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Large-scale genome-wide analyses with 
proteomics integration reveal novel loci and 
biological insights into frailty
 

Jonathan K. L. Mak    1,2,3, Chenxi Qin1, Moritz Krüger    3, Anna Kuukka3, 
FinnGen5,*, Sara Hägg    1, Jake Lin1,3,73 & Juulia Jylhävä    1,3,4,73 

Frailty is a clinically relevant phenotype with notable gaps in our 
understanding of its etiology. Using the Hospital Frailty Risk Score (HFRS) 
to define frailty, we performed a genome-wide association study in FinnGen 
(N = 500,737), replicated the results in the UK Biobank (N = 407,463) and 
performed a meta-analysis. We prioritized genes through colocalization 
with expression, splicing and protein quantitative trait loci and proteomics 
integration. We identified 53 independent lead variants associated with 
frailty (P < 5 × 10−8), of which 45 were novel and not previously reported in the 
GWAS Catalog. Replication at the individual variant and polygenic risk score 
of the HFRS (P = 1.86 × 10−522) levels and meta-analysis largely confirmed the 
findings. Colocalization analysis supported a causal role for several genes, 
including CHST9, C6orf106 (ILRUN), KHK, MET, APOE, CGREF1 and PPP6C. 
Additionally, plasma levels of MET, CGREF1 and APOE were associated with 
HFRS. Our results reveal new genetic contributions to frailty and shed light 
on its biological basis.

Aging is a highly complex process with substantial heterogeneity in 
health trajectories among individuals. Frailty represents a clinically 
relevant aging phenotype that gauges health in aging1 and predicts 
various adverse outcomes independent of chronological age2. Frailty 
describes a syndrome of decreased physiological reserves across 
multiple homeostatic systems1. Currently, no gold standard exists to 
measure frailty; instead, several scales with different properties have 
been developed, each capturing partially different at-risk populations3. 
Created based on 109 weighted International Classification of Diseases, 
10th Revision (ICD-10) codes characterizing older adults with high 
resource use and diagnoses associated with frailty, the HFRS presents 
a relatively new scale to measure frailty4. It has a fair overlap with exist-
ing frailty definitions based on the deficit accumulation (frailty index 
(FI)) and phenotypic (frailty phenotype (FP)) models of frailty and has a 

moderate agreement with the FI4. While the HFRS uses ICD-10 codes for 
administrative ease, enabling the measurement of frailty in real-world 
data, the FI5 and FP6 are rooted in clinical and functional data and are 
often assessed in cohort studies. The FI is a multidimensional measure 
of frailty, offering a comprehensive view of a person’s overall health5. In 
contrast, the FP defines frailty through specific physical characteristics: 
weakness, slowness, exhaustion, low physical activity and weight loss6. 
While each measure captures distinct aspects of frailty, together they 
provide a more complete understanding of the condition.

The etiology of frailty remains incompletely understood. Twin stud-
ies by us and others suggest that frailty, measured using the FI, is up to 52% 
heritable7,8, with relatively stable genetic influences across age9. To date, 
only two previous large-scale genome-wide association studies (GWASs) 
of frailty exist. Atkins et al. performed a meta-analysis GWAS of FI that 
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loci) were identified as independent lead variants (r2 < 0.01) for the 
HFRS and HFRS without dementia, respectively. As dementia diagnosis 
has the highest weight in the HFRS formula, the most influential peak 
expectedly resided in the APOE (rs7412) region on chromosome 19 
(Fig. 2a). Sensitivity analysis confirmed the expected loss of the APOE 
peak (Fig. 2b). Of the independent lead variants associated with HFRS 
and HFRS without dementia, 45/53 and 36/42, respectively, were novel 
with respect to the GWAS Catalog and previously reported GWAS results 
of the FI10, FP11 and mvAge13 (Fig. 3a and Supplementary Tables 1 and 2).  
The variants mapped to 41 (HFRS) and 30 (HFRS without dementia) 
genes of which 6 and 3, respectively, were novel, that is, previously 
unreported for any trait at P < 5 × 10−8. The results also demonstrated 
unique, non-shared associations in both analyses (Fig. 3b and Supple-
mentary Tables 1 and 2). Supplementary Table 3 presents the shared 
and unique genes between the HFRS, FI and FP GWASs.

Replication in the UK Biobank and meta-analysis
For HFRS, 1,262/1,588 variants were available for replication and 
meta-analysis. In the UK Biobank, 73 variants (6%) replicated at P < 5 × 10−8 
and 688 (55%) at P < 0.05, while in the meta-analysis, 357 variants (28%) 
replicated at P < 5 × 10−8 and 1,260 (100%) at P < 0.05 (Supplementary 
Table 1). Of the 53 lead variants, 36 were available; 2 lead variants (6%) 
replicated at P < 5 × 10−8 and 14 (39%) at P < 0.05 in the UK Biobank, while 6 
(17%) replicated at P < 5 × 10−8 and 35 (97%) at P < 0.05 in the meta-analysis 
(Supplementary Table 1). For HFRS without dementia, 435/492 variants 
were available for replication and meta-analysis. In the UK Biobank, 21 

identified 34 loci and estimated the single nucleotide polymorphism 
(SNP) heritability of the FI at 11%10. Ye at al. identified 123 loci for FP and 
estimated the SNP heritability of the FP at 6%11. However, it is likely that 
additional genetic signals exist and analyses in other large populations 
can shed further light on the genetic underpinnings of frailty.

To date, no previous studies into the genetics of frailty using the 
HFRS exist. To this end, we performed a GWAS of the HFRS in FinnGen 
(N = 500,737), with replication of the results in the UK Biobank 
(N = 407,463), both at the individual variant level and through polygenic 
risk scores (PRSs). We also performed a meta-analysis on the results 
from both GWASs to capture the totality of the evidence. Given that 
dementia has the highest weight in the HFRS definition, we performed 
a sensitivity analysis by excluding dementia from the HFRS definition 
and similarly replicated the results in the UK Biobank and conducted a 
meta-analysis on the results. A functional follow-up to identify causal 
genetic loci was performed through colocalization analysis12 with 
expression, splicing and protein quantitative trait loci (eQTL, sQTL 
and pQTL, respectively) and associating measured protein levels with 
the HFRS in the UK Biobank (N = up to 42,495).

Results
Sample characteristics
The workflow of the analyses is presented in Fig. 1. In the HFRS GWAS, 
we included 500,737 (282,202 females, 56.4%) FinnGen and 407,463 
UK Biobank participants (220,208 females, 54.1%). Characteristics of 
the study populations are presented in Table 1.

Discovery GWAS of HFRS in FinnGen
We identified 1,588 variants associated (P < 5 × 10−8) with the HFRS in the 
main analysis and 492 variants in the sensitivity analysis, which removed 
the dementia weights from the HFRS (Fig. 2a,b and Supplementary 
Tables 1 and 2). Of these, 53 variants (at 50 loci) and 42 variants (at 42 

HFRS based on 109 ICD-10 codes HFRS without dementia
(sensitivity analysis)

GWAS in FinnGen
Exploring novel variants and genes associated with HFRS with respect to 
previous frailty literature and the GWAS Catalog 
Calculation of heritability and genetic correlations
Cell-type and pathway enrichment analyses

Replication, meta-analysis and PRS analysis
Replication of signals at the variant level in the UK Biobank
Meta-analysis of the FinnGen and UK Biobank results 
Calculation of HFRS-PRSs using GWAS summary statistics and PRS
replication in the UK Biobank
Assessment of the predictive ability of the HFRS-PRSs for mortality and 
hospitalizations

Proteomics integration in the UK Biobank and colocalization
Prioritize genes through associating protein levels with the HFRS (N ≈ 42,000)
and through statistical colocalization with expression, splicing and protein
QTL  

Replication sample
UK Biobank, N = 407,463

Discovery sample
FinnGen release 12, N = 500,737

Study participants

Fig. 1 | Outline of the study. Discovery GWASs of HFRS and HFRS without 
dementia were performed in FinnGen to identify genetic variants associated 
with frailty. The significant variants (P ≺ 5 × 10−8) were then replicated in the 
UK Biobank, and a meta-analysis of the FinnGen and UK Biobank results was 
performed. The GWAS summary statistics of FinnGen were used to calculate 
HFRS-PRSs, which were then assessed for their association with mortality and 
hospitalizations in the UK Biobank. Finally, protein association and colocalization 
analyses were performed to prioritize genes and identify causal variants.

Table 1 | Characteristics of the study samples

Characteristic FinnGen UK Biobank

No. of individuals 519,200 407,463

Age at baseline assessment, 
mean (s.d.)

53.1 (17.9) 56.9 (8.0)

Age at end of follow-up/death, 
mean (s.d.)

60.8 (18.0) 70.9 (7.9)

Sex, n (%)

  Women 292,784 (56.4) 220,208 (54.1)

  Men 226,416 (43.6) 187,255 (45.9)

BMI (kg/m2), mean (s.d.) 27.35 (5.53) 27.41 (4.76)

  Missing, n (%) 142,454 (27.4) 1273 (0.3)

Smoking, n (%)

  Nonsmoker 156,355 (50.9) 221,770 (54.6)

  Former smoker 70,317 (22.9) 143,384 (35.3)

  Current smoker 80,736 (26.2) 41,109 (10.1)

  Missing 211,792 1,380

HFRS, median (IQR) 5.2 (1.6–10.4) 1.5 (0–5)

  Women, median (IQR) 5.3 (1.6–10.5) 1.5 (0–4.7)

  Men, median (IQR) 5.0 (1.5–10.3) 1.5 (0–5.4)

HFRS categories, n (%)

  Low risk (<5) 241,656 (48.4) 304,555 (74.7)

  Intermediate risk (5–15) 188,147 (37.8) 74,386 (18.2)

  High risk (>15) 65,925 (13.2) 28,702 (7.0)

HFRS > 5, n (%) 254,874 (51.0) 101,326 (24.9)

HFRS > 5 before age 65, n (%) 95,410 (18.4) 33,485 (8.2)

Died during follow-up, n (%) 62,764 (12.1) 36,795 (9.0)

Number of hospitalizations, 
median (IQR)

8 (4–17) 1 (0–3)

FinnGen participant characteristics are presented for the sample with non-missing data on 
the HFRS (N = 519,200). IQR, interquartile range.
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variants (5%) replicated at P < 5 × 10−8 and 118 (27%) at P < 0.05, while in 
the meta-analysis, 50 variants (11%) replicated at P < 5 × 10−8 and 435 
(100%) at P < 0.05 (Supplementary Table 1). Of the 42 lead variants, 26 
were available; 1 lead variant (4%) replicated at P < 5 × 10−8 and 10 (38%) 
at P < 0.05 in the UK Biobank, while 4 (17%) replicated at P < 5 × 10−8 and 
26 (100%) at P < 0.05 in the meta-analysis (Supplementary Table 2). 
The effect direction was consistent for all variants that replicated at 
P < 5 × 10−8 in the meta-analysis (Supplementary Tables 1 and 2).

Genetic correlation and heritability
We observed a lambda genomic control value of 1.27 with an intercept of 
1.19 (s.e. = 0.011) for HFRS and 1.11 with an intercept of 1.23 (s.e. = 0.010) 
for HFRS without dementia (QQ plots provided in Extended Data Fig. 1). 
Despite the relatively high lambda values, the intercepts suggest that 
the inflation in test statistics was mainly due to polygenicity, rather 
than bias due to population stratification. The SNP heritability was 
0.06 (s.e. = 0.002) for HFRS and 0.04 (s.e. = 0.002) for HFRS without 
dementia. Statistically significant and positive genetic correlations 
(P < 2.2 × 10−16) were observed between HFRS and previous GWASs on 
frailty and mvAge (Fig. 3c).

Cell-type and pathway enrichment
For HFRS, the top (P < 3.7 × 10−5, corrected for multiple testing) cell 
types enriched for expression were limbic system neurons in cerebrum, 
excitatory neurons (Ex6) in visual cortex, oligodendrocyte precursor 
cells (OPCs) in cerebellar hemisphere and oligodendrocytes in cerebel-
lum (Extended Data Fig. 2 and Supplementary Table 4). For HFRS with-
out dementia, the top cell types were OPCs and astrocytes in cerebellar 
hemisphere, skeletal muscle satellite cells in muscle and endocrine cells 

in stromal cells in stomach (Extended Data Fig. 3 and Supplementary 
Table 5). Enrichr14 pathway analysis (adjusted P < 0.05) showed that the 
top pathways for the HFRS signals were relevant to the nervous system 
functions (herpes simplex virus 1 infection, netrin-mediated repulsion 
signals), cell adhesion and lipid metabolism (Supplementary Table 6). 
Comparison of the pathways from the HFRS, FI and FP GWASs revealed 
overlap in herpes simplex virus 1 infection and cell adhesion molecules 
between HFRS and FI, and in multiple pathways related to lipid and 
lipoprotein metabolism, cellular interactions and adhesion between 
HFRS and FP (Supplementary Table 6). Each GWAS also had distinct 
pathways not shared with the others (Supplementary Table 6). For HFRS 
without dementia, several functions related to cell cycle were enriched 
at P < 0.05, although none of the pathways were statistically significant 
after correction for multiple testing (Supplementary Table 7).

Exploring causal variants through proteomics integration
To identify potentially causal and functional variants (that is, missense, 
splice region, loss of function and 5′ and 3′ untranslated region variants 
associated with the HFRS and HFRS without dementia at P < 5 × 10−7; 
Supplementary Tables 8 and 9), we associated the protein levels of 
the corresponding genes to HFRS (13 proteins available in UK Biobank 
Olink platform) and HFRS without dementia (8 proteins available in 
UK Biobank Olink platform). We adjusted the models for birth year, 
sex and the first ten principal components (PCs; model 1), as well as 
batch, baseline assessment center, body mass index (BMI) and smok-
ing (model 2). Significantly associated proteins at a false discovery 
rate (FDR) < 0.05 in both models 1 and 2 were CGREF1, MET, ALDH2, 
NECTIN2, APOC1, APOE and FOSB for HFRS, and CDK and POF1B for 
HFRS without dementia (Fig. 4 and Supplementary Table 10).

OPRD1

ZRANB2-AS2

COP1

SMYD2

DPYSL5

VIT

ASB3

ARHGAP15

CNTN4

SATB1-AS1

AC092691.1

ZCCHC4

LINC02267

LINC02465

RXFP1

ADCY2

C6orf106

AL355997.1

AL589740.1

MAD1L1 FOXP2

LRGUK
CNTNAP2

THEM7P

NCAM1

CADM1

ETV6
SH2B3

RPL6
AL049775.2 WFIKKN2

BPTF
CHST9

DCC
ZNF227 NECTIN2

APOE

APOC4

AAR2

OSBP2
HDX

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Chromosome

HFRSa

COP1

KCNT2

F13B

NEK7

MAPRE3
SPAST

SLC9A2

LDB2

ANAPC4

SGCD
HLA-B

CEP162

AL589740.1

FOXP2

SGCZ
SCAI

RPL26P27

HK1

OR6L1PSPON1

NCAM1

CACNA1C-AS4

RNU6-1012P

DIAPH3
AC073941.1

ZFHX3

BPTF

CHST9

DCC

CBFA2T2

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Chromosome

−l
og

10
(P

)
−l

og
10

(P
)

HFRS w/o dementiab
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Colocalization analysis
Several gene loci, such as CHST9, C6orf106 (ILRUN), KHK, MET, CGREF1 
and PPP6C had shared causal variants (posterior probability for H4 
(PP.H4) > 80%) in eQTL and/or sQTL for HFRS. Several colocalized (PP.
H4 > 80%) eQTL and/or sQTL loci were also identified for HFRS with-
out dementia, including CHST9, CGREF1, PPP6C, ADARB1 and PSMB7. 
The full eQTL and sQTL colocalization results for the HFRS and HFRS 
without dementia are presented in Supplementary Tables 11 and 12, 
and the colocalization results with a PP.H4 > 80% are summarized by 
tissue for each gene in Extended Data Fig. 4. In the pQTL analysis, of 
those genes that had a protein measurement available (that is, the pro-
tein was detectable in plasma), a total of 20 loci for HFRS and 9 loci for 
HFRS without dementia had enough power for the analyses (PP > 88%; 
Methods). Of them, a colocalized signal (that is, shared single causal 
variant, PP.H4 > 80%; Methods) was detected within APOE and BRAP 
genes for HFRS (Supplementary Table 13), whereas no colocalized sig-
nal with pQTL was detected within genes for HFRS without dementia. 
For most of the tested genes, the PP.H3 values were greater than or 
close to 90%, indicative of distinct causal variants for protein levels and 
HFRS (Supplementary Tables 13 and 14). Regional association plots of 
the APOE gene demonstrated that the strongest signal peak rs429358 
and variants in high linkage disequilibrium with it fall in the vicinity 
(Extended Data Fig. 5).

HFRS-PRS analyses in the UK Biobank
The PRSs for HFRS (HFRS-PRSs) were statistically significantly asso-
ciated with the HFRS in the UK Biobank (β = 0.074 per s.d. increase; 
P = 1.86 × 10−522) after adjusting for birth year, sex and the first ten 
PCs (Fig. 5a). Next, using similar adjustments, we analyzed whether 

the HFRS-PRSs could predict early-onset frailty in the UK Biobank 
(that is, HFRS > 5 before age 65) and observed an odds ratio of 1.25 
(P = 2.0 × 10−322; Fig. 5b). We further examined whether the HFRS-PRSs 
could predict all-cause mortality and number of hospitalizations 
and found statistically significant associations with both outcomes 
(Fig. 5c,d). The estimates of the HFRS-PRSs were similar in men and 
women compared to the full sample, and also consistent for the 
HFRS-PRsS excluding dementia (Fig. 5a–d). Numeric estimates for all 
the HFRS-PRS analyses are presented in Supplementary Table 15. Lastly, 
we found that adding the HFRS-PRSs to a model with age, sex and the 
first ten PCs significantly improved model performance on mortality 
and hospitalizations, as assessed by likelihood-ratio and F-test statistics 
(Supplementary Table 16).

Prediction of mortality using HFRS
To assess the validity of HFRS in predicting mortality, we examined its 
association with all-cause mortality and found that higher HFRSs, both 
with and without dementia, were associated with mortality in FinnGen 
(hazard ratio 1.29 for both HFRS and without dementia) and UK Biobank 
(hazard ratio 1.48 for both HFRS without dementia), independent of 
age, birth year and sex (Supplementary Table 17).

Discussion
Our study represents a large GWAS of frailty using the HFRS. We 
identified 1,588 associated variants and 53 lead variants, of which 45 
were novel, and not previously reported for any trait. The lead vari-
ants mapped to 41 genes, of which 6 were novel. Replication in the 
UK Biobank and subsequent meta-analysis showed that 28% of all 
variants and 17% of lead variants replicated at P < 5 × 10−8, while 100% 
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of all variants and 97% of lead variants replicated at P < 0.05 in the 
meta-analysis. Colocalization analysis identified several causal can-
didate genes, including CHST9, C6orf106 (ILRUN), KHK, MET, APOE, 
CGREF1 and PPP6C. Additionally, plasma levels of MET, CGREF1 and 
APOE were associated with HFRS, further supporting their roles in 
frailty. We also derived PRSs for HFRS and showed that they pre-
dict frailty, early-onset frailty, mortality and hospitalizations in the  
UK Biobank.

The strongest GWAS signals were observed in the TOMM40/APOE
/APOC1/NECTIN2 locus on 19q13.3, a locus in strong linkage disequilib-
rium and known for its associations with cognitive15 and cardiometa-
bolic16 traits. We observed the strongest signal for the missense variant 
rs429358 (388 T > C) that, together with rs7412, defines the APOE ε2, 
ε3 and ε4 haplotypes. The rs7412 was, however, not associated with 
frailty in our study. A similar finding has been observed for longitudinal 
weight loss—a feature that also characterizes frailty—where rs429358 
increased the risk, while rs7412 did not17. Our sensitivity analysis, which 
removed dementia from the HFRS, truncated the chromosome 19 
peak as expected and revealed additional loci. The HFRS lead variants 
mapped to 42 genes, 7 of which were shared with HFRS without demen-
tia, while 31 genes were uniquely mapped in HFRS without dementia. 
The unique lead variant associations for both HFRS and HFRS without 
dementia are plausible, as dementia had the highest individual weight 
in the HFRS definition, and for highly polygenic traits like frailty, even 
small differences in phenotype definitions can influence which variants 
reach genome-wide significance. Genetic correlation between HFRS 
and HFRS without dementia was nevertheless almost perfect (0.98), 
indicating the same underlying genetic construct.

The genes to which the 45 novel lead variants for the HFRS mapped 
include C6orf106 (ILRUN) and CHST9, both of which also displayed 
colocalized signals with eQTL across different tissues, supporting their 
potential causal roles. C6orf106 (ILRUN) is a regulator of inflammation 
and lipid metabolism18, while CHST9 encodes an enzyme essential for 
cell–cell interactions and signal transduction19. Notably, several CHST9 
variants were also associated with HFRS without dementia and simi-
larly exhibited colocalization with eQTL. CGREF1, a gene linked to cell 

cycle regulation and adhesion20, and PPP6C, a gene involved in nuclear 
factor-κB pathway regulation21, showed the same sQTL-colocalized 
gene–tissue pairs for HFRS and HFRS without dementia, supporting 
their functional roles in frailty, irrespective of the HFRS definition. 
While C6orf106 (ILRUN), CHST9, CGREF1 and PPP6C are functionally 
diverse, they collectively link immunoinflammatory modulation, cel-
lular interactions and adhesion to frailty. Specific to HFRS, we addition-
ally identified multiple colocalized signals in KHK and MET, while for 
HFRS without dementia, we identified additional colocalized signals 
in ADARB1 and PSMB7. Aside from a few links to blood pressure, plasma 
lipids or BMI in the GWAS Catalog, CHST9, CGREF1, PPP6C, KHK, MET, 
ADARB1 and PSMB7 have no prior GWAS associations with the HFRS 
conditions, suggesting that HFRS, as a composite measure, can offer 
insights into frailty beyond its individual components.

Proteomics integration showed that CGREF1, NECTIN2, MET and 
APOC1 were associated with the HFRS with the largest effect sizes; 
elevated levels of the first two and lower levels of the latter two were 
associated with higher HFRS scores. Previous studies have linked 
elevated circulating NECTIN2 levels to Alzheimer’s disease risk22 and 
low APOC1 levels to cognitive decline and frailty, as defined using the 
FP23, which likely explains their associations with the HFRS. In contrast, 
no prior studies have linked plasma CGREF1 or MET to frailty or HFRS 
conditions, highlighting a novel association. Additionally, as CGREF1 
and MET exhibited eQTL-colocalized and/or sQTL-colocalized signals 
across multiple tissues, their protein-level associations further support 
their biological relevance in frailty.

We estimated the SNP heritability of HFRS at 6%, an estimate in 
the same range as previously reported for the FI (11%)10 and FP (6%)11. 
Genetic correlations between HFRS, FI and FP were moderate, ranging 
from 0.54 to 0.63, while gene-level overlap was limited: two shared 
genes between HFRS and FI and eight between HFRS and FP. The limited 
gene-level overlap is likely a result of frailty being a highly polygenic 
trait, where genome-wide significant variants represent only a frac-
tion of the total genetic signal. Genetic correlation, in turn, reflects 
the combined influence of numerous variants, including those that 
do not reach the genome-wide significance threshold, but still make 
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(beta coefficients) with the full HFRS (a) and HFRS without dementia (b) the in 
the UK Biobank using linear regression models (N = 34,879–42,495; exact N for 
each model is given in Supplementary Table 10). All models were adjusted for 

birth year, sex and the first ten PCs (model 1), and additionally adjusted for batch, 
baseline assessment center, BMI and smoking (model 2). Solid dots indicate 
statistically significant associations at an FDR < 0.05. The bars indicate 95% 
confidence intervals.
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a substantial overall contribution to the trait. Moreover, it has been 
shown that different frailty scales identify only partially overlapping 
groups of individuals as frail4,24, suggesting that these scales may cap-
ture somewhat distinct constructs. In our previous study25, we assessed 
the phenotypic correlation between HFRS and FI at 0.21 and HFRS and 
FP at 0.31 in the UK Biobank participants, indicating somewhat lower 
phenotypic correlations compared to their genotypic counterparts. 
A possible explanation is that, because most UK Biobank participants 
are still relatively young, frailty may not yet be fully expressed, leading 
to many values being 0 and thereby diluting the phenotypic correla-
tions. Additionally, environmental factors, such as physical activity, 
may directly influence phenotypic frailty, but might not affect the 
multidimensional FI or HFRS to the same extent, leading to reduced 
phenotypic correlations. The overall low prevalence of frailty in the UK 
Biobank participants may also have contributed to the low gene-level 
overlap between FI, FP and HFRS because both the FI10 and FP11 GWASs 
included UK Biobank participants. For the same reason, the overall 
lower HFRS scores in the UK Biobank and differences in the propor-
tions of individuals with certain HFRS conditions between FinnGen 
and the UK Biobank may have also affected the replication results, 
potentially leading to underestimated effect sizes in the UK Biobank 
and the overlooking of some true associations.

Cell-type enrichment indicated enriched expression of the genes 
associated with the signals in various neuronal cells, such as limbic 
system neurons, excitatory neurons, OPCs and oligodendrocytes 
located in the cerebrum, visual cortex, cerebellar hemisphere and 
cerebellum, respectively. Enrichment of OPCs (cerebellar hemisphere) 
persisted even after removing the contribution of dementia diagno-
ses from the HFRS. Expression enrichment in brain tissues was like-
wise observed the GWAS of FI10, which identified frontal cortex BA9, 
cerebellar hemisphere, spinal cord cervical C1 and hippocampus as 
statistically significant. The GWAS on FP11 also identified the genetic 
signals enriched in brain tissues, such as cerebellar hemisphere, frontal 
cortex BA9 and cerebellum. It is noteworthy that neither FI nor FP in 

these GWASs included any items of cognition or dementia diagnosis 
in the frailty definition. Our findings thus reinforce the role of central 
nervous system functions in frailty, regardless of the frailty definition.

Our pathway analyses highlighted Herpes simplex virus 1 infec-
tion and various cell adhesion and lipid/lipoprotein metabolism path-
ways relevant to the signals. The first two pathways overlapped with 
the FI pathways, while lipid metabolism processes were shared with 
the FP pathways. However, several pathways were unique to each frailty 
measure: FI was enriched for immunoinflammatory functions, while FP 
included cardiac and membrane transport processes. These differences 
likely stem from the varying components of each frailty measure. The 
HFRS, which includes 109 conditions capturing both multisystem decline 
and core physiological senescence, showed enrichment in fundamen-
tal processes like cell adhesion and lipoprotein metabolism. The FI, 
also reflecting multisystem decline, appears particularly influenced by 
immunoinflammatory factors, as seen also in previous associations with 
GlycA26, a marker of systemic inflammation, including studies supporting 
a causal link27. Many FI-related conditions, such as cardiovascular disease 
and diabetes, also have inflammatory components, potentially explain-
ing the connection. The FP, which mostly focuses on physical frailty, was 
enriched for cardiac function and membrane transport pathways, both 
essential for muscle activity, ion flux regulation and nutrient uptake.

To assess the usefulness of the HFRS in our samples, we showed 
that it predicts mortality independent of sex and birth year and per-
forms equally well even when dementia is excluded. Similarly, the 
HFRS-PRSs, also when dementia was removed, associated with the risk 
of frailty, early-onset frailty, mortality and hospitalizations. As frailty 
manifests relatively late in life for most individuals, risk assessment 
through PRSs may offer possibilities for early intervention to mitigate 
frailty before it escalates. Future studies are needed to ascertain the 
clinical utility of such approaches.

Our definition of frailty was based on clinical diagnoses in regis-
ter data; such an approach has both advantages and disadvantages.  
A notable advantage is that in Finland and the United Kingdom, public 
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Fig. 5 | HFRS-PRSs, frailty, mortality, and hospitalizations. a–d, Associations 
of the HFRS-PRSs with the HFRS (a), early-onset frailty (b), all-cause mortality (c) 
and number of hospitalizations (d) in the UK Biobank (N = 407,463). All models 

included birth year, birth region, sex and the first ten PCs as covariates. The bars 
indicate 95% confidence intervals of the beta coefficients, odds ratios (ORs) and 
hazard ratios (HRs).
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healthcare is primarily tax-funded, and each citizen has equal access. 
Issues pertinent to self-reported data, such as recall bias and missing 
information were also avoided. On the other hand, some conditions 
may be underreported in the registers, while others may have a lag 
from the onset of symptoms to assigning the diagnosis. We also note 
that the genetic associations were weaker in the UK Biobank com-
pared to FinnGen, a finding likely explained by healthy selection due 
to volunteer-based participation in the UK Biobank28 compared to 
FinnGen, which consists of national cohorts and biobank samples of 
hospitalized individuals. Also pertinent to all GWASs, the discovery 
samples tend to have stronger association statistics compared to 
replication, a phenomenon known as the winner’s curse.

In conclusion, we provide a large GWAS on HFRS and reveal new 
genetic contributions and causal candidate genes. Overall, the results 
reinforce previous findings that immunoinflammatory and nervous 
system functions are relevant to the etiology of frailty, regardless 
of how frailty is defined. Future studies should thus explore the role 
of these functions in the development of frailty, including cognitive 
frailty, to better understand the etiology of frailty.

Methods
This work complies with all relevant ethical regulations. A full list of 
the ethics boards that approved the study protocols is provided at the 
end of this section.

Samples
FinnGen is a large national genetic resource (N = 520,210; release 12) 
established in 2017 and consists of Finnish individuals, aged 18 years and 
older at study baseline29. FinnGen includes prospective epidemiological 
and disease-based cohorts, as well as hospital biobank samples. Informa-
tion on diagnoses since 1969 was linked by the unique national personal 
identification number to national healthcare, population and cause of 
death registries and recorded using the ICD Revisions 8–10. Information 
on dates and causes of death were obtained via linkages to the popula-
tion and cause of death registers through 30 September 2023 (R12 v1). 
After excluding individuals with missing information on baseline age, 
birth year and sex, and samples not passing genotyping quality control 
(see below), we included 500,737 FinnGen participants in this study.

The UK Biobank includes 502,642 volunteer participants, aged 37 
to 73 years old at baseline, recruited through 22 assessment centers 
across England, Scotland and Wales between 2006 and 2010 (ref. 30). 
The participants provided self-reported information on demograph-
ics, lifestyle and disease history via questionnaire and underwent 
physiological measurements, including providing a blood sample for 
genetics data. Hospital inpatient data were sourced from the Hospital 
Episode Statistics for England, Scottish Morbidity Record and Patient 
Episode Database for Wales, which contain electronic medical records 
(that is, ICD-10 codes) for all hospital admissions in England, Scotland 
and Wales, respectively. The hospital inpatient data were available 
through 31 October 2022 for England, 31 August 2022 for Scotland 
and 31 May 2022 for Wales. Death register data contained all deaths 
in the population through 30 November 2022, including primary and 
contributory causes of death. Participants in both UK Biobank and 
FinnGen have not received compensation for their participation.

Assessment of frailty
The HFRS was calculated according to a previously described protocol4 
based on 109 weighted ICD-10 codes. The codes were selected through 
a data-driven approach to include codes that were most prevalent in 
individuals with frailty and high healthcare resource use4. Each code 
was assigned with a weight ranging from 0.1 to 7.1, based on its associa-
tion with frailty and predictive value for frailty-related outcomes4. The 
weights of all relevant ICD-10 codes present in an individual’s records 
were then extracted and summed to calculate the HFRS score. The 
conditions, their respective weights and proportion of individuals 

with each condition in FinnGen and the UK Biobank are listed in Sup-
plementary Table 18. The HFRS was used as a continuous variable in 
the GWAS. We also categorized the HFRS into low (<5), intermediate 
(5–15) and high (>15) risk of frailty as previously described4 and used 
the cutoff points to describe frailty in our study populations. In the 
main analysis, we included all available ICD-10 codes for each person 
from age 30 years to the age at the end of follow-up to calculate the 
HFRS. As dementia diagnoses have the highest weight in the HFRS, 
we also calculated the HFRS by excluding dementia weights from the 
formula and performed sensitivity analyses on all analyses using the 
HFRS without dementia.

Genotyping and imputation
Genotyping in FinnGen was performed in Illumina and custom Axi-
omGT1 Affymetrix (Thermo Fisher Scientific) genome-wide arrays and 
imputed to 16,387,711 (imputation INFO score > 0.6) variants using a 
population-specific SISu v.3 imputation reference panel as previously 
described31. Individuals with ambiguous sex and non-Finnish ancestry 
were excluded. UK Biobank samples (v3 genotyping release) were 
genotyped on custom Affymetrix microarrays and imputed using the 
1000 Genomes and the Haplotype Reference Consortium reference 
panels to ~93 million variants32. Participants were excluded if they were 
flagged as having unusually high heterozygosity or missing genotype 
calls (<5%). Our analysis was restricted to participants with European 
descent and white British ancestry (N = 407,463). Detailed procedures 
on genotype calling, quality controls and imputation have been previ-
ously described for FinnGen29 and the UK Biobank32.

Statistics and reproducibility
No statistical method was used to predetermine sample size, as the 
UK Biobank and FinnGen cohorts are sufficiently large and can be 
anticipated to provide adequate statistical power for the planned 
analyses. We have sought to include all samples after exclusion based 
only on incomplete data, such as sex, birth year and genotype qual-
ity control as called by the respective cohorts. In the case of the UK 
Biobank, non-European descent and non-white British ancestry partici-
pants were excluded to facilitate the comparison to the homogeneous 
FinnGen Finnish populations. Our study did not involve randomiza-
tion/allocation into experimental groups, as it was an observational, 
hypothesis-free GWAS treating the HFRS as a continuous outcome. 
Therefore, no experimental manipulation or group assignment was 
performed. In a hypothesis-free GWAS, blinding is not possible/nec-
essary as the analysis is fully automated and applies standardized 
statistical tests uniformly across the genome. Data distribution was 
assumed to be normal, but this was not formally tested.

Discovery GWAS, replication and meta-analysis
The analytical pipeline for GWAS and post-GWAS analyses is presented 
in Fig. 1. We first performed GWASs of HFRS and HFRS without dementia 
in FinnGen using the SAIGE33 (v.0.35.8.8) software, which uses linear 
mixed-effects modeling to account for genetic relatedness and con-
founding by ancestry34. We included variants (N = 21,294,561) with 
minor allele frequency > 0.01%, Hardy–Weinberg P value > 1 × 10−9 and 
imputation INFO score ≥ 0.9. The models were adjusted for birth year, 
sex and the first ten PCs. The genome-wide significance level was set to 
5 × 10−8. The total number of genes to which the variants were mapped 
was determined by extracting variants with a P < 5 × 10−8, followed by 
variant mapping and annotation using the Variant Effect Predictor35 in 
the standard FinnGen GWAS annotation pipeline29. Independent lead 
variants were identified using the R package gwasRtools36. We used a 
distance-based loci definition on the genome-wide significant vari-
ants (that is, 500 kb from index variant) to estimate the independent 
genomic loci. Independent lead variants were identified by linkage 
disequilibrium clumping and defined as those that were independent 
from each other at r2 < 0.01.
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To replicate the findings at the variant level, we performed both 
HFRS GWASs in the UK Biobank. To account for the related samples in 
the UK Biobank, we applied a mixed linear model-based GWAS analysis 
(‘fastGWA’)37, which is an efficient method to control for relatedness 
by a sparse genetic relationship matrix, without the need of excluding 
related individuals. The models were adjusted for birth year, sex, geno-
typing array and the first ten PCs. Finally, to capture the totality of the 
evidence, we conducted a meta-analysis on the results from FinnGen 
and the UK Biobank using METAL38. A fixed-effect meta-analysis was 
performed using the default approach, with P value and direction of 
effect weighted according to sample size, and with adjustment for 
genomic control (lambda). Using the NHGRI-EBI GWAS Catalog39 fil-
tered for P < 5 × 10−8 and results of previous GWASs into frailty (using 
the FP11 and FI10 to measure frailty) and mvAge13, a genomic structural 
equation modeling-derived composite construct of healthspan, paren-
tal lifespan, extreme longevity, frailty and epigenetic aging, we assessed 
the number of novel and previously unreported associations relative 
to the FinnGen results.

Genetic correlation and heritability
Using linkage disequilibrium score regression40 (v1.0.1) and linkage 
disequilibrium merged with the HapMap3 reference panel of ~1.1 mil-
lion variants, we estimated (1) the potential bias from, for example, 
population stratification and cryptic heritability in the GWAS results, 
(2) heritability of HFRS and (3) genetic correlations between HFRS 
and previous GWASs of FI10, FP11 and mvAge13. As the FI GWAS10 used an 
opposite effect allele compared to the standard FinnGen workflow, we 
inverted the genetic correlation coefficient to prevent an artifactual 
negative correlation and facilitate interpretation.

Functional annotation: cell-type and pathway enrichment
To explore tissue and cell-type specificity of the annotated genes 
underlying HFRS, we applied WebCSEA, a web platform to derive 
context-specific expression patterns of genes underlying com-
plex traits, encompassing the Human Cell Atlas and single-cell data 
resources41,42. Enrichr pathway analysis14 based on KEGG39 and Reac-
tome40 resources was applied to explore enriched pathways of the 
identified genes (GWAS P < 5 × 10−8). To effectively compare the 
enriched pathways of the HFRS with those of the FI and FP GWASs, 
we extracted all genome-wide significant variants from these GWASs 
and performed KEGG and Reactome pathway analyses using the same 
(default) settings.

Proteomics integration
To prioritize genes and identify potentially functional and causal vari-
ants, we narrowed down the association signals to a smaller number 
of missense, splice region, loss of function and 5′ and 3′ untranslated 
region variants (the two last mentioned potentially affecting transcript 
stability, localization and signal response), identified from the Variant 
Effect Predictor pipeline35, that were associated with the HFRS at a 
slightly more relaxed threshold (P < 5 × 10−7). Using the Olink proteom-
ics data, we then examined if the protein levels of the variants (at a 
gene-level resolution) were associated with HFRS in the UK Biobank. 
Details of the UK Biobank Olink proteomics assay, quality-control and 
data processing procedures have been described elsewhere43. Briefly, 
54,239 UK Biobank participants were selected for the proteomics profil-
ing using EDTA plasma samples collected at the baseline assessment. 
Of the 54,239 samples, 46,595 were randomly selected, while 6,376 
were chosen by UKB-PPP consortium members and 1,268 were from 
participants in the coronavirus disease 2019 repeat imaging study, 
resulting in a sample that was predominantly, but not entirely, random. 
A total of 2,923 proteins were measured across 8 protein panels using 
the antibody-based Olink Explore 3072 platform. Protein levels were 
measured in Normalized Protein eXpression values, which represent 
the relative concentration of proteins on a log2 scale. All the protein 

levels were scaled to mean = 0 and s.d. = 1 before the association testing. 
Linear regression models were then performed to assess the associa-
tions between the proteins that were available in the Olink platform 
and HFRS, adjusting for (i) birth year, sex and the first ten PCs and (ii) 
batch, baseline assessment centers, BMI and smoking. We considered 
an FDR < 0.05 as statistically significant in the proteomics analysis.

Colocalization analyses
To further prioritize the genes and identify causal variants, we per-
formed a Bayesian-based colocalization analysis with eQTL, sQTL 
and pQTL, using a flanking window of 1 Mb and default parameters for 
prior probabilities12. The analysis assumes that only one causal vari-
ant exists for each trait in a genomic locus and returns PPs indicating 
the likelihood that the following hypotheses (H) are true: there is no 
association at the locus with either expression/splicing/protein level 
or HFRS (H0); there is an association with expression/splicing/protein 
level but not HFRS (H1); there is no association with expression/splic-
ing/protein level, but there is an association with HFRS (H2); there is 
an association with both expression/splicing/protein level and HFRS, 
but with distinct causal variants (H3); there is an association with both 
expression/splicing/protein level and HFRS with a shared causal variant 
(H4). We considered the analysis having enough power if the sum PPs 
had a distinct or shared causal variant exceeded 88%. A colocalized 
signal was detected if the PP of a shared causal variant (H4) existence 
was greater than 80%. The GTEx database44 (v8) was interrogated for 
eQTL and sQTL, while the UK Biobank Pharma Proteomics Project43 
was used for pQTL.

PRS analyses
Using the GWAS summary statistics from FinnGen, we calculated the 
PRSs for HFRS in the UK Biobank by applying PRSs with continuous 
shrinkage45,46 and using the European panel from the 1000 Genomes46 
linkage disequilibrium reference, where ~1.1 million variants were 
selected. Using linear regression, we fitted a linear model to assess how 
the HFRS-PRSs associate with the HFRS score. HFRS was considered 
as a standardized z-score in the linear regressions. We also performed 
logistic regressions to assess the associations of the HFRS-PRSs with 
early-onset frailty, defined as HFRS > 5 before age 65. Age 65 was chosen 
as the cutoff as it is commonly used to distinguish ‘young’ from ‘old’ 
in statistical and policy contexts. Our previous work also identified 
age 65 as the optimal threshold for distinguishing between early-life 
and late-life frailty47. The PRS was modeled per standard deviation 
change, and all the models included birth year, sex and the first ten 
PCs as covariates.

Lastly, as frailty manifests in late life for most individuals, we asked 
whether the HFRS-PRSs could be used in early risk stratification to iden-
tify individuals at risk of adverse outcomes. To this end, Cox models 
with attained age as the timescale and linear regression models were 
fitted to assess whether the HFRS-PRSs predict all-cause mortality 
and number of hospitalizations, respectively. The added value of the 
HFRS-PRSs beyond age and sex in the prediction was assessed using the 
F-test for linear regressions and likelihood-ratio test for Cox models. 
The number of hospitalizations was scaled to a mean = 0 and s.d. = 1 
before modeling.

Prediction of mortality using HFRS
Cox models with attained age as the timescale, which inherently adjusts 
for age, were fitted to assess the association between HFRS, HFRS with-
out dementia and all-cause mortality in FinnGen and the UK Biobank. 
Two models were fitted for each HFRS definition: one adjusting for sex 
and birth year, and one without adjustments.

Ethics statements of FinnGen and UK Biobank
FinnGen. Patients and control participants in FinnGen provided 
informed consent for biobank research, based on the Finnish Biobank 
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Act. Alternatively, separate research cohorts, collected before the 
Finnish Biobank Act came into effect (in September 2013) and the 
start of FinnGen (August 2017), were collected based on study-specific 
consents and later transferred to the Finnish biobanks after approval 
by the Finnish Medicines Agency, the National Supervisory Authority 
for Welfare and Health. Recruitment protocols followed the biobank 
protocols approved by the Finnish Medicines Agency. The Coordinat-
ing Ethics Committee of the Hospital District of Helsinki and Uusimaa 
(HUS) statement number for the FinnGen study is HUS/990/2017. 
The FinnGen study is approved by Finnish Institute for Health and 
Welfare (permit nos. THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, 
THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/ 
2019, THL/1721/5.05.00/2019 and THL/1524/5.05.00/2020), Digital 
and population data service agency (permit nos. VRK43431/2017-
3, VRK/6909/2018-3 and VRK/4415/2019-3), the Social Insurance 
Institution (permit nos. KELA 58/522/2017, KELA 131/522/2018, KELA 
70/522/2019, KELA 98/522/2019, KELA 134/522/2019, KELA 138/ 
522/2019, KELA 2/522/2020 and KELA 16/522/2020), Findata (permit  
nos. THL/2364/14.02/2020, THL/4055/14.06.00/2020, THL/3433/ 
14.06.00/2020, THL/4432/14.06/2020, THL/5189/14.06/2020, 
THL/5894/14.06.00/2020, THL/6619/14.06.00/2020, THL/209/ 
14.06.00/2021, THL/688/14.06.00/2021, THL/1284/14.06.00/2021, 
THL/1965/14.06.00/2021, THL/5546/14.02.00/2020, THL/2658/ 
14.06.00/2021 and THL/4235/14.06.00/202), Statistics Finland (per-
mit nos. TK-53-1041-17, TK/143/07.03.00/2020 (earlier TK-53-90-20), 
TK/1735/07.03.00/2021 and TK/3112/07.03.00/2021) and Finnish Reg-
istry for Kidney Diseases permission/extract from the meeting minutes 
on 4 July 2019.

The Biobank Access Decisions for FinnGen samples and data 
utilized in FinnGen Data Freeze 9 include: THL Biobank BB2017_55, 
BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, BB2018_71, BB2019_7, 
BB2019_8, BB2019_26, BB2020_1, Finnish Red Cross Blood Service 
Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, HUS/248/2020, 
Auria Biobank AB17-5154 and amendment no. 1 (17 August 2020), AB20-
5926 and amendment no. 1 (23 April 2020) and it’s modification (22 
September 2021), Biobank Borealis of Northern Finland_2017_1013, 
Biobank of Eastern Finland 1186/2018 and amendment 22 § /2020, 
Finnish Clinical Biobank Tampere MH0004 and amendments (21 Feb-
ruary 2020 and 06 October 2020), Central Finland Biobank 1-2017, and 
Terveystalo Biobank STB 2018001 and amendment 25 August 2020.

UK Biobank. The UK Biobank study was approved by the North West 
Multi-centre Research Ethics Committee (approval no. 11/NW/03820). 
All participants provided written informed consent for data collection, 
analysis and record linkage. We have also obtained ethical approval for 
the use of UK Biobank data in Sweden (2016/1888-31/1).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Individual-level data cannot be stored in public repositories or oth-
erwise made publicly available due to ethical and data protection 
restrictions. However, data are available upon request for researchers 
who meet the criteria for access to confidential data. Data from the 
UK Biobank are available to bona fide researchers upon application at 
https://www.ukbiobank.ac.uk/enable-your-research/. The following 
UK Biobank-associated data were accessed through, and as part of, 
our UK Biobank accession: Hospital Episode Statistics for England, 
Scottish Morbidity Record and Patient Episode Database for Wales.
FinnGen results, according to the FinnGen consortium agreement, 
are subjected to a one-year embargo, and summary statistics are 
then made available to the scientific community and released two 
times a year. Information on accessing FinnGen data can be found at  

https://www.finngen.fi/en/access_results/. The national healthcare, 
population and cause of death registers were accessed through, and as 
part of, our FinnGen accession, implemented in the FinnGen pipelines.

Code availability
All the data processing, visualization and statistical analyses were 
performed using Python 3.8 (2.7 for LDSC) and R v.4.3.2 (R Foundation 
for Statistical Computing, Vienna, Austria; https://www.r-project.org/). 
Meta-analyses were performed using METAL v.2011-03-25. Independent 
Genomic loci were identified using the R package gwasRtools36 (version 
0.1.7; https://lcpilling.github.io/gwasRtools/). Venn diagrams were cre-
ated using the R package ggvenn (version 0.1.10; https://cran.r-project. 
org/web/packages/ggvenn/index.html). Correlation plots were cre-
ated using the R package corrplot (v.0.92; https://cran.r-project.org/ 
web/packages/corrplot/index.html). Forest plots were created using 
the R package ggforestplot (v.0.1.0; https://nightingalehealth.github. 
io/ggforestplot/). The analysis codes are available as follows: FinnGen 
GWAS via https://github.com/FINNGEN/saige-pipelines/; UK Biobank 
GWAS via http://cnsgenomics.com/software/gcta/#fastGWA and QTL 
colocalization analysis via https://github.com/Moritz-JD-Krueger/ 
Colocalization-Analysis/.
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Extended Data Fig. 1 | QQ-plots of association summary statistics for the HFRS and HFRS without dementia. Panels a and b show results for FinnGen, and panels c 
and d for the UK Biobank, respectively.
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Extended Data Fig. 2 | Cell-type enrichment analysis of HFRS. Top 20 enriched cell types for the variants associated with the HFRS in FinnGen are shown.
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Extended Data Fig. 3 | Cell-type enrichment analysis of HFRS without dementia. Top 20 enriched cell types for the variants associated with the HFRS without 
dementia in FinnGen are shown.
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Extended Data Fig. 4 | Colocalized expression and splicing quantitative trait loci. Colocalized eQTL and sQTL by tissue with the genes associated with (a) HFRS and 
(b) HFRS without dementia. For each gene, the posterior probability for a shared causal variant was >80%.
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Extended Data Fig. 5 | Regional association plots for gene loci. Regional association plots for gene loci – panel a for APOE and panel b for BRAP – identified in the 
colocalization analysis of protein quantitative trait loci (pQTL) and the variants associated with the Hospital Frailty Risk Score (HFRS).
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