Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding and improving vaccine efficacy in older adults

Abstract

Cellular aging of the immune system, commonly referred to as ‘immunosenescence’, drives a substantial decline in vaccine efficacy among older adults, who are already typically at a higher risk of reduced infection control. Therefore, preventive medicine requires novel strategies to improve vaccination in older adults, particularly by finding ways to mitigate immunosenescence and chronic inflammation. Here, we review how technical innovations, such as increased antigen amounts, improved adjuvants and mRNA-based and universal vaccines, can complement traditional methods of improving vaccination success in older adults. Furthermore, we discuss emerging clinical evidence suggesting that geroscience interventions, such as mTOR inhibition and caloric restriction, can enhance vaccine outcomes in older adults, potentially by targeting molecular aspects of immunosenescence and systemic characteristics of aging, including metabolic changes in the blood and chronic inflammation. Ultimately, we propose that integrating geroscience with tailored immunization could attenuate the effects of immune aging on vaccination efficacy in older populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multilevel drivers of impaired vaccine efficacy in older adults.
Fig. 2: Putative cellular targets and effects of geroprotective interventions tested in vaccine studies.
Fig. 3: Exploring new approaches to using personalized medicine, geroscience and vaccine development to address age-related vaccine inefficacy.

Similar content being viewed by others

References

  1. Kallestrup-Lamb, M., Marin, A. O. K., Menon, S. & Søgaard, J. Aging populations and expenditures on health. J. Econ. Ageing 29, 100518 (2024).

    Article  Google Scholar 

  2. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pinti, M. et al. Aging of the immune system: focus on inflammation and vaccination. Eur. J. Immunol. 46, 2286–2301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borgoni, S., Kudryashova, K. S., Burka, K. & de Magalhães, J. P. Targeting immune dysfunction in aging. Ageing Res. Rev. 70, 101410 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Article  Google Scholar 

  6. Newnham, D. M. & Hamilton, S. J. C. Sensitivity of the cough reflex in young and elderly subjects. Age Ageing 26, 185–188 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Sagiv, M. S. in Exercise Cardiopulmonary Function in Cardiac Patients (ed. Sagiv, M. S.) 171–194 (Springer, 2012).

  8. Brandenberger, C. & Mühlfeld, C. Mechanisms of lung aging. Cell Tissue Res. 367, 469–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Kirkwood, K. L. Inflammaging. Immunol. Invest. 47, 770–773 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li, X. et al. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 8, 239 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Z. et al. Immunosenescence: molecular mechanisms and diseases. Signal Transduct. Target. Ther. 8, 200 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Desdín-Micó, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371–1376 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Waldman, S. A. & Terzic, A. Health care evolves from reactive to proactive. Clin. Pharmacol. Ther. 105, 10–13 (2019).

    Article  PubMed  Google Scholar 

  16. Pollard, A. J. & Bijker, E. M. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21, 83–100 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Pangilinan, A. R., Brangman, S. A., Gravenstein, S., Schmader, K. & Kuchel, G. A. Vaccinations in older adults: optimization, strategies, and latest guidelines. J. Am. Geriatr. Soc. 73, 20–28 (2025).

    Article  PubMed  Google Scholar 

  18. Jefferson, T. et al. Efficacy and effectiveness of influenza vaccines in elderly people: a systematic review. Lancet 366, 1165–1174 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Osterholm, M. T., Kelley, N. S., Sommer, A. & Belongia, E. A. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect. Dis. 12, 36–44 (2012).

    Article  PubMed  Google Scholar 

  20. Lee, J. L. & Linterman, M. A. Mechanisms underpinning poor antibody responses to vaccines in ageing. Immunol. Lett. 241, 1–14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kwetkat, A. & Heppner, H. J. Comorbidities in the elderly and their possible influence on vaccine response. Interdiscip. Top. Gerontol. Geriatr. 43, 73–85 (2020).

    Article  PubMed  Google Scholar 

  22. Bianchi, F. P. & Tafuri, S. Vaccination of elderly people affected by chronic diseases: a challenge for public health. Vaccines (Basel) 10, 641 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Painter, S. D., Ovsyannikova, I. G. & Poland, G. A. The weight of obesity on the human immune response to vaccination. Vaccine 33, 4422–4429 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  27. Green, C. L., Lamming, D. W. & Fontana, L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-021-00411-4 (2022).

    Article  PubMed  Google Scholar 

  28. Lee, D. J. W., Kuerec, A. H. & Maier, A. B. Targeting ageing with rapamycin and its derivatives in humans: a systematic review. Lancet Healthy Longev. 5, e152–e162 (2024).

    Article  PubMed  Google Scholar 

  29. Di Francesco, A. et al. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 634, 684–692 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  30. COVID-19 Forecasting Team.Variation in the COVID-19 infection–fatality ratio by age, time, and geography during the pre-vaccine era: a systematic analysis. Lancet 399, 1469–1488 (2022).

    Article  PubMed Central  Google Scholar 

  31. Bonanad, C. et al. The effect of age on mortality in patients with COVID-19: a meta-analysis with 611,583 subjects. J. Am. Med. Dir. Assoc. 21, 915–918 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guesneau, C. et al. Risk factors associated with 30-day mortality in older patients with influenza. J. Clin. Med. 10, 3521 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang, S. et al. Factors influencing immunologic response to hepatitis B vaccine in adults. Sci. Rep. 6, 27251 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jílková, E., Vejvalková, P., Stiborová, I., Skorkovský, J. & Král, V. Serological response to tick-borne encephalitis (TBE) vaccination in the elderly—results from an observational study. Expert Opin. Biol. Ther. 9, 797–803 (2009).

    Article  PubMed  Google Scholar 

  35. Antonelli Incalzi, R. et al. Influenza vaccination for elderly, vulnerable and high-risk subjects: a narrative review and expert opinion. Intern. Emerg. Med. 19, 619–640 (2024).

    Article  PubMed  Google Scholar 

  36. Collier, D. A. et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 596, 417–422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. López-Fauqued, M. et al. Safety profile of the adjuvanted recombinant zoster vaccine: pooled analysis of two large randomised phase 3 trials. Vaccine 37, 2482–2493 (2019).

    Article  PubMed  Google Scholar 

  38. Cunningham, A. L. et al. Immune responses to a recombinant glycoprotein E herpes zoster vaccine in adults aged 50 years or older. J. Infect. Dis. 217, 1750–1760 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dagnew, A. F. et al. The adjuvanted recombinant zoster vaccine in adults aged ≥65 years previously vaccinated with a live-attenuated herpes zoster vaccine. J. Infect. Dis. 224, 1139–1146 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Lal, H. et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N. Engl. J. Med. 372, 2087–2096 (2015).

    Article  PubMed  Google Scholar 

  41. Cunningham, A. L. et al. Efficacy of the herpes zoster subunit vaccine in adults 70 years of age or older. N. Engl. J. Med. 375, 1019–1032 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, T. et al. Vaccine adjuvants: mechanisms and platforms. Signal Transduct. Target. Ther. 8, 283 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu, J., Peng, J. & Chi, H. Systems immunology: integrating multi-omics data to infer regulatory networks and hidden drivers of immunity. Curr. Opin. Syst. Biol. 15, 19–29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Davis, M. M., Tato, C. M. & Furman, D. Systems immunology: just getting started. Nat. Immunol. 18, 725–732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weichhart, T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology 64, 127–134 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Shimobayashi, M. & Hall, M. N. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol. 15, 155–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Jin, J. et al. Activation of mTORC1 at late endosomes misdirects T cell fate decision in older individuals. Sci. Immunol. 6, eabg0791 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Teissier, T., Boulanger, E. & Cox, L. S. Interconnections between inflammageing and immunosenescence during ageing. Cells 11, 359 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Han, S., Georgiev, P., Ringel, A. E., Sharpe, A. H. & Haigis, M. C. Age-associated remodeling of T cell immunity and metabolism. Cell Metab. 35, 36–55 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Slaets, H., Veeningen, N., de Keizer, P. L. J., Hellings, N. & Hendrix, S. Are immunosenescent T cells really senescent? Aging Cell 23, e14300 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou, D., Borsa, M. & Simon, A. K. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 20, e13316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Effros, R. B. Role of T lymphocyte replicative senescence in vaccine efficacy. Vaccine 25, 599–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Panwar, V. et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct. Target. Ther. 8, 375 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cornu, M., Albert, V. & Hall, M. N. mTOR in aging, metabolism, and cancer. Curr. Opin. Genet. Dev. 23, 53–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Alsaleh, G. et al. Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses. eLife 9, e57950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Puleston, D. J. et al. Autophagy is a critical regulator of memory CD8+ T cell formation. eLife 3, e03706 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Escrig-Larena, J. I., Delgado-Pulido, S. & Mittelbrunn, M. Mitochondria during T cell aging. Semin. Immunol. 69, 101808 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Salminen, A. & Kaarniranta, K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev. 11, 230–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Foretz, M., Guigas, B. & Viollet, B. Metformin: update on mechanisms of action and repurposing potential. Nat. Rev. Endocrinol. 19, 460–476 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Feldman, N., Rotter-Maskowitz, A. & Okun, E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res. Rev. 24, 29–39 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Zanini, G. et al. Mitochondrial DNA as inflammatory DAMP: a warning of an aging immune system? Biochem. Soc. Trans. 51, 735–745 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Widjaja, A. A. et al. Inhibition of IL-11 signalling extends mammalian healthspan and lifespan. Nature 632, 157–165 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ross, J. B. et al. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 628, 162–170 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Geiger, H., de Haan, G. & Florian, M. C. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 13, 376–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 208, 455–467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chougnet, C. A. et al. Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J. Immunol. 195, 2624–2632 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Wong, C. & Goldstein, D. R. Impact of aging on antigen presentation cell function of dendritic cells. Curr. Opin. Immunol. 25, 535–541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tabula Muris Consortium.A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article  Google Scholar 

  70. Kurioka, A. & Klenerman, P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin. Immunol. 69, 101816 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thomas, R., Wang, W. & Su, D.-M. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun. Ageing 17, 2 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kousa, A. I. et al. Age-related epithelial defects limit thymic function and regeneration. Nat. Immunol. 25, 1593–1606 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goronzy, J. J., Fang, F., Cavanagh, M. M., Qi, Q. & Weyand, C. M. Naive T cell maintenance and function in human aging. J. Immunol. 194, 4073–4080 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Aiello, A. et al. Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front. Immunol. 10, 2247 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Muller, G. C. et al. The inverted CD4:CD8 ratio is associated with gender-related changes in oxidative stress during aging. Cell. Immunol. 296, 149–154 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Yam-Puc, J. C. et al. Age-associated B cells predict impaired humoral immunity after COVID-19 vaccination in patients receiving immune checkpoint blockade. Nat. Commun. 14, 3292 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Frasca, D., Diaz, A., Romero, M. & Blomberg, B. B. The generation of memory B cells is maintained, but the antibody response is not, in the elderly after repeated influenza immunizations. Vaccine 34, 2834–2840 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shaw, A. C., Joshi, S., Greenwood, H., Panda, A. & Lord, J. M. Aging of the innate immune system. Curr. Opin. Immunol. 22, 507–513 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Frasca, D., Diaz, A., Romero, M., Garcia, D. & Blomberg, B. B. B cell immunosenescence. Annu. Rev. Cell Dev. Biol. 36, 551–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bulati, M., Caruso, C. & Colonna-Romano, G. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by “inflamm-ageing”. Ageing Res. Rev. 36, 125–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Wrona, M. V., Ghosh, R., Coll, K., Chun, C. & Yousefzadeh, M. J. The 3 I’s of immunity and aging: immunosenescence, inflammaging, and immune resilience. Front. Aging 5, 1490302 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cakala-Jakimowicz, M., Kolodziej-Wojnar, P. & Puzianowska-Kuznicka, M. Aging-related cellular, structural and functional changes in the lymph nodes: a significant component of immunosenescence? An overview. Cells 10, 3148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Krishnamurty, A. T. & Turley, S. J. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 21, 369–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Sonar, S. A., Bhat, R., Coplen, C. P. & Nikolich-Zugich, J. The age-related changes in lymph node stromal cells underlie defects in peripheral T cell maintenance and immune function decline in old mice. J. Immunol. 210, 239.16 (2023).

    Article  Google Scholar 

  86. Shankwitz, K. et al. Compromised steady-state germinal center activity with age in nonhuman primates. Aging Cell 19, e13087 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Foster, W. S., Marcial-Juárez, E. & Linterman, M. A. The cellular factors that impair the germinal center in advanced age. J. Immunol. 214, 862–871 (2025).

    Article  CAS  PubMed  Google Scholar 

  88. Ng, Y. Y. & Tay, A. Exploring lymph node stroma ageing: immune implications and future directions. Aging Cell 24, e70000 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lancaster, J. N. Aging of lymphoid stromal architecture impacts immune responses. Semin. Immunol. 70, 101817 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Plotkin, S. A. & Boppana, S. B. Vaccination against the human cytomegalovirus. Vaccine 37, 7437–7442 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Klenerman, P. & Oxenius, A. T cell responses to cytomegalovirus. Nat. Rev. Immunol. 16, 367–377 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. van den Berg, S. P. H., Warmink, K., Borghans, J. A. M., Knol, M. J. & van Baarle, D. Effect of latent cytomegalovirus infection on the antibody response to influenza vaccination: a systematic review and meta-analysis. Med. Microbiol. Immunol. 208, 305–321 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Breznik, J. A. et al. Cytomegalovirus seropositivity in older adults changes the T cell repertoire but does not prevent antibody or cellular responses to SARS-CoV-2 vaccination. J. Immunol. 209, 1892–1905 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hu, X. et al. Human cytomegalovirus mRNA-1647 vaccine candidate elicits potent and broad neutralization and higher antibody-dependent cellular cytotoxicity responses than the gB/MF59 vaccine. J. Infect. Dis. 230, 455–466 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Klenerman, P. & Zinkernagel, R. M. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 394, 482–485 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Kim, H., Webster, R. G. & Webby, R. J. Influenza virus: dealing with a drifting and shifting pathogen. Viral Immunol. 31, 174–183 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Tortorici, M. A. et al. Persistent immune imprinting occurs after vaccination with the COVID-19 XBB.1.5 mRNA booster in humans. Immunity 57, 904–911 (2024).

    Article  CAS  PubMed  Google Scholar 

  98. Ding, X. et al. Original antigenic sin: a potential double-edged effect for vaccine improvement. Biomed. Pharmacother. 178, 117187 (2024).

    Article  CAS  PubMed  Google Scholar 

  99. Hancock, K. et al. Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N. Engl. J. Med. 361, 1945–1952 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Weinberger, B. Vaccines for the elderly: current use and future challenges. Immun. Ageing 15, 3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wiggins, K. B., Smith, M. A. & Schultz-Cherry, S. The nature of immune responses to influenza vaccination in high-risk populations. Viruses 13, 1109 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sang, D. et al. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell 186, 5500–5516 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Al-Rashed, F. et al. Impact of sleep deprivation on monocyte subclasses and function. J. Immunol. https://doi.org/10.1093/jimmun/vkae016 (2025).

    Article  PubMed  Google Scholar 

  104. Besedovsky, L., Lange, T. & Born, J. Sleep and immune function. Pflugers Arch. 463, 121–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Cabrera, Á. J. R. Zinc, aging, and immunosenescence: an overview. Pathobiol. Aging Age Relat. Dis. https://doi.org/10.3402/pba.v5.25592 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chillon, T. S. et al. Serum free zinc is associated with vaccination response to SARS-CoV-2. Front. Immunol. 13, 906551 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kaml, M. et al. Booster vaccination in the elderly: their success depends on the vaccine type applied earlier in life as well as on pre-vaccination antibody titers. Vaccine 24, 6808–6811 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Park, H. J. et al. Comparing frequency of booster vaccination to prevent severe COVID-19 by risk group in the United States. Nat. Commun. 15, 1883 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, J. K. H., Lam, G. K. L., Yin, J. K., Loiacono, M. M. & Samson, S. I. High-dose influenza vaccine in older adults by age and seasonal characteristics: systematic review and meta-analysis update. Vaccine X 14, 100327 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Comber, L. et al. Systematic review of the efficacy, effectiveness and safety of high-dose seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥18 years of age. Rev. Med. Virol. 33, e2330 (2023).

    Article  PubMed  Google Scholar 

  111. Reed, S. G., Orr, M. T. & Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 19, 1597–1608 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Ko, E.-J. & Kang, S.-M. Immunology and efficacy of MF59-adjuvanted vaccines. Hum. Vaccin. Immunother. 14, 3041–3045 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Reisinger, K. S., Holmes, S. J., Pedotti, P., Arora, A. K. & Lattanzi, M. A dose-ranging study of MF59®-adjuvanted and non-adjuvanted A/H1N1 pandemic influenza vaccine in young to middle-aged and older adult populations to assess safety, immunogenicity, and antibody persistence one year after vaccination. Hum. Vaccin. Immunother. 10, 2395–2407 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Rodrigues, L. P. et al. Hallmarks of aging and immunosenescence: connecting the dots. Cytokine Growth Factor Rev. 59, 9–21 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Cadar, A. N., Martin, D. E. & Bartley, J. M. Targeting the hallmarks of aging to improve influenza vaccine responses in older adults. Immun. Ageing 20, 23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hofer, S. J., Carmona-Gutierrez, D., Mueller, M. I. & Madeo, F. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol. Med. https://doi.org/10.15252/emmm.202114418 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Chung, K. W. & Chung, H. Y. The effects of calorie restriction on autophagy: role on aging intervention. Nutrients 11, 2923 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. González, O. A., Tobia, C., Ebersole, J. L. & Novak, M. J. Caloric restriction and chronic inflammatory diseases. Oral Dis. 18, 16–31 (2012).

    Article  PubMed  Google Scholar 

  119. Kökten, T. et al. Calorie restriction as a new treatment of inflammatory diseases. Adv. Nutr. 12, 1558–1570 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Effros, R. B., Walford, R. L., Weindruch, R. & Mitcheltree, C. Influences of dietary restriction on immunity to influenza in aged mice. J. Gerontol. 46, B142–B147 (1991).

    Article  CAS  PubMed  Google Scholar 

  121. Janssen, H. et al. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity 56, 783–796 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jordan, S. et al. Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178, 1102–1114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Collins, N. et al. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell 178, 1088–1101 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Goldberg, E. L. & Dixit, V. D. Bone marrow: an immunometabolic refuge during energy depletion. Cell Metab. 30, 621–623 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, H. et al. Intermittent fasting promotes type 3 innate lymphoid cells secreting IL-22 contributing to the beigeing of white adipose tissue. eLife 12, RP91060 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ahmed, T. et al. Calorie restriction enhances T-cell-mediated immune response in adult overweight men and women. J. Gerontol. A Biol. Sci. Med. Sci. 64, 1107–1113 (2009).

    Article  PubMed  Google Scholar 

  127. Han, S.-C. et al. Intermittent fasting modulates immune response by generating Tregs via TGF-β dependent mechanisms in obese mice with allergic contact dermatitis. Biomol. Ther. (Seoul) 32, 136–145 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. He, Z., Xu, H., Li, C., Yang, H. & Mao, Y. Intermittent fasting and immunomodulatory effects: a systematic review. Front. Nutr. 10, 1048230 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Horne, B. D. et al. Association of periodic fasting with lower severity of COVID-19 outcomes in the SARS-CoV-2 prevaccine era: an observational cohort from the INSPIRE registry. BMJ Nutr. Prev. Health 5, 145–153 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kim, Y. et al. Time-restricted feeding reduces monocyte production by controlling hematopoietic stem and progenitor cells in the bone marrow during obesity. Front. Immunol. 13, 1054875 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Qian, J. et al. Innate immune remodeling by short-term intensive fasting. Aging Cell 20, e13507 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, Y. et al. Time-restricted eating reveals a “younger” immune system and reshapes the intestinal microbiome in human. Redox Biol. 78, 103422 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Spadaro, O. et al. Caloric restriction in humans reveals immunometabolic regulators of health span. Science 375, 671–677 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Meydani, S. N. et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging (Albany NY) 8, 1416–1431 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Tizazu, A. M. Fasting and calorie restriction modulate age-associated immunosenescence and inflammaging. Aging Med. (Milton) 7, 499–509 (2024).

    Article  PubMed  Google Scholar 

  136. Ma, R.-X. A detective story of intermittent fasting effect on immunity. Immunology 173, 227–247 (2024).

    Article  CAS  PubMed  Google Scholar 

  137. Hofer, S. J. & Madeo, F. Sex- and timing-specific effects of fasting and caloric restriction. Cell Metab. 35, 1091–1093 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Ma, D., Li, S., Molusky, M. M. & Lin, J. D. Circadian autophagy rhythm: a link between clock and metabolism? Trends Endocrinol. Metab. 23, 319–325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Otasowie, C. O., Tanner, R., Ray, D. W., Austyn, J. M. & Coventry, B. J. Chronovaccination: harnessing circadian rhythms to optimize immunisation strategies. Front. Immunol. 13, 977525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cervantes-Silva, M. P. et al. The circadian clock influences T cell responses to vaccination by regulating dendritic cell antigen processing. Nat. Commun. 13, 7217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ulgherait, M. et al. Circadian autophagy drives iTRF-mediated longevity. Nature 598, 353–358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Phillips, A. C., Gallagher, S., Carroll, D. & Drayson, M. Preliminary evidence that morning vaccination is associated with an enhanced antibody response in men. Psychophysiology 45, 663–666 (2008).

    Article  PubMed  Google Scholar 

  143. Long, J. E. et al. Morning vaccination enhances antibody response over afternoon vaccination: a cluster-randomised trial. Vaccine 34, 2679–2685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. de Bree, L. C. J. et al. Circadian rhythm influences induction of trained immunity by BCG vaccination. J. Clin. Invest. https://doi.org/10.1172/JCI133934 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zhang, H. et al. Time of day influences immune response to an inactivated vaccine against SARS-CoV-2. Cell Res. 31, 1215–1217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dumont, F. J. & Su, Q. Mechanism of action of the immunosuppressant rapamycin. Life Sci. 58, 373–395 (1996).

    Article  CAS  PubMed  Google Scholar 

  147. Robida-Stubbs, S. et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 15, 713–724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl. Med. 6, 268ra179 (2014).

    Article  PubMed  Google Scholar 

  149. Kraig, E. et al. A randomized control trial to establish the feasibility and safety of rapamycin treatment in an older human cohort: immunological, physical performance, and cognitive effects. Exp. Gerontol. 105, 53–69 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Diniz, M. O. et al. NK cells limit therapeutic vaccine-induced CD8+T cell immunity in a PD-L1-dependent manner. Sci. Transl. Med. 14, eabi4670 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Rahman, S. A. et al. PD-1 blockade and vaccination provide therapeutic benefit against SIV by inducing broad and functional CD8+ T cells in lymphoid tissue. Sci. Immunol. 6, eabh3034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mannick, J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci. Transl. Med. 10, eaaq1564 (2018).

    Article  PubMed  Google Scholar 

  153. Mannick, J. B. et al. Targeting the biology of ageing with mTOR inhibitors to improve immune function in older adults: phase 2b and phase 3 randomised trials. Lancet Healthy Longev. 2, e250–e262 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Hörbelt, T. et al. Dose-dependent acute effects of everolimus administration on immunological, neuroendocrine and psychological parameters in healthy men. Clin. Transl. Sci. 13, 1251–1259 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chamoto, K., Zhang, B., Tajima, M., Honjo, T. & Fagarasan, S. Spermidine—an old molecule with a new age-defying immune function. Trends Cell Biol. 34, 363–370 (2024).

    Article  CAS  PubMed  Google Scholar 

  157. Schroeder, S. et al. Dietary spermidine improves cognitive function. Cell Rep. 35, 108985 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Hofer, S. J. et al. Spermidine-induced hypusination preserves mitochondrial and cognitive function during aging. Autophagy 17, 2037–2039 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Al-Habsi, M. et al. Spermidine activates mitochondrial trifunctional protein and improves antitumor immunity in mice. Science 378, eabj3510 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Liu, R. et al. Spermidine endows macrophages anti-inflammatory properties by inducing mitochondrial superoxide-dependent AMPK activation, Hif-1α upregulation and autophagy. Free Radic. Biol. Med. 161, 339–350 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Hofer, S. J. et al. Mechanisms of spermidine-induced autophagy and geroprotection. Nat. Aging https://doi.org/10.1038/s43587-022-00322-9 (2022).

    Article  PubMed  Google Scholar 

  162. Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hofer, S. J. et al. Spermidine is essential for fasting-mediated autophagy and longevity. Nat. Cell Biol. https://doi.org/10.1038/s41556-024-01468-x (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hofer, S. J. et al. A surge in endogenous spermidine is essential for rapamycin-induced autophagy and longevity. Autophagy 20, 2824–2826 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Choi, Y. H. & Park, H. Y. Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J. Biomed. Sci. 19, 31 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Puleston, D. J. et al. Polyamine metabolism is a central determinant of helper T cell lineage fidelity. Cell 184, 4186–4202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wagner, A. et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Alsaleh, G. et al. Spermidine mitigates immune cell senescence, enhances autophagy, and boosts vaccine responses in healthy older adults. Preprint at ResearchSquare https://doi.org/10.21203/rs.3.rs-5686388/v1 (2025).

  169. Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. & Kroemer, G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 29, 592–610 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Böhme, J. et al. Metformin enhances anti-mycobacterial responses by educating CD8+ T-cell immunometabolic circuits. Nat. Commun. 11, 5225 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Frasca, D., Diaz, A., Romero, M. & Blomberg, B. B. Metformin enhances B cell function and antibody responses of elderly individuals with type-2 diabetes mellitus. Front. Aging 2, 715981 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Martin, D. E. et al. The effect of metformin on influenza vaccine responses in nondiabetic older adults: a pilot trial. Immun. Ageing 20, 18 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yen, F.-S., Wang, S.-I., Lin, S.-Y. & Wei, J. C.-C. Metformin use before COVID-19 vaccination and the risks of COVID-19 incidence, medical utilization, and all-cause mortality in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 200, 110692 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Camell, C. D. et al. Senolytics reduce coronavirus-related mortality in old mice. Science 373, eabe4832 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lee, S. et al. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature 599, 283–289 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Torrance, B. L. et al. Senolytic treatment with dasatinib and quercetin does not improve overall influenza responses in aged mice. Front. Aging 4, 1212750 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Luna, A. et al. Senolytic treatment attenuates immune cell infiltration without improving IAV outcomes in aged mice. Aging Cell 24, e14437 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Henson, D. A., Kohut, M. L., Nieman, D. C., Heinz, S. A. & Yin, F. Quercetin supplementation does not enhance antibody responses to influenza vaccination. FASEB J. 24, 723.5 (2010).

    Article  Google Scholar 

  180. Du, P. Y., Gandhi, A., Bawa, M. & Gromala, J. The ageing immune system as a potential target of senolytics. Oxf. Open Immunol. 4, iqad004 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Walzik, D., Wences Chirino, T. Y., Zimmer, P. & Joisten, N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct. Target. Ther. 9, 138 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Zhou, X.-H., Luo, Y.-X. & Yao, X.-Q. Exercise-driven cellular autophagy: a bridge to systematic wellness. J. Adv. Res. https://doi.org/10.1016/j.jare.2024.12.036 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Hallam, J., Jones, T., Alley, J. & Kohut, M. L. Exercise after influenza or COVID-19 vaccination increases serum antibody without an increase in side effects. Brain Behav. Immun. 102, 1–10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Batatinha, H. et al. Recent COVID-19 vaccination has minimal effects on the physiological responses to graded exercise in physically active healthy people. J. Appl. Physiol. (1985) 132, 275–282 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Smith, K. A. et al. COVID-19 vaccination produces exercise-responsive SARS-CoV-2 specific T-cells regardless of infection history. J. Sport Health Sci. 13, 99–107 (2024).

    Article  PubMed  Google Scholar 

  186. Baker, F. L. et al. Exercise mobilizes diverse antigen specific T-cells and elevates neutralizing antibodies in humans with natural immunity to SARS CoV-2. Brain Behav. Immun. Health 28, 100600 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zuckerman, J. N. The importance of injecting vaccines into muscle. Different patients need different needle sizes. BMJ 321, 1237–1238 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Elzayat, M. T., Markofski, M. M., Simpson, R. J., Laughlin, M. & LaVoy, E. C. No effect of acute eccentric resistance exercise on immune responses to influenza vaccination in older adults: a randomized control trial. Front. Physiol. 12, 713183 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Bohn-Goldbaum, E. et al. Acute exercise decreases vaccine reactions following influenza vaccination among older adults. Brain Behav. Immun. Health 1, 100009 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Abdellatif, M., Sedej, S. & Kroemer, G. NAD+ metabolism in cardiac health, aging, and disease. Circulation 144, 1795–1817 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Fang, J. et al. NAD+ metabolism-based immunoregulation and therapeutic potential. Cell Biosci. 13, 81 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Fang, E. F. et al. NAD+ in aging: molecular mechanisms and translational implications. Trends Mol. Med. 23, 899–916 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhang, H. et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Mitchell, S. J. et al. Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab. 27, 667–676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gombart, A. F., Pierre, A. & Maggini, S. A review of micronutrients and the immune system—working in harmony to reduce the risk of infection. Nutrients 12, 236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Carr, A. C. & Gombart, A. F. Multi-level immune support by vitamins C and D during the SARS-CoV-2 pandemic. Nutrients 14, 689 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Mora, J. R., Iwata, M. & von Andrian, U. H. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat. Rev. Immunol. 8, 685–698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wu, M., He, M. & Kang, Y. Vitamin C supplementation improved the efficacy of foot-and-mouth disease vaccine. Food Agric. Immunol. 29, 470–483 (2018).

    Article  CAS  Google Scholar 

  199. Sindi, N. Evaluation of the efficacy of vitamin C on the immune response after rabies virus vaccine in BALB/c mice. Eur. Rev. Med. Pharmacol. Sci. 27, 1808–1815 (2023).

    CAS  PubMed  Google Scholar 

  200. Sadarangani, S. P., Whitaker, J. A. & Poland, G. A. “Let there be light”: the role of vitamin D in the immune response to vaccines. Expert Rev. Vaccines 14, 1427–1440 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Cesur, F., Atasever, Z. & Özoran, Y. Impact of vitamin D3 supplementation on COVID-19 vaccine response and immunoglobulin G antibodies in deficient women: a randomized controlled trial. Vaccine 41, 2860–2867 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Goncalves-Mendes, N. et al. Impact of vitamin D supplementation on influenza vaccine response and immune functions in deficient elderly persons: a randomized placebo-controlled trial. Front. Immunol. 10, 65 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lord, J. M. The effect of aging of the immune system on vaccination responses. Hum. Vaccin. Immunother. 9, 1364–1367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Goetz, L. H. & Schork, N. J. Personalized medicine: motivation, challenges, and progress. Fertil. Steril. 109, 952–963 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Fourati, S. et al. Pan-vaccine analysis reveals innate immune endotypes predictive of antibody responses to vaccination. Nat. Immunol. 23, 1777–1787 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tsang, J. S. et al. Improving vaccine-induced immunity: can baseline predict outcome? Trends Immunol. 41, 457–465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Bechman, K., Russell, M. D. & Galloway, J. B. Predicting COVID-19 vaccination response in populations who are immunosuppressed. Lancet Rheumatol. 5, e431–e432 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. Hagan, T. et al. Transcriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses. Nat. Immunol. 23, 1788–1798 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cortese, M. et al. System vaccinology analysis of predictors and mechanisms of antibody response durability to multiple vaccines in humans. Nat. Immunol. 26, 116–130 (2025).

    Article  CAS  PubMed  Google Scholar 

  210. Pearce, F. A. et al. Antibody prevalence after three or more COVID-19 vaccine doses in individuals who are immunosuppressed in the UK: a cross-sectional study from MELODY. Lancet Rheumatol. 5, e461–e473 (2023).

    Article  CAS  PubMed  Google Scholar 

  211. Kumar, S. et al. Systemic dysregulation and molecular insights into poor influenza vaccine response in the aging population. Sci. Adv. 10, eadq7006 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Li, Y., Wu, X., Fang, D. & Luo, Y. Informing immunotherapy with multi-omics driven machine learning. NPJ Digit. Med. 7, 67 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wu, Y. & Xie, L. AI-driven multi-omics integration for multi-scale predictive modeling of genotype–environment–phenotype relationships. Comput. Struct. Biotechnol. J. 27, 265–277 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Martínez de Toda, I., Vida, C., Díaz-Del Cerro, E. & De la Fuente, M. The immunity clock. J. Gerontol. A Biol. Sci. Med. Sci. 76, 1939–1945 (2021).

    Article  PubMed  Google Scholar 

  215. Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 1, 598–615 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Kalyakulina, A. et al. Small immunological clocks identified by deep learning and gradient boosting. Front. Immunol. 14, 1177611 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Ye, T. et al. Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature 624, 630–638 (2023).

    Article  CAS  PubMed  Google Scholar 

  218. Kim, Y. C., Jarrahian, C., Zehrung, D., Mitragotri, S. & Prausnitz, M. R. Delivery systems for intradermal vaccination. Curr. Top. Microbiol. Immunol. 351, 77–112 (2012).

    CAS  PubMed  Google Scholar 

  219. Kashem, S. W., Haniffa, M. & Kaplan, D. H. Antigen-presenting cells in the skin. Annu. Rev. Immunol. 35, 469–499 (2017).

    Article  CAS  PubMed  Google Scholar 

  220. Egunsola, O. et al. Immunogenicity and safety of reduced-dose intradermal vs intramuscular influenza vaccines: a systematic review and meta-analysis. JAMA Netw. Open 4, e2035693 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Holland, D. et al. Intradermal influenza vaccine administered using a new microinjection system produces superior immunogenicity in elderly adults: a randomized controlled trial. J. Infect. Dis. 198, 650–658 (2008).

    Article  PubMed  Google Scholar 

  222. Hofer, S. J., Davinelli, S., Bergmann, M., Scapagnini, G. & Madeo, F. Caloric restriction mimetics in nutrition and clinical trials. Front. Nutr. 8, 717343 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Rijkers, G. T. et al. Antigen presentation of mRNA-based and virus-vectored SARS-CoV-2 vaccines. Vaccines (Basel) 9, 848 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Xie, C., Yao, R. & Xia, X. The advances of adjuvants in mRNA vaccines. NPJ Vaccines 8, 162 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Amor, C. et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat. Aging 4, 336–349 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Denton, A. E. et al. Targeting TLR4 during vaccination boosts MAdCAM-1+ lymphoid stromal cell activation and promotes the aged germinal center response. Sci. Immunol. 7, eabk0018 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wang, G. et al. Universal subunit vaccine protects against multiple SARS-CoV-2 variants and SARS-CoV. NPJ Vaccines 9, 133 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Wang, W.-C., Sayedahmed, E. E., Sambhara, S. & Mittal, S. K. Progress towards the development of a universal influenza vaccine. Viruses 14, 1684 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Krammer, F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 19, 383–397 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Nachbagauer, R. et al. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat. Med. 27, 106–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  233. Bravi, B. Development and use of machine learning algorithms in vaccine target selection. NPJ Vaccines 9, 15 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Olawade, D. B. et al. Leveraging artificial intelligence in vaccine development: a narrative review. J. Microbiol. Methods 224, 106998 (2024).

    Article  CAS  PubMed  Google Scholar 

  235. Abdelmohsen, K. et al. Identification of senescent cell subpopulations by CITE-seq analysis. Aging Cell 23, e14297 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Bouazzaoui, A. & Abdellatif, A. A. H. Vaccine delivery systems and administration routes: advanced biotechnological techniques to improve the immunization efficacy. Vaccine X 19, 100500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lavelle, E. C. & Ward, R. W. Mucosal vaccines—fortifying the frontiers. Nat. Rev. Immunol. 22, 236–250 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Lee, V. Y., Booy, R., Skinner, S. R., Fong, J. & Edwards, K. M. The effect of exercise on local and systemic adverse reactions after vaccinations—outcomes of two randomized controlled trials. Vaccine 36, 6995–7002 (2018).

    Article  CAS  PubMed  Google Scholar 

  239. de Boer, S. E. et al. Enhanced humoral immune response after COVID-19 vaccination in elderly kidney transplant recipients on everolimus versus mycophenolate mofetil-containing immunosuppressive regimens. Transplantation 106, 1615–1621 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  240. de Boer, S. E. et al. Rationale and design of the OPTIMIZE trial: OPen label multicenter randomized trial comparing standard IMmunosuppression with tacrolimus and mycophenolate mofetil with a low exposure tacrolimus regimen In combination with everolimus in de novo renal transplantation in Elderly patients. BMC Nephrol. 22, 208 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Tunbridge, M. et al. Rapamycin and inulin for booster vaccine response stimulation (RIVASTIM)–rapamycin: study protocol for a randomised, controlled trial of immunosuppression modification with rapamycin to improve SARS-CoV-2 vaccine response in kidney transplant recipients. Trials 23, 780 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Withers, H. G. et al. mTOR inhibition modulates vaccine-induced immune responses to generate memory T cells in patients with solid tumors. J. Immunother. Cancer 13, e010408 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Ji, N. et al. Rapamycin enhances BCG-specific γδ T cells during intravesical BCG therapy for non-muscle invasive bladder cancer: a randomized, double-blind study. J. Immunother. Cancer 9, e001941 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.K. is funded by the Wellcome Trust (222426/Z/21/Z), a Medical Research Council IMMPROVE Proactive Vaccinology grant and Cancer Research UK (DRCNPG-Nov22/100005). A.K.S. is supported by the Wellcome Trust Fund 220784/Z/20/Z and the Helmholtz Distinguished Professorship.

Author information

Authors and Affiliations

Authors

Contributions

S.J.H. and A.K.S. conceptualized the review. All authors contributed to writing and editing the paper.

Corresponding author

Correspondence to Sebastian J. Hofer.

Ethics declarations

Competing interests

A.K.S. has received consultancy fees from TLL The Longevity Labs GmbH, Oxford Healthspan and Kalin Health. P.K. has received consulting fees from UCB, Biomunex, AstraZeneca and Infinitopes. S.J.H. and S.R. declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Jorg Goronzy, Sean Leng and the other anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofer, S.J., Rapp, S., Klenerman, P. et al. Understanding and improving vaccine efficacy in older adults. Nat Aging 5, 1455–1470 (2025). https://doi.org/10.1038/s43587-025-00939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-025-00939-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing