective immunity wanes with progressive age, the risk for autoimmune disease steadily increases; incidence rates for many autoimmune diseases peak in later life. Here, we discuss whether aging predisposes to autoimmunity, arguing that disease progression in the autoimmune vasculitis giant cell arteritis is driven by age-inappropriate sustenance of immune competence. Stem-like memory CD4+ T cells (TSCM) that reside near the vasculitic lesions provide a continuous supply of pathogenic effector T cells. Antigen-presenting cells lacking inhibitory ligands further impede peripheral tolerance mechanisms. In the context of aging-associated accumulation of neoantigens, this incessant immune competence sets the stage for unopposed autoimmunity. We propose that sustained immune youthfulness can be detrimental to the aging host, while immune aging may be a beneficial adaptation to balance reactivity to self-antigens and non-self-antigens and thus protect from autoimmunity in aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Age as a risk factor of autoimmunity.
Fig. 2: Increase of the immunogenic antigen load with age.
Fig. 3: TSCM cells in autoimmune vasculitis.
Fig. 4: Youthfulness of peripheral T cell subset distribution in autoimmune vasculitis.
Fig. 5: The survival niche for stem-like CD4+ T cells in vasculitis.
Fig. 6: Non-inhibitory APCs and non-exhaustible CD4+ T cells in vasculitis.
Fig. 7: A disease model for autoimmunity in the older adult.
Fig. 8: Delayed immune aging predisposes to autoimmune disease.

Similar content being viewed by others

References

  1. Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goronzy, J. J. & Weyand, C. M. Successful and maladaptive T cell aging. Immunity 46, 364–378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Soto-Heredero, G., Gomez de Las Heras, M. M., Escrig-Larena, J. I. & Mittelbrunn, M. Extremely differentiated T cell subsets contribute to tissue deterioration during aging. Annu. Rev. Immunol. 41, 181–205 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Duggal, N. A., Niemiro, G., Harridge, S. D. R., Simpson, R. J. & Lord, J. M. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat. Rev. Immunol. 19, 563–572 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Moqri, M. et al. Validation of biomarkers of aging. Nat. Med. 30, 360–372 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferrari, A. F. S. D. et al. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2133–2161 (2024).

    Article  Google Scholar 

  7. Shen, X. et al. Nonlinear dynamics of multi-omics profiles during human aging. Nat. Aging 4, 1619–1634 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weyand, C. M. & Goronzy, J. J. Aging of the immune system. Mechanisms and therapeutic targets. Ann. Am. Thorac. Soc. 13 Suppl 5, S422–S428 (2016).

    Article  PubMed  Google Scholar 

  9. Abel, L. & Casanova, J.-L. Human determinants of age-dependent patterns of death from infection. Immunity 57, 1457–1465 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sender, R. et al. The total mass, number, and distribution of immune cells in the human body. Proc. Natl Acad. Sci. USA 120, e2308511120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Boer, R. J., Tesselaar, K. & Borghans, J. A. M. Better safe than sorry: naive T-cell dynamics in healthy ageing. Semin. Immunol. 70, 101839 (2023).

    Article  PubMed  Google Scholar 

  12. Qi, Q., Zhang, D. W., Weyand, C. M. & Goronzy, J. J. Mechanisms shaping the naive T cell repertoire in the elderly — thymic involution or peripheral homeostatic proliferation? Exp. Gerontol. 54, 71–74 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Summers, C. et al. Neutrophil kinetics in health and disease. Trends Immunol. 31, 318–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujino, T., Asada, S., Goyama, S. & Kitamura, T. Mechanisms involved in hematopoietic stem cell aging. Cell. Mol. Life Sci. 79, 473 (2022).

    Article  CAS  Google Scholar 

  15. Kapadia, C. D. & Goodell, M. A. Tissue mosaicism following stem cell aging: blood as an exemplar. Nat. Aging 4, 295–308 (2024).

    Article  PubMed  Google Scholar 

  16. Conrad, N. et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet 401, 1878–1890 (2023).

    Article  PubMed  Google Scholar 

  17. Neuberger, M. S. Antigen receptor signaling gives lymphocytes a long life. Cell 90, 971–973 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Martin, B., Becourt, C., Bienvenu, B. & Lucas, B. Self-recognition is crucial for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment. Blood 108, 270–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Aiello, A. E., Chiu, Y. L. & Frasca, D. How does cytomegalovirus factor into diseases of aging and vaccine responses, and by what mechanisms? Geroscience 39, 261–271 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lanfermeijer, J. et al. Age and CMV-infection jointly affect the EBV-specific CD8+ T-cell repertoire. Front. Aging 2, 665637 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Verdon, D. J. & Jenkins, M. R. Identification and targeting of mutant peptide neoantigens in cancer immunotherapy. Cancers 13, 4245 (2021).

  22. Wang, S. J., Dougan, S. K. & Dougan, M. Immune mechanisms of toxicity from checkpoint inhibitors. Trends Cancer 9, 543–553 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ibis, B., Aliazis, K., Cao, C., Yenyuwadee, S. & Boussiotis, V. A. Immune-related adverse effects of checkpoint immunotherapy and implications for the treatment of patients with cancer and autoimmune diseases. Front. Immunol. 14, 1197364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abad Lopez, A. P., Trilleras, J., Arana, V. A., Garcia-Alzate, L. S. & Grande-Tovar, C. D. Atmospheric microplastics: exposure, toxicity, and detrimental health effects. RSC Adv. 13, 7468–7489 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Finch, C. E. & Thorwald, M. A. Inhaled pollutants of the gero-exposome and later-life health. J. Gerontol. A Biol. Sci. Med. Sci. 79, glae107 (2024).

  26. Finch, C. E. Air pollution, dementia, and lifespan in the socio-economic gradient of aging: perspective on human aging for planning future experimental studies. Front. Aging 4, 1273303 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jin, J. et al. CISH impairs lysosomal function in activated T cells resulting in mitochondrial DNA release and inflammaging. Nat. Aging 3, 600–616 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin, J., Zhang, H., Weyand, C. M. & Goronzy, J. J. Lysosomes in T cell immunity and aging. Front. Aging 2, 809539 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Gressler, A. E., Leng, H., Zinecker, H. & Simon, A. K. Proteostasis in T cell aging. Semin. Immunol. 70, 101838 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Adkar, S. S. & Leeper, N. J. Efferocytosis in atherosclerosis. Nat. Rev. Cardiol. 21, 762–779 (2024).

    Article  PubMed  Google Scholar 

  33. Weyand, C. M. & Goronzy, J. J. The immunology of rheumatoid arthritis. Nat. Immunol. 22, 10–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Gorisse, L. et al. Protein carbamylation is a hallmark of aging. Proc. Natl Acad. Sci. USA 113, 1191–1196 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Nicolas, C. et al. Carbamylation and glycation compete for collagen molecular aging in vivo. Sci. Rep. 9, 18291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmelzer, C. E. H. & Duca, L. Elastic fibers: formation, function, and fate during aging and disease. FEBS J. 289, 3704–3730 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Doue, M. et al. Carbamylation of elastic fibers is a molecular substratum of aortic stiffness. Sci. Rep. 11, 17827 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Palatella, M., Guillaume, S. M., Linterman, M. A. & Huehn, J. The dark side of Tregs during aging. Front. Immunol. 13, 940705 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rocamora-Reverte, L., Melzer, F. L., Wurzner, R. & Weinberger, B. The complex role of regulatory T cells in immunity and aging. Front. Immunol. 11, 616949 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Darrigues, J., van Meerwijk, J. P. M. & Romagnoli, P. Age-dependent changes in regulatory T lymphocyte development and function: a mini-review. Gerontology 64, 28–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Jin, K. et al. NOTCH-induced rerouting of endosomal trafficking disables regulatory T cells in vasculitis. J. Clin. Invest. 131, e136042 (2021).

  42. Donato, A. J., Machin, D. R. & Lesniewski, L. A. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ. Res. 123, 825–848 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vatner, S. F. et al. Vascular stiffness in aging and disease. Front. Physiol. 12, 762437 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fritze, O. et al. Age-related changes in the elastic tissue of the human aorta. J. Vasc. Res. 49, 77–86 (2012).

    Article  PubMed  Google Scholar 

  45. Tembely, D. et al. The elastin receptor complex: an emerging therapeutic target against age-related vascular diseases. Front. Endocrinol. 13, 815356 (2022).

    Article  Google Scholar 

  46. Weyand, C. M. & Goronzy, J. J. Immune mechanisms in medium and large-vessel vasculitis. Nat. Rev. Rheumatol. 9, 731–740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weyand, C. M., Liao, Y. J. & Goronzy, J. J. The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. J. Neuroophthalmol. 32, 259–265 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sato, Y., Tada, M., Goronzy, J. J. & Weyand, C. M. Immune checkpoints in autoimmune vasculitis. Best Pract. Res. Clin. Rheumatol. 38, 101943 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kaymakci, M. S. et al. Subclinical aortic inflammation in patients with polymyalgia rheumatica. Rheumatology 63, 3289–3296 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaymakci, M. S. et al. Persistent aortic inflammation in patients with giant cell arteritis. Autoimmun. Rev. 22, 103411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jin, K. et al. Regulatory T cells in autoimmune vasculitis. Front. Immunol. 13, 844300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Watanabe, R., Berry, G. J., Liang, D. H., Goronzy, J. J. & Weyand, C. M. Pathogenesis of giant cell arteritis and takayasu arteritis—similarities and differences. Curr. Rheumatol. Rep. 22, 68 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Weyand, C. M. & Goronzy, J. J. Immunology of giant cell arteritis. Circ. Res. 132, 238–250 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jakobsson, K. et al. Body mass index and the risk of giant cell arteritis: results from a prospective study. Rheumatology 54, 433–440 (2015).

    Article  PubMed  Google Scholar 

  55. Sato, Y. et al. Stem-like CD4+ T cells in perivascular tertiary lymphoid structures sustain autoimmune vasculitis. Sci. Transl. Med. 15, eadh0380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Watanabe, R. et al. MMP (matrix metalloprotease)-9-producing monocytes enable T cells to invade the vessel wall and cause vasculitis. Circ. Res. 123, 700–715 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gattinoni, L., Klebanoff, C. A. & Restifo, N. P. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12, 671–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

  59. Im, S. J. et al. Characteristics and anatomic location of PD-1+TCF1+ stem-like CD8 T cells in chronic viral infection and cancer. Proc. Natl Acad. Sci. USA 120, e2221985120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Sturmlechner, I., Jain, A., Mu, Y., Weyand, C. M. & Goronzy, J. J. T cell fate decisions during memory cell generation with aging. Semin. Immunol. 69, 101800 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jain, A., Sturmlechner, I., Weyand, C. M. & Goronzy, J. J. Heterogeneity of memory T cells in aging. Front. Immunol. 14, 1250916 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, H. et al. Aging-associated HELIOS deficiency in naive CD4+ T cells alters chromatin remodeling and promotes effector cell responses. Nat. Immunol. 24, 96–109 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Durand, M. & Thomas, S. L. Incidence of infections in patients with giant cell arteritis: a cohort study. Arthritis Care Res. 64, 581–588 (2012).

    Google Scholar 

  65. Schmidt, J. et al. Incidence of severe infections and infection-related mortality during the course of giant cell arteritis: a multicenter, prospective, double-cohort study. Arthritis Rheumatol. 68, 1477–1482 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Zhou, Z. et al. The five major autoimmune diseases increase the risk of cancer: epidemiological data from a large-scale cohort study in China. Cancer Commun. 42, 435–446 (2022).

    Article  Google Scholar 

  67. Giat, E., Ehrenfeld, M. & Shoenfeld, Y. Cancer and autoimmune diseases. Autoimmun. Rev. 16, 1049–1057 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Kermani, T. A. et al. Malignancy risk in patients with giant cell arteritis: a population-based cohort study. Arthritis Care Res. 62, 149–154 (2010).

    Google Scholar 

  69. Kendziora, R. W. et al. Age-related histopathological findings in temporal arteries. Histopathology 83, 782–790 (2023).

    Article  PubMed  Google Scholar 

  70. Broomfield, B. J. & Groom, J. R. Defining the niche for stem-like CD8+ T cell formation and function. Curr. Opin. Immunol. 89, 102454 (2024).

    Article  CAS  PubMed  Google Scholar 

  71. Duckworth, B. C., Qin, R. Z. & Groom, J. R. Spatial determinates of effector and memory CD8+ T cell fates. Immunol. Rev. 306, 76–92 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Ge, Y. et al. The aging skin microenvironment dictates stem cell behavior. Proc. Natl Acad. Sci. USA 117, 5339–5350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wen, Z. et al. The microvascular niche instructs T cells in large vessel vasculitis via the VEGF–Jagged1–Notch pathway. Sci. Transl. Med. 9, eaal3322 (2017).

  74. Smets, P. et al. Vascular endothelial growth factor levels and rheumatic diseases of the elderly. Arthritis Res. Ther. 18, 283 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Piggott, K. et al. Blocking the NOTCH pathway inhibits vascular inflammation in large-vessel vasculitis. Circulation 123, 309–318 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shin, B. & Rothenberg, E. V. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front. Immunol. 14, 1108368 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shin, B., Chang, S. J., MacNabb, B. W. & Rothenberg, E. V. Transcriptional network dynamics in early T cell development. J. Exp. Med. 221, e20230893 (2024).

  78. Wilkens, A. B. et al. NOTCH1 signaling during CD4+ T-cell activation alters transcription factor networks and enhances antigen responsiveness. Blood 140, 2261–2275 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shu, D. H. et al. Immunotherapy response induces divergent tertiary lymphoid structure morphologies in hepatocellular carcinoma. Nat. Immunol. 25, 2110–2123 (2024).

    Article  CAS  PubMed  Google Scholar 

  80. Kim, C. M. et al. The efficacy of immune checkpoint inhibitors in elderly patients: a meta-analysis and meta-regression. ESMO Open 7, 100577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yao, J. et al. Efficacy and safety of immune checkpoint inhibitors in elderly patients with advanced non-small cell lung cancer: a systematic review and meta-analysis. eClinicalMedicine 81, 103081 (2025).

  82. Eochagain, C. M. et al. Management of immune checkpoint inhibitor-associated toxicities in older adults with cancer: recommendations from the International Society of Geriatric Oncology (SIOG). Lancet Oncol. 26, e90–e102 (2025).

    Article  PubMed  Google Scholar 

  83. Hysa, E. et al. Polymyalgia rheumatica and giant cell arteritis induced by immune checkpoint inhibitors: a systematic literature review highlighting differences from the idiopathic forms. Autoimmun. Rev. 23, 103589 (2024).

    Article  CAS  PubMed  Google Scholar 

  84. Rivellese, F., Pontarini, E. & Pitzalis, C. Tertiary lymphoid organs in rheumatoid arthritis. Curr. Top. Microbiol. Immunol. 426, 119–141 (2020).

    CAS  PubMed  Google Scholar 

  85. Li, Y. et al. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab. 30, 477–492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Weyand, C. M. & Goronzy, J. J. Immune aging in rheumatoid arthritis. Arthritis Rheum. https://doi.org/10.1002/art.43105 (2025).

  87. Weyand, C. M. & Goronzy, J. J. Metabolic checkpoints in rheumatoid arthritis. Semin. Arthritis Rheum. 70S, 152586 (2025).

    Article  PubMed  Google Scholar 

  88. Zheng, Y., Liu, Q., Goronzy, J. J. & Weyand, C. M. Immune aging - a mechanism in autoimmune disease. Semin. Immunol. 69, 101814 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Weyand, C. M. & Goronzy, J. J. Immunometabolism in the development of rheumatoid arthritis. Immunol. Rev. 294, 177–187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zeng, Z., Wei, F. & Ren, X. Exhausted T cells and epigenetic status. Cancer Biol. Med. 17, 923–936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zu, H. & Chen, X. Epigenetics behind CD8+ T cell activation and exhaustion. Genes Immun. 25, 525–540 (2024).

    Article  CAS  PubMed  Google Scholar 

  93. Maggi, E. et al. T cell landscape in the microenvironment of human solid tumors. Immunol. Lett. 270, 106942 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Khan, N., Vidyarthi, A., Amir, M., Mushtaq, K. & Agrewala, J. N. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit. Rev. Microbiol. 43, 133–141 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Minato, N., Hattori, M. & Hamazaki, Y. Physiology and pathology of T-cell aging. Int. Immunol. 32, 223–231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fukushima, Y., Ueno, R., Minato, N. & Hattori, M. Senescence-associated T cells in immunosenescence and diseases. Int. Immunol. 37, 143–152 (2025).

    Article  CAS  PubMed  Google Scholar 

  97. Noll, J. H., Levine, B. L., June, C. H. & Fraietta, J. A. Beyond youth: understanding CAR T cell fitness in the context of immunological aging. Semin. Immunol. 70, 101840 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Han, S., Georgiev, P., Ringel, A. E., Sharpe, A. H. & Haigis, M. C. Age-associated remodeling of T cell immunity and metabolism. Cell Metab. 35, 36–55 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Iwama, S., Kobayashi, T. & Arima, H. Management, biomarkers and prognosis in people developing endocrinopathies associated with immune checkpoint inhibitors. Nat. Rev. Endocrinol. 21, 289–300 (2025).

  101. Munir, A. Z., Gutierrez, A., Qin, J., Lichtman, A. H. & Moslehi, J. J. Immune-checkpoint inhibitor-mediated myocarditis: CTLA4, PD1 and LAG3 in the heart. Nat. Rev. Cancer 24, 540–553 (2024).

    Article  CAS  PubMed  Google Scholar 

  102. Ohtsuki, S. et al. Deficiency of the CD155–CD96 immune checkpoint controls IL-9 production in giant cell arteritis. Cell Rep. Med. 4, 101012 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, H. et al. CD28 signaling controls metabolic fitness of pathogenic T cells in medium and large vessel vasculitis. J. Am. Coll. Cardiol. 73, 1811–1823 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, H. et al. Inhibition of JAK–STAT signaling suppresses pathogenic immune responses in medium and large vessel vasculitis. Circulation 137, 1934–1948 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Watanabe, R., Zhang, H., Berry, G., Goronzy, J. J. & Weyand, C. M. Immune checkpoint dysfunction in large and medium vessel vasculitis. Am. J. Physiol. Heart Circ. Physiol. 312, H1052–H1059 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang, H. et al. Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proc. Natl Acad. Sci. USA 114, E970–E979 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Deng, J., Younge, B. R., Olshen, R. A., Goronzy, J. J. & Weyand, C. M. TH17 and TH1 T-cell responses in giant cell arteritis. Circulation 121, 906–915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ghosh, A. K. et al. Elevated endoplasmic reticulum stress response contributes to adipose tissue inflammation in aging. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1320–1329 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. van Beek, A. A., Van den Bossche, J., Mastroberardino, P. G., de Winther, M. P. J. & Leenen, P. J. M. Metabolic alterations in aging macrophages: ingredients for inflammaging? Trends Immunol. 40, 113–127 (2019).

    Article  PubMed  Google Scholar 

  110. Shaw, A. C., Goldstein, D. R. & Montgomery, R. R. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13, 875–887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao, T. V. et al. Hyperactivity of the CD155 immune checkpoint suppresses anti-viral immunity in patients with coronary artery disease. Nat. Cardiovasc. Res. 1, 634–648 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of their research teams, the patients who donated research samples, the Encrantz Family Discovery Fund, the Southwell Family Discovery Fund and the Mary and Mark Davis Program in Autoimmunity. The work has received support from the National Institutes of Health (R01AR042527, R01AI108906, R01HL142068, U01AI179609, R01HL117913 to C.M.W. and R01AI108891, R01AG045779, R01AI129191, R01AI184360 to J.J.G.).

Author information

Authors and Affiliations

Authors

Contributions

C.M.W. and J.J.G. conceptualized the manuscript. C.M.W. wrote the manuscript, and C.M.W. and J.J.G. edited the manuscript.

Corresponding author

Correspondence to Cornelia M. Weyand.

Ethics declarations

Competing interests

C.M.W. has received consulting fees from AbbVie, Bristol Myers Squibb, Novartis, Ono Pharmaceutical, Boehringer Ingelheim and Sparrow Pharmaceuticals. J.J.G. has received consulting fees and stock options from Retro Biosciences.

Peer review

Peer review information

Nature Aging thanks Donatella De Feo, Claudio Mauro, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weyand, C.M., Goronzy, J.J. Sustained immune youth risks autoimmune disease in the aging host. Nat Aging 5, 1404–1414 (2025). https://doi.org/10.1038/s43587-025-00919-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-025-00919-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing