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Genome-wide analysis of brain age identifies 
59 associated loci and unveils relationships 
with mental and physical health
 

Philippe Jawinski    1,2  , Helena Forstbach1, Holger Kirsten    2,3, 
Frauke Beyer    4, Arno Villringer    4, A. Veronica Witte    4, Markus Scholz    2,3, 
Stephan Ripke    5,6 & Sebastian Markett    1

Neuroimaging and machine learning are advancing research into the 
mechanisms of biological aging. In this field, ‘brain age gap’ has emerged as  
a promising magnetic resonance imaging-based biomarker that quantifies  
the deviation between an individual’s biological and chronological age of  
the brain. Here we conducted an in-depth genomic analysis of the brain age  
gap and its relationships with over 1,000 health traits. Genome-wide analyses 
in up to 56,348 individuals unveiled a heritability of 23–29% attributable 
to common genetic variants and highlighted 59 associated loci (39 novel). 
The leading locus encompasses MAPT, encoding the tau protein central to 
Alzheimer’s disease. Genetic correlations revealed relationships with mental 
health, physical health, lifestyle and socioeconomic traits, including depressed 
mood, diabetes, alcohol intake and income. Mendelian randomization 
indicated a causal role of high blood pressure and type 2 diabetes in accelerated 
brain aging. Our study highlights key genes and pathways related to 
neurogenesis, immune-system-related processes and small GTPase binding, 
laying the foundation for further mechanistic exploration.

Aging is a complex phenomenon inherent to most organisms1–3. As 
human lifespans extend and global populations age, age-related dis-
abilities, including dementia, are rising4. Thus, understanding the bio-
logical mechanisms of aging is an urgent priority for social systems, to 
sustain longer lives with reduced periods of disability.

The use of neuroimaging methods in conjunction with machine 
learning has become a promising avenue in biomedical research to 
capture an individual’s biological age, particularly ‘brain age’5,6. Brain 
age is typically assessed by training an age prediction model on in vivo 
magnetic resonance imaging (MRI) data from a normative lifespan 
sample. This model is then applied to the MRI data of unseen indi-
viduals to predict their age. The discrepancy between an individual’s 

brain-predicted and chronological age is termed ‘brain age gap’ (BAG) 
and it is used to infer typical and atypical aging trajectories6,7.

A positive BAG, interpreted as accelerated aging, has been linked 
to reduced mental and physical health5; including weaker grip strength, 
higher blood pressure, diabetes, adverse drinking and smoking behav-
ior, poorer cognitive abilities and depression8–13. BAG is also enhanced 
in neurological and psychiatric disorders such as Alzheimer’s disease 
(AD), schizophrenia and bipolar disorder14,15. While previous genetic 
studies suggested that BAG exhibits a substantial heritable component, 
few genetic variants have been identified15–24. To refine the genetic 
architecture of BAG and identify potential therapeutic targets for 
healthy aging, further research is imperative.
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Results
We estimated brain age with a well-established and extensively vali-
dated workflow based on CAT12 voxel-based morphometry5,25. Using 
T1-weighed MRI scans and supervised machine learning, we estimated 
brain age through cross-prediction in a discovery sample of 32,634 
individuals of White British ancestry from the UK Biobank (UKB) cohort 
(age range = 45–81 years)26. To capture tissue-specific aging patterns, 
we conducted separate analyses for gray matter (GM) and white mat-
ter (WM) segmentations18. Brain age estimation relied on an ensemble 
of complementary machine learning algorithms: the sparse Bayes-
ian relevance vector machine27 (RVM) and extreme gradient boosting 
(XGBoost) with tree and linear boosters28. Models were stacked within 
and across tissue classes, yielding three brain-predicted age estimates 
per individual: for GM, WM and combined GM and WM.

In the discovery sample, we observed accurate predictions for 
chronological age, with mean absolute errors (MAEs) reaching 3.09 
years and correlation coefficients attaining r = 0.86 (Fig. 1a, Table 1, 

In this article, we present what is to our knowledge the largest 
genome-wide association study (GWAS) of BAG to date. We begin by 
discovering new loci in a sample of 32,634 individuals of White British 
ancestry and replicate our findings in a multi-ancestry sample of up to 
23,714 individuals. Next, we conduct meta-analyses across the discovery 
and replication samples, with an aggregated sample size of up to 56,348 
individuals. This represents a 79% increase (~25,000 more) over previous 
GWAS23,24. To prioritize genes, we use complementary fine-mapping, 
annotation and transcriptomic analyses that integrate multiple omics 
resources. We also calculate polygenic scores (PGS) to estimate the 
present yield in variance explanation, compute genetic correlations with 
over 1,000 traits and test causal effects using Mendelian randomization. 
Finally, we examine the degree of polygenicity of BAG and project future 
discovery potential. Through these efforts, we unravel new biological 
mechanisms behind BAG, including pathways related to neurogenesis, 
immune system processes and binding of small GTPases—evolutionarily 
conserved proteins that act as cellular timers.
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Fig. 1 | Phenotypic characteristics and associations of combined BAG.  
a, The blue dots in the first three plots (left to right) show brain-predicted age 
estimates (combined GM and WM) plotted against chronological age in the 
UKB discovery sample (n = 32,634), UKB replication sample (n = 21,881, merged 
across ancestries) and the LIFE-Adult replication sample (n = 1,833). To facilitate 
comparisons, the results of the UKB discovery sample are also shown as gray dots 
in the background of the LIFE replication plot. At this stage, brain-predicted age 
estimates have not yet been bias-corrected for regression dilution, as indicated 
by the solid linear regression line crossing the dashed identity line. The fourth 
plot shows the test–retest reliabilities of combined BAG in a subset of the UKB 
discovery (gray dots, n = 3,751) and UKB replication sample (blue dots, n = 395). 
BAG was residualized for sex, age, age2, scanner site and total intracranial 

volume. b, Cross-trait association results between combined BAG and 7,088 
UKB phenotypes across several health domains. Analyses were conducted using 
PHESANT, which applies data-type-specific regression models (linear, logistic, 
ordered logistic or multinomial logistic regression). All models included sex, age, 
age2, scanner site and total intracranial volume as covariates. The horizontal lines 
indicate the Bonferroni-adjusted (solid) and FDR-adjusted (dashed) two-sided 
level of significance. The top associations per category are annotated. c, Surface 
plots showing the correlations between combined BAG and 220 FreeSurfer 
brain structure variables. The colors reflect the strength and direction of partial 
product-moment correlations (sex, age, age2, scanner site and total intracranial 
volume served as covariates). ICC, intraclass correlation coefficient (C, 1); rho, 
product-moment correlation coefficient.
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Supplementary Table 1 and Extended Data Fig. 1). Model performances 
were similar in the multi-ancestry UKB replication samples (n = 21,881; 
age range = 45-81 years) and the European-ancestry Leipzig Research 
Centre for Civilization Diseases (LIFE)-Adult replication sample 
(n = 1,833; age range = 45-80 years)29,30. Genetic association analyses 
were performed on BAG, that is, the difference between brain-predicted 
and chronological age. These BAG estimates—residualized for sex, 
age, age2, scanner site and total intracranial volume—showed high 
test–retest reliabilities, with intraclass correlation coefficients (ICCs) 
ranging from 0.89 to 0.92.

Phenotypic associations
To validate our BAG estimates and extend previous evidence on their 
health relevance31,32, we conducted cross-trait association analyses 
between BAG and 7,088 non-imaging-derived phenotypes using  
PHESANT33. A total of 210 associations reached Bonferroni significance 
(P < 7.1 × 10−6) for at least 1 of the 3 BAG traits (Supplementary Table 2 
and Extended Data Fig. 2). Figure 1b presents the cross-trait results for 
combined GM and WM BAG.

Top associations for combined BAG (all P ≤ 1.8 × 10−12) included 
pack years of smoking (r = 0.091), diastolic blood pressure (DBP) 
(r = 0.084), number of symbol digit matches made correctly (that is, 
a measure of cognitive performance; r = −0.082), diabetes diagnosed 
by doctor (r = 0.079), amount of alcohol drunk on a typical drinking 
day (r = 0.076) and overall health rating (r = 0.039; note that higher 
scores indicate poorer health). These results corroborate earlier BAG 
associations31 and expand known health-related links.

To examine regional contributions to BAG and facilitate com-
parisons with prior surface-based morphometry studies15,19,34, we 
analyzed associations with FreeSurfer-derived35 cortical surface 
measures and subcortical volumes (Fig. 1c, Supplementary Fig. 3 and 
Supplementary Table 3). For combined BAG, the strongest associations 
(all P ≤ 1.1 × 10−209) were observed with the volumes of the accumbens 
(r = −0.31), lateral ventricles (r = 0.30), amygdala (r = −0.25), hippocam-
pus (r = −0.23) and thalamus (r = −0.22), and the cortical thickness of the 
superior frontal (r = −0.20) and inferior parietal (r = −0.17) cortex. These 
findings suggest that our models capture patterns of aging distributed 
throughout the brain, rather than being confined to specific areas.

Following up on Smith et al.31, we also performed sex-stratified  
analyses, which revealed largely similar BAG associations in males  
and females for non-imaging-derived (Supplementary Figs. 1  
and 2 and Supplementary Table 4) and brain structure phenotypes 
(Supplementary Figs. 4 and 5 and Supplementary Table 5). Some differences 
emerged, for example, stronger associations between GM BAG and body 
 fat percentage in males, but were generally small in magnitude.

Concordant genomic signals in discovery and replication 
GWAS
An overview of our genomic analysis workflow is shown in Fig. 2. To exam-
ine the reliability and replicability of our findings, we first compared  

results from a discovery GWAS of 32,634 individuals of White  
British ancestry (UKB imaging release v.1.7) with a replication GWAS of 
22,256 individuals of European ancestry (UKB imaging release v.1.10 
and LIFE-Adult).

The discovery and replication GWAS results were highly con-
sistent, with strong genetic correlations derived from bivariate link-
age disequilibrium (LD) score regression (LDSC) (all rg > 0.996, all 
P > 2.9 × 10−36; Supplementary Table 6)36. We discovered 25 independ-
ent genome-wide significant loci across the 3 BAG traits, all showing 
concordant effect directions (binomial test: P = 3.0 × 10−08), and 18 
reaching one-tailed nominal significance in replication (binomial test: 
P = 1.3 × 10−18; Supplementary Table 7). These findings closely align with 
our power analysis, which predicted 19 nominal replications. Among 45 
additional suggestive discoveries (P < 1.0 × 10−6), 36 showed concord-
ant directions (binomial test: P = 3.3 × 10−5) and 24 reached nominal 
significance in replication (binomial test: P = 8.0 × 10−20). Incorporating 
1,458 non-European UKB participants into an extended multi-ancestry 
GWAS also yielded above-chance consistency (Supplementary Table 8). 
Together, these findings strongly support locus replicability, reinforc-
ing the robustness of our results. Additional details are provided in 
Supplementary Figs. 6–23.

Identification of 59 associated loci
To maximize statistical power and improve genetic discovery, we 
meta-analyzed GWAS data from 54,890 individuals of European ances-
try, combining the UKB discovery (n = 32,634), UKB-EUR replication 
(n = 20,423) and LIFE-Adult (n = 1,833) cohorts. Analyses included 
9.6 million single-nucleotide polymorphisms (SNPs) and insertions 
and deletions (indels) with a minor allele frequency (MAF) greater 
than 0.01 and imputation quality score (INFO) greater than 0.80. We 
modeled additive genetic effects with covariates for sex, age, age2, 
total intracranial volume, scanner site and type of genotyping array, 
and up to 20 genetic principal components. Results for the three 
BAG traits are shown in Fig. 3 (multi-ancestry results are shown in 
Extended Data Fig. 3).

LDSC intercepts did not indicate a bias of test statistics due to 
reasons other than polygenicity, suggesting no confounding infla-
tion caused by population stratification (intercept range: 1.011–1.017; 
Supplementary Table 9)37. SNP-based heritability estimates ranged 
from 22.7% (GM BAG) to 29.0% (WM BAG). The genetic correlation 
between GM and WM BAG was rg = 0.74 (s.e. = 0.023), indicating both 
shared and distinct genetic influences (phenotypic correlation: 
rP = 0.62, s.e. = 0.003). Combined BAG showed strong genetic corre-
lations with both GM (rg = 0.91, s.e. = 0.008; cf. rP = 0.88, s.e. = 0.002) 
and WM (rg = 0.951, s.e. = 0.006; cf. rP = 0.91, s.e. = 0.002) BAG. Strong 
genetic correlations were observed between sex-stratified results (all 
rg ≥ 0.934; Supplementary Table 10), indicating highly concordant 
architectures across sexes.

Partitioned LDSC38 (Supplementary Table 11 and Extended  
Data Fig. 4) revealed an enrichment of heritability (false discovery 

Table 1 | Prediction accuracies of the stacked age estimation models stratified according to tissue class

UKB discovery (n = 32,634) 45–81 years UKB replication (n = 21,881) 45–81 years LIFE replication (n = 1,833)  
45–80 years

r R2 MAE ICCBAG r R2 MAE ICCBAG r R2 MAE

GM 0.827 0.683 3.372 0.899 0.825 0.676 3.405 0.888 0.828 0.653 3.990

WM 0.835 0.696 3.307 0.920 0.830 0.683 3.368 0.911 0.829 0.667 3.979

GM and WM 0.857 0.734 3.089 0.915 0.854 0.726 3.123 0.908 0.862 0.729 3.557

The imaging data of the UKB discovery sample were released until January 2020 (release 1.7), whereas the data of the UKB replication sample were released until May 2024  
(release 1.10). r indicates the product-moment correlation between brain-predicted age (without bias correction) and chronological age. R2 indicates the coefficient of determination  
(not equivalent to r2). ICCBAG indicates the ICC between the test and retest assessment of BAG. MAE is the MAE of brain-predicted versus chronological age. BAG was bias-corrected  
for age, age2, sex, scanner site and total intracranial volume. ICCs are based on a subset of 3,751 individuals in the UKB discovery sample and 395 individuals in the UKB  
replication sample.
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rate (FDR) < 0.05) in regions conserved across mammals (fold enrich-
ment (FE) = 12.4) and primates (FE = 10.5). Additional enrichment was 
observed in super-enhancer (FE = 2.6), flanking bivalent transcrip-
tional start sites/enhancers (FE = 8.7) and epigenetically modified 
H3K27ac (FE = 1.8) and H3K9ac (FE = 2.9) regions. Cell-type group 
analyses (Supplementary Table 12 and Extended Data Fig. 5) revealed 
enrichment near genes expressed in central nervous system (FE = 3.4), 
connective or bone (FE = 3.0) and kidney (FE = 3.7) tissue.

To identify independent genome-wide significant associations, 
we conducted stepwise conditional analyses using genome-wide com-
plex trait analysis–conditional and joint association analysis (GCTA–
COJO)39. This resulted in 26, 34 and 39 independent discoveries for 
GM, WM and combined BAG, respectively (regional plots are shown 
in Supplementary Figs. 25–42). After cross-trait LD clumping of index 
variants (r2 > 0.1, 10,000-kb window), we identified 59 distinct loci 
(≥460 kb apart; Table 2 and Supplementary Table 13). Of these, 39 
represent novel discoveries not previously reported in BAG GWAS (see 
Methods for the definition of novelty)17–24.

We observed most index variants in intronic regions of protein- 
coding genes. ANNOtate VARiation (ANNOVAR) enrichment  
tests confirmed that variants in high LD with the lead variants were 
underrepresented in intergenic regions and overrepresented in 
3′-UTR, 5′-UTR, intronic, exonic noncoding RNA and intronic non-
coding RNA regions (Supplementary Fig. 24 and Supplementary  
Table 14).

Fine-mapping and gene prioritization
To identify putative causal genes, we used several fine-mapping, func-
tional annotation and transcriptomic analyses that integrate informa-
tion from multiple omics resources. For each genome-wide significant 
locus, we (1) constructed 95% credible sets of variants that likely include 
the causal variant using SBayesRC40,41, complemented by susieR and 
FINEMAP42,43; (2) physically mapped credible variants to genes using 
ANNOVAR44; (3) predicted the transcript consequences of nonsynony-
mous exonic variants and scored their deleteriousness using combined 
annotation dependent depletion (CADD)45; (4) mapped variants to 
genes using expression quantitative trait locus (eQTL) lookup in 49 
Genotype-Tissue Expression (GTEx) Project v.8 tissues46; (5) conducted 
summary-data-based Mendelian randomization (SMR)47 with the RNA 
sequence (RNA-seq) data of 2,865 brain cortex samples48 to test for 
mediation through gene expression and splicing; and (6) calculated 
polygenic priority scores (PoPS)49 that incorporate data from single-cell 
RNA-seq datasets, curated biological pathways and protein–protein 
interaction networks. We integrated these results to compute a gene 
priority score and selected the most plausible candidate per locus 
(Methods). Figure 2 shows an overview of the analysis workflow; full 
results are found in Supplementary Table 13 (with further details in 
Supplementary Tables 14–24). The key findings are summarized below.

Across the 59 discovered loci, SBayesRC genome-wide 
fine-mapping produced, on average, the smallest 95% credible sets 
(median = 9 variants), compared to region-specific approaches using 
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Fig. 2 | Genomic analysis workflow and gene prioritization strategy. Overview 
of the genomic analysis workflow with particular emphasis on the gene 
prioritization procedure. The green boxes represent data input (GWAS meta-
analysis) and output (prioritized genes). The blue boxes represent analyses 
whose outcomes were used for gene nomination and subsequent prioritization. 

The apricot-colored boxes reflect the gene nomination categories. The gray 
boxes reflect all other analyses carried out to refine the genetic architecture 
of BAG, such as heritability and polygenicity analyses. Genes were prioritized 
by integrating data from multiple strategies, such as functional annotation of 
credible variants, SMR, GTEx eQTL lookup and PoPS.
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susieR (median = 34 variants) and FINEMAP (median = 36 variants). 
susieR and FINEMAP showed strong concordance, with a median over-
lap of 97.2%. Variants from SBayesRC were included in the susieR and 
FINEMAP credible sets at median rates of 75.0% and 80.0%, respectively. 
Most loci contained a single signal, although susieR and FINEMAP 
identified four loci with potential secondary signals. Estimated regional 
heritability ranged from 0.03% to 0.67%, reflecting modest variant 
effects, with few exceptions.

We observed the strongest association at locus 17q21.31 (index 
variant: rs2260227, P = 9.4 × 10−83), which tags a well-known 900-kb 
inversion polymorphism50,51. Consistent with the strong LD cluster in 
the inverted region50, the region-specific fine-mapping approaches 

yielded large credible sets of variants (>1,500 variants). A National 
Human Genome Research Institute GWAS Catalog search52 revealed 
associations with many locus-associated traits, including educa-
tional attainment53, depressed affect54, alcohol consumption55, sleep 
duration56, lung function57, male puberty timing58, age at onset of 
menarche57 and AD59. The region spans multiple genes, including 
MAPT, STH, KANSL1 and CRHR1. Several genome-wide significant 
variants in these genes are GTEx single-tissue and multi-tissue eQTLs 
(Supplementary Tables 21 and 22). SMR analyses implicated expres-
sion and splicing of MAPT and KANSL1 (along with other genes) in 
mediating variant effects on BAG (Supplementary Tables 19 and 20). 
We also identified credible exonic variants causing amino acid changes 

a

b

c

d

e

f

–l
og

10
(P

)

O
bs

er
ve

d 
–l

og
10

(P
)

O
bs

er
ve

d 
–l

og
10

(P
)

O
bs

er
ve

d 
–l

og
10

(P
)

–l
og

10
(P

)
–l

og
10

(P
)

40

30

20

10

0
1 2 3 4 5 6 7

Chromosome Expected –log10(P)

Expected –log10(P)

Expected  –log10(P)

Chromosome

Chromosome

8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

40

30

20

10

0
0 2 4 6 8

40

30

20

10

0
0 2 4 6 8

40

30

20

10

0
0 2 4 6 8

40

30

20

10

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

40

30

20

10

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

Fig. 3 | Genome-wide association meta-analyses of BAG traits. Manhattan  
(a–c) and quantile–quantile (QQ) plots (d–f) showing the results of the 
European-ancestry GWAS meta-analyses for the three BAG traits (n = 54,890). The 
Manhattan plots show the P values (−log10 scale) of the tested genetic variants on 
the y axis and base-pair positions along the chromosomes on the x axis. P values 
were derived from two-sided linear regression models using PLINK, followed by 
meta-analysis using inverse-variance weighting in METAL. The solid horizontal 
line indicates the threshold of genome-wide significance (two-sided P = 5.0 × 10−8, 

accounting for multiple testing). Index variants are highlighted by the diamonds. 
The results of the pseudoautosomal variants have been added to chromosome X. 
Quantile–quantile plots show the observed P values from the association analysis 
versus the expected P values under the null hypothesis of no effect (−log10 scale). 
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and WM BAG (Manhattan and QQ).
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Table 2 | Identification of 59 genomic loci associated with BAG in n = 54,890 individuals

Chr Position ID A1/A2 Frequency 
of A1

Beta (s.e.) P Credible Prioritized gene Phenotype(s) Ref.

1 39471759 1:39471759 CT/C 0.89 0.20 (0.03) 4 × 10−9 3 NDUFS5 WM *

1 153888217 rs552429854 T/TA 0.37 0.14 (0.02) 3 × 10−10 6 DENND4B WM, GM and WM 18

1 180956936 rs35306826 A/T 0.59 −0.22 (0.02) 1 × 10−25 6 STX6 WM, GM and WM 18,21

1 212557599 rs3767867 T/C 0.62 −0.14 (0.02) 2 × 10−10 – PACC1 WM, GM and WM *

1 215139887 rs1452628 A/T 0.62 0.19 (0.02) 3 × 10−19 7 KCNK2 GM, WM 17,23

2 56116193 2:56116193 T/TTG 0.10 0.20 (0.04) 2 × 10−8 – EFEMP1 WM *

2 188028317 rs62172472 A/G 0.20 −0.15 (0.03) 7 × 10−9 5 TFPI GM *

2 190694175 rs1233297 T/C 0.26 0.16 (0.02) 4 × 10−12 32 ORMDL1 WM, GM and WM 18

2 198567638 rs12619333 C/G 0.67 0.14 (0.02) 1 × 10−9 17 SF3B1 GM, GM and WM *

2 201160771 rs1367858 T/C 0.34 0.15 (0.02) 4 × 10−11 8 SPATS2L GM, GM and WM *

2 203877365 rs530464314 CA/C 0.14 −0.23 (0.03) 5 × 10−15 6 CARF GM and WM, GM, WM 23

3 69893971 rs62252239 T/G 0.21 −0.15 (0.03) 2 × 10−9 11 MITF WM *

3 121628658 3:121628658 A/AT 0.48 −0.14 (0.02) 7 × 10−12 14 SLC15A2 WM *

3 171040852 rs776970253 CTC/C 0.74 −0.14 (0.02) 2 × 10−9 7 TNIK WM, GM and WM *

3 171500441 rs72622537 A/C 0.35 −0.12 (0.02) 2 × 10−8 15 PLD1 GM and WM *

3 193549408 rs1146045 T/C 0.59 −0.12 (0.02) 2 × 10−8 12 LINC02038 WM *

4 2944571 rs66571798 CGT/C 0.41 −0.12 (0.02) 1 × 10−8 12 GRK4 GM and WM *

4 38680015 rs13132853 A/G 0.63 −0.26 (0.02) 9 × 10−36 1 KLF3-AS1 GM and WM, WM, GM 18–22,24

4 115534729 rs75563007 T/C 0.97 −0.40 (0.07) 2 × 10−9 8 UGT8 WM, GM and WM *

5 72257180 rs2548331 T/G 0.48 0.12 (0.02) 8 × 10−9 18 FCHO2 GM and WM *

5 90567689 5:90567689 T/TTA 0.93 −0.24 (0.04) 2 × 10−8 12 LUCAT1 GM *

5 122879901 rs36048468 T/C 0.21 0.16 (0.03) 1 × 10−9 15 CSNK1G3 GM, GM and WM *

5 159528663 rs55790564 A/AT 0.40 −0.12 (0.02) 2 × 10−9 12 PWWP2A GM and WM, WM *

6 31249217 rs2253491 A/G 0.21 −0.16 (0.02) 1 × 10−10 – CLIC1 GM and WM, GM, WM 18

6 45410312 rs910586 T/C 0.36 −0.21 (0.02) 1 × 10−23 2 RUNX2 GM and WM, WM, GM 17–20,22,24

6 126690257 6:126690257 A/AT 0.44 0.12 (0.02) 2 × 10−8 10 CENPW GM, GM and WM 17

7 1213127 rs1543985 A/G 0.36 0.12 (0.02) 3 × 10−8 17 ZFAND2A-DT GM and WM, GM 24

7 120803286 rs35789132 A/G 0.65 −0.13 (0.02) 1 × 10−9 11 CPED1 GM, GM and WM *

8 10813904 rs10096381 T/G 0.52 0.13 (0.02) 1 × 10−9 – XKR6 WM 18

8 116635942 rs2721939 T/C 0.60 0.16 (0.02) 1 × 10−14 4 TRPS1 WM, GM and WM *

8 130903153 rs12548781 A/T 0.79 0.15 (0.03) 7 × 10−9 12 FAM49B GM *

9 123543953 rs5021405 T/C 0.47 0.12 (0.02) 4 × 10−8 – PHF19 GM and WM *

9 128010901 rs755594165 CA/C 0.61 −0.12 (0.02) 3 × 10−8 – HSPA5 WM *

10 94839642 rs2068888 A/G 0.45 −0.13 (0.02) 3 × 10−10 – FRA10AC1 GM *

10 98115019 rs41306852 A/G 0.02 0.42 (0.08) 5 × 10−8 – OPALIN WM *

10 105454043 rs2863994 T/G 0.51 0.12 (0.02) 4 × 10−9 16 SH3PXD2A GM and WM, GM *

10 134573767 rs12258248 A/G 0.75 −0.22 (0.02) 4 × 10−20 3 INPP5A WM, GM and WM 19–22,24

11 32758240 rs10767960 A/G 0.54 −0.12 (0.02) 1 × 10−8 17 EIF3M GM and WM *

12 32526829 rs6488048 T/C 0.65 0.13 (0.02) 7 × 10−9 18 ENSG00000274964 WM *

12 106476805 rs12146713 T/C 0.91 −0.25 (0.04) 5 × 10−12 1 ENSG00000257890 WM, GM and WM 18,23

12 107349294 rs2287163 T/C 0.37 0.13 (0.02) 5 × 10−10 15 TMEM263 WM *

14 73297741 rs2215590 T/C 0.25 0.14 (0.02) 3 × 10−9 8 DPF3 WM, GM and WM *

14 88433660 rs413420 T/C 0.52 −0.16 (0.02) 7 × 10−14 23 GALC WM, GM and WM 22

15 71169352 rs2031017 A/T 0.40 −0.14 (0.02) 1 × 10−11 9 LARP6 WM, GM and WM 18

16 30122181 rs536906899 CAA/C 0.40 −0.12 (0.02) 4 × 10−8 39 MAPK3 GM *

16 90051269 rs76839250 A/G 0.91 0.25 (0.04) 1 × 10−11 6 DEF8 GM, GM and WM 18

17 19889274 rs111513543 A/T 0.64 −0.13 (0.02) 8 × 10−9 30 AKAP10 WM, GM and WM *
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(Supplementary Table 18); notably, rs17651549 (P = 1.5 × 10−81), which 
had the highest deleteriousness (CADD score = 34), results in an 
arginine-to-tryptophan substitution at MAPT protein position 370. 
MAPT encodes the well-known tau protein implicated in AD and other 
neurodegenerative diseases60. Altogether, we prioritized MAPT as the 
most likely causal gene for brain aging at this locus.

In 6 regions, all fine-mapping methods yielded 95% credible sets 
with fewer than 10 likely causal variants. One locus, with only a single 
credible variant (rs12146713, posterior inclusion probability (PIP) > 0.99; 
P = 4.7 × 10−12), lies in an intron of NUAK1 at 12q23.3 and tags a multi-tissue 
eQTL for the long noncoding RNA gene Lnc-NUAK1-1, expressed in the 
brain cortex and cerebellum. GWAS Catalog matches link this region to 
cortical thickness61, surface area62 and subcortical volume61.

A second locus, led by rs1452628 (P = 2.5 × 10−19), with up to 7 credible  
variants, refers to an intergenic region at 1q41, 41 kb upstream of KCNK2, 
encoding a potassium channel subunit. KCNK2 is also the prioritized 
gene supported by the GTEx and PoPS analyses. KCNK2 has been impli-
cated in neuroinflammation, blood–brain barrier dysfunction, and 
cerebral ischemia63,64. GWAS Catalog matches include associations 
with cortical thickness61, surface area62 and sulcal opening65.

The third locus refers to the well-known apolipoprotein E (APOE) 
gene region, led by rs483082 (P = 1.0 × 10−10), with four credible variants. 
The APOE ε4 allele, defined by rs429358 and rs7412, is the strongest 
known genetic risk factor for AD. Notably, the exonic variant rs429358 
was identified by SBayesRC as the most likely causal variant (PIP = 0.62).

We also discovered several novel loci that offer new insights 
into the mechanisms of brain aging. Among these loci, one is led by 
rs2215590 (P = 2.9 × 10−9) and maps to an intronic region of DPF3, which 
encodes double PHD fingers 3. Supported by GTEx eQTLs and PoPS, 
DPF3 was prioritized as the most likely causal gene. DPF3 also represents 
the prioritized gene supported by the GTEx eQTL lookup and PoPS 
analyses. GWAS Catalog matches link this locus to pulse pressure66 and 
serum urate levels67. DPF3 serves as a subunit of the neuron-specific 
chromatin remodeling nBAF complex, which is crucial for neurogenesis 
and neurodevelopment68.

Another novel locus, led by rs776970253 (P = 2.4 × 10−9), impli-
cates an intronic region of TNIK, encoding TRAF2-interacting and 
NCK-interacting kinases. Notably, TNIK has been recognized for its role 
in several biological pathways linked to the hallmarks of aging and has 
been identified as a promising drug target to improve neuronal health69.

Altogether, by integrating fine-mapping, functional annotation 
and transcriptomic data, we prioritized several genes potentially 
involved in brain aging, thereby offering new, testable hypotheses 
about its biological underpinnings.

Polygenic score analysis
To evaluate the predictive power of the genetic variants identi-
fied in our GWAS, we performed PGS analyses using SBayesRC 
(Supplementary Table 25). Compared to previous reports (~2% pre-
diction accuracy)23, our PGS showed substantially improved per-
formance. Using the discovery GWAS data alone (n = 32,634), PGS 
explained 4.1% (GM BAG) to 7.0% (WM BAG) of the phenotypic vari-
ance in the European-ancestry replication sample. Incorporating the 
meta-analysis results (n = 52,890, excluding 2,000 test individuals) fur-
ther improved variance explanation to 6.8% (GM BAG) and 10.3% (WM 
BAG). As expected, prediction accuracy was lower in the non-European 
UKB replication samples, explaining 0.4–3.2% of the BAG variance in 
African (AFR) ancestry (n = 337), 3.1–3.9% in Central/South Asian (CSA) 
ancestry (n = 638) and 4.1–9.1% in East Asian (EAS) ancestry (n = 291) 
individuals.

Gene-based analysis
To assess the contribution of protein-coding genes, we performed 
gene-based association analyses using GCTA fastBAT70. Gene-based 
analyses aggregate variant-level signals across genes, reducing the 
multiple-testing burden. We tested 18,639 genes and identified 528, 886 
and 776 genes significantly associated (FDR < 0.05) with the GM, WM 
and combined GM and WM BAG, respectively. To define independent 
loci, we applied P value-informed clumping to genes within 3,000 kb, 
yielding 151 loci, 230 loci and 203 loci per trait, of which 285 were unique 
(Supplementary Table 26 and Extended Data Fig. 6). The strongest sig-
nal was again observed at 17q21.31 covering MAPT. In total, gene-based 
analyses provide evidence for an extended set of genomic loci involved 
in human brain aging.

Pathway analysis
To gain deeper insight into the biological mechanisms underlying brain 
aging, we performed gene set enrichment analyses using GOfuncR71, 
testing for the enrichment of Gene Ontology (GO) terms—sets of genes 
known to serve a common biological function72. After correcting for 

Chr Position ID A1/A2 Frequency 
of A1

Beta (s.e.) P Credible Prioritized gene Phenotype(s) Ref.

17 27962571 17:27962571 G/GCC 0.47 0.14 (0.02) 8 × 10−10 10 SSH2 GM, GM and WM *

17 44305199 rs2260227 T/C 0.78 −0.48 (0.03) 9 × 10−83 5 MAPT WM, GM and WM, GM 17–24

17 73873656 rs1105917 T/C 0.15 0.23 (0.03) 8 × 10−15 4 TRIM47 GM, GM and WM *

18 53277143 rs763283047 CCT/C 0.66 0.12 (0.02) 4 × 10−8 18 LINC01415 WM *

19 31036276 19:31036276 A/AC 0.16 0.15 (0.03) 3 × 10−8 7 ZNF536 GM and WM *

19 45416178 rs483082 T/G 0.23 0.15 (0.02) 1 × 10−10 4 APOE GM and WM, WM 18

20 30336992 rs6060924 A/G 0.71 0.14 (0.02) 4 × 10−10 9 BCL2L1 GM 18

22 38457329 rs738442 T/C 0.38 −0.21 (0.02) 3 × 10−23 23 PICK1 WM, GM and WM 18,23,24

X 13891499 rs2188767 A/G 0.42 0.11 (0.02) 9 × 10−10 1|10 GEMIN8 GM, GM and WM *

X 107888149 X:107888149 CAA/C 0.74 −0.11 (0.02) 2 × 10−8 – – GM *

X 133781440 X:133781440 CTG/C 0.29 −0.11 (0.02) 2 × 10−8 41|60 – GM *

XY 2149565 rs34250447 T/C 0.74 −0.25 (0.02) 7 × 10−24 54 DHRSX WM, GM and WM, GM *

For each of the 59 discoveries across the 3 BAG traits, only the strongest variant–phenotype association is shown. The ‘Phenotype(s)’ column lists all BAG traits with significant locus associations, 
with the strongest listed first. For indels, the A1 and A2 alleles are truncated to three nucleotide bases. The Beta, s.e. and P values were derived from two-sided linear regression models using PLINK, 
and were meta-analyzed using inverse-variance weighting in METAL. Position indicates the base-pair position of the index variant. ID indicates the identifier of the index variant. A1 indicates the 
effect allele; A2 indicates the other allele. Credible indicates the number of variants in the 95% credible set identified using SBayesRC (susieR sets for X and XY; multiple signals are separated by 
pipe symbol ‘|’). Prioritized gene indicates the gene selected using our gene prioritization procedure. Phenotype(s) indicates traits with genome-wide significant associations at this locus (GM BAG, 
WM BAG and combined GM and WM BAG), with the trait with the strongest association mentioned first. Ref. indicates prior studies reporting this locus; * indicates new.

Table 2 (continued) | Identification of 59 genomic loci associated with BAG in n = 54,890 individuals
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hierarchical dependencies (Methods), we identified 25 significant GO 
terms (Supplementary Table 27). Analyses highlighted immune-related 
and pathogen-related processes in brain aging, with significant enrich-
ments for the major histocompatibility (MHC) protein complex 
(GO:0042611), peptide antigen binding (GO:0042605) and regulation 
of viral transcription (GO:0046782). Further significant terms, such 
as positive regulation of neurogenesis (GO:0050769) and regulation 
of axon extension (GO:0050769) align with the conceptualization of 
BAG as a neurodevelopmental marker. We also observed enrichment 
for small GTPase binding (GO:0031267l), a superfamily of evolutionary 
conserved proteins that act as biological timers of essential cellular 
processes73, including cell differentiation, proliferation and signal 
transduction74. Several small GTPase proteins are implicated in pre-
mature senescence75,76.

Genetic correlations with other complex traits
To assess a potential shared genetic architecture between BAG and 
other traits, we applied bivariate LDSC36,37 to GWAS summary statistics, 
calculating genetic correlations with 38 commonly studied mental 

and physical health traits (Supplementary Table 28)77–79, as well as 989 
heritable traits from a broader set of GWAS80.

Among the 38 selected traits, 17 showed significant corre-
lations (FDR < 0.05) with at least 1 BAG phenotype (Fig. 4a and 
Supplementary Table 29). GM BAG showed the highest number of 
associations (17) relative to WM (4) and combined GM and WM (11) BAG. 
Notable associations for GM BAG included substance use (cigarettes 
per day: rg = 0.134), neurological (stroke: rg = 0.217), psychological 
(well-being: rg = 0.100), cognition-related (educational attainment: 
rg = −0.083), anthropometric (body mass index (BMI): rg = 0.075) and 
cardiovascular and metabolic syndrome traits (DBP: rg = 0.115).

Similarly, for the 989 traits, we found 118, 7 and 48 significant 
associations (FDR < 0.05) for GM, WM and combined GM and WM BAG, 
respectively (Figs. 4b,c and Supplementary Table 30). BAG showed 
significant genetic correlations with parental longevity (mother’s age 
at death, rg = −0.214; father’s age at death, rg = −0.158), socioeconomic 
status (average total household income before tax, rg = −0.160), mental 
health (frequency of tiredness/lethargy in the last 2 weeks, rg = 0.122), 
medical conditions (vascular/heart problems diagnosed by doctor: 
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Fig. 4 | Genetic correlations between BAG and a wide range of complex 
traits. a, Genetic correlation matrix between BAG (columns) and 38 selected 
phenotypes from different health domains (rows). *P < 0.05 (nominal 
significance). **FDR < 0.05 (level of significance after correction for multiple 
testing). b, Volcano plot showing the magnitude (x axis) and significance (y axis) 

of LDSC-based genetic correlations between GM BAG and 989 traits, whose 
summary statistics were provided in ref. 80. The dashed horizontal line indicates 
the FDR-adjusted level of significance. All P values are two-sided. c, Forest plot 
showing the genetic correlation coefficients and standard errors for a subset of 
23 exemplary traits that showed significant genetic correlations with GM BAG.
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high blood pressure, rg = 0.122), cognitive function (snap game—mean 
time to correctly identify matches, rg = −0.069), respiratory traits 
(forced expiratory volume in 1 s (FEV1), best measure, rg = −0.128), 
blood markers (white blood cell (leukocyte) count, rg = 0.121) and early 
life exposures (maternal smoking around birth, rg = 0.099), among oth-
ers (Supplementary Table 30). These results suggest genetic overlap 
between BAG and a broad range of health-related traits.

Mendelian randomization analyses
We used two-sample generalized summary-data-based Mendelian 
randomization (GSMR)81 to investigate the potential causal effects of 
12 modifiable risk and resilience factors on BAG. These included BMI, 
waist–hip ratio adjusted for BMI, low-density lipoprotein cholesterol, 
high-density lipoprotein cholesterol, triglycerides, systolic blood pres-
sure (SBP), DBP, pulse pressure, type 2 diabetes, coronary artery dis-
ease, schizophrenia and years of education (Supplementary Table 31). 
Across all BAG traits, we found significant effects of DBP (combined 
BAG: βxz = 0.550, P = 6.9 × 10−10) and SBP (combined BAG: βxz = 0.382, 
P = 1.4 × 10−5), indicating that a one standard deviation increase in 
blood pressure causally contributes to an ~0.5-year increase in BAG 
(Supplementary Figs. 43–48 and Extended Data Fig. 7). We also 
observed significant effects of type 2 diabetes (combined BAG: 
βxz = 0.118, P = 5.6 × 10−4) and coronary artery disease (combined 
BAG: βxz = 0.114, P = 0.01)82. These findings were largely confirmed 
by nine alternative MR analyses, except for coronary artery disease 
(Supplementary Table 32).

Reverse GSMR analyses (Supplementary Table 33) indicated poten-
tial negative feedback effects of WM BAG on SBP, DBP and pulse pres-
sure (all βxz = −0.009, all P ≤ 3.2 × 10−3), which is consistent with lower 
blood pressure in late life and frailty83. Additionally, reverse GSMR 
analyses hinted at BAG effects on elevated low-density lipoprotein 
cholesterol and increased risk for coronary artery disease, although 
these were not supported by other MR methods.

Polygenicity and projection of discoveries to future GWAS
To quantify the BAG degree of polygenicity and estimate discovery 
potential in future GWAS, we used GENESIS84 to estimate the number of 
underlying susceptibility variants and their effect sizes. We also selected 
height and neuroticism as benchmark traits because of their distinct 
degrees of polygenicity84–87. The number of susceptibility variants was 
estimated at 8.7k (s.e. = 1.8k) for GM, 9.8k (s.e. = 1.3k) for WM and 11.0k 
(s.e. = 1.3k) for combined GM and WM BAG (Supplementary Table 34). 
For comparison, height showed 12.6k (s.e. = 1.3k) and neuroticism 16.2k 
(s.e. = 1.2k) susceptibility variants. Effect-size distributions (Fig. 5a) 
revealed that BAG includes a larger proportion of variants with stronger 

effects compared to neuroticism, but similar to height. Our projec-
tions also suggest rapid growth in the number of BAG discoveries with 
increasing sample size (Fig. 5b). Approximately 1 million individuals 
are needed to explain 80% of the SNP-based heritability for BAG via 
genome-wide significant variants (Fig. 5c), a threshold comparable 
to height but lower than for neuroticism (~6 million). These findings 
suggest that while BAG is genetically complex, its relatively lower poly-
genicity enhances discovery prospects in future studies.

Discussion
In this study, we leveraged genomic and neuroimaging methods to 
establish BAG as a promising biomarker of aging with potential utility 
for therapeutic discovery. Using machine learning and MRI, we derived 
highly reliable brain age estimates that capture aging-related structural 
patterns across the brain. BAG showed robust phenotypic associations 
with many health traits and was substantially heritable, with 23–29% of 
variance attributable to common genetic variation. We identified 59 
independent genome-wide significant loci, of which 39 are novel. The 
genomic signals unveiled enriched biological pathways, for example, 
immune-system-related processes and small GTPase binding, prompt-
ing further mechanistic exploration. Through genetic correlations, 
we demonstrated shared genetic influences between BAG and a broad 
spectrum of physical and mental health traits. Mendelian randomiza-
tion supported a causal role of elevated blood pressure and diabetes 
in accelerated brain aging. Finally, BAG showed a relatively low degree 
of polygenicity, which increases the likelihood of variant discovery in 
future studies.

Brain aging is not a uniform process; rather, it encompasses diverse 
aspects of structural and functional change. Studying distinct aspects 
of brain aging has been advocated to increase the yield of biologically 
meaningful insights18. In this study, we estimated separate BAG scores 
for GM and WM, alongside a composite measure. While all three showed 
similar age prediction accuracy and test–retest reliability, GM BAG 
exhibited stronger phenotypic and genetic associations, potentially 
reflecting a closer link to health-related outcomes. One explanation 
is that our volumetric approach to brain age estimation captures bio-
logically meaningful differences more effectively in GM—tied to den-
dritic complexity and synaptic density—than in WM, which depends 
on microstructural features less directly represented in bulk volume. 
As such, GM BAG may better reflect deviations from normative aging 
across diverse health domains.

While brain aging follows multiple biological trajectories, differ-
ential aging rates across systems underscore the need to conceptual-
ize bodily aging as a heterogeneous process6. Consistent with this, 
previous research showed weak correlations between biological age 
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Fig. 5 | Genetic effect-size distribution analysis of BAG. a, Results are shown for 
combined GM and WM BAG, with neuroticism and standing height included as 
reference traits; effect-size distributions of the underlying susceptibility variants 
are shown; wider tails indicate a greater proportion of large-effect variants.  

b, Predicted number of genome-wide significant loci as a function of sample size. 
c, Proportion of genetic variance explained by genome-wide significant loci as a 
function of sample size.
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measures derived from telomere length, epigenetic clocks, transcrip-
tomics and immunometabolic markers88. Similarly, in our previous 
work, we found modest correlations between brain age, epigenetic 
clocks, skin age, clinical biological age composites and subjective 
age89,90. Although combining multiple biomarkers may improve chron-
ological age prediction, it may also obscure biologically meaningful 
deviations at the domain level18. Recognizing this heterogeneity could 
help refine aging biomarker panels, and improve specificity and prog-
nostic value for disease risk.

Several GWAS of BAG have been conducted previously15,17–24; how-
ever, few have incorporated extensive post-GWAS analyses. Leverag-
ing increased statistical power, we present the most comprehensive 
genetic analysis of BAG to date, identifying 26, 34 and 39 loci across 
GM, WM and combined GM and WM BAG—59 in total, of which 39 are 
new. This surpasses the fewer than ten loci reported per phenotype in 
earlier studies. Expanding prior fine-mapping efforts22, we constructed 
credible sets of likely causal variants (median = 9 per locus) and devel-
oped PGS explaining 7–10% of BAG variance, up from 2% previously23. 
Additionally, we here report results in groups of non-European ances-
try, showing reduced yet significant polygenic predictions in AFR, 
CSA and EAS populations. We also identified new gene sets linked to 
neurodevelopment, immune function and signal transduction. Extend-
ing previous Mendelian randomization efforts21–24, we confirmed a 
causal role of diabetes in BAG and newly identified blood pressure as 
a risk factor. Moreover, we expanded genetic correlations15,21–24 and 
identified over 140 BAG associations across health domains. Finally, 
we introduced genetic effect-size distribution modeling, estimating 
~8,700–11,000 contributing variants and providing key projections 
for discovery potential in future studies.

In addition to these new insights, our study also reinforces pre-
viously reported genetic associations. We confirmed the inversion 
locus at 17q21.31 as the strongest genetic contributor to BAG17–24, with 
MAPT—a gene encoding the tau protein implicated in AD—prioritized 
as the most likely causal gene. We also identified the well-known AD 
risk gene APOE and other apolipoprotein genes. The presence of both 
tau-related and apolipoprotein-related signals suggests that key hall-
marks of AD are reflected in accelerated brain aging, reinforcing BAG’s 
relevance as a marker for neurodegenerative risk91.

Our findings suggest that BAG integrates signals from neurodevel-
opmental and neurodegenerative processes, lifestyle factors, vascular 
and metabolic health, and immune function. This supports the idea 
that BAG is not purely a neurodegenerative marker but reflects genetic 
susceptibility, systemic health and environmental exposures. This 
supports viewing BAG as composite indicator shaped by aging, disease 
susceptibility and lifestyle exposures.

By reporting both phenotypic and genetic correlations for BAG, 
our study allows a direct comparison between the two. We observed 
a positive relationship between genetic and phenotypic correlations 
(Extended Data Fig. 8), with correlation coefficients ranging from 0.39 
(WM BAG) to 0.51 (GM BAG). Although weaker than previously reported, 
probably because of the restricted range of correlation strengths in our 
dataset, the small mean absolute difference between genetic and phe-
notypic estimates suggests that phenotypic correlations approximate 
genetic ones and vice versa92,93.

A future research direction is to explore how model precision 
affects the genetic and phenotypic associations of BAG94. Improved age 
prediction accuracy may enhance heritability estimates and genetic 
signals, but it could also obscure meaningful deviations from nor-
mative aging. Future studies may investigate this balance to under-
stand the trade-off between predictive performance and biological 
interpretability.

The current study has several limitations. First, the gene prior-
itization techniques face challenges in pinpointing causal genes49, 
particularly in loci characterized by high gene density and com-
plex linkage structures. To streamline interpretation, we adopted 

a winner-takes-all approach, prioritizing a single candidate gene 
per locus. However, this may overlook other plausible genes with 
similarly high prioritization scores. Second, BAG was estimated 
from cross-sectional data, typically interpreted as accelerated or 
decelerated aging. However, an alternative view posits BAG as stable, 
early-emerging individual differences that persist into old age95. 
Third, although we used an ensemble of three machine learning 
models, expanding the number and diversity of models may further 
enhance prediction by leveraging complementary strengths. Fourth, 
polygenic overlap was assessed using genetic correlations, which do 
not capture shared variants with opposing effects. Future studies 
could apply tools such as MiXeR to quantify genetic overlap by con-
sidering mixtures of variant effects96. Fifth, polygenicity estimates 
probably underestimate the true number of contributing variants 
because models may classify those with very small effects as null. 
Finally, as our primary GWAS was based on individuals of European 
ancestry, PGS predicted less accurately in groups of non-European 
ancestry, limiting generalizability across ancestries. This reflects 
known transfer challenges due to differences in allele frequencies, 
LD and environmental context. Expanding genomic data and sample 
sizes in diverse populations will be essential to improve accuracy and 
broaden the applicability of brain age genetics.

In conclusion, our study refines the genetic architecture of BAG 
and its relationships to other traits. We added 39 new genetic loci and 
nominated plausible candidate genes, including DPF3, which is impli-
cated in neurodevelopment, and TNIK, which is linked to neuronal 
health and aging-related diseases. This will facilitate further work on 
the pathway mechanisms of BAG and potential therapy targets.

Methods
Ethical approval
This study used individual-level data from the UKB (www.ukbiobank.
ac.uk) and LIFE-Adult (www.uniklinikum-leipzig.de/einrichtungen/
life)26,29,30. Both studies were conducted in accordance with applicable 
ethical regulations and the principles of the Declaration of Helsinki 
(2008). The UKB received approval from the North West–Haydock 
Research Ethics Committee (ref. nos. 11/NW/0382, 16/NW/0274, 21/
NW/0157). LIFE-Adult was approved by the Ethics Committee of Leipzig 
University (ref. nos. 263–2009-14122009, 263/09-ff, 201/17-ek). All par-
ticipants provided written informed consent. LIFE-Adult participants 
received a fixed compensation of 20 EUR per visit. UKB participants 
could claim travel reimbursement.

Statistics and reproducibility
This study presents results from a GWAS alongside a broad set of 
post-GWAS analyses, including fine-mapping, polygenic scoring, 
genetic correlation and Mendelian randomization. To enhance trans-
parency and reproducibility, we have provided all analysis scripts, 
conda environments and software details in a public GitHub repository 
(https://github.com/pjawinski/ukb_brainage). Analyses were run on 
Debian GNU/Linux 11 (kernel 5.10.0-23-amd64). Unless stated otherwise, 
all P values are two-sided. Associations with P < 0.05 were considered 
nominally significant; Bonferroni correction and FDR control according 
to the Benjamini–Hochberg procedure were used to adjust for multiple 
testing. No formal power calculation was used to predetermine sample 
size. Instead, we included all eligible individuals from the UKB and 
LIFE-Adult who passed predefined quality control criteria.

Data exclusions were limited to prespecified quality control steps, 
described in detail elsewhere in the Methods. Analytical assumptions 
were addressed at each stage of the analysis. In cross-trait associa-
tion testing, regression models were automatically selected based on 
the type of variable, with continuous variables normalized to meet 
distributional assumptions. In the GWAS, standard variant-based and 
sample-based quality control was applied; LDSC confirmed that the test 
statistic inflation was driven by polygenicity rather than confounding. 
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This study was observational and nonexperimental; thus, participants 
were not randomly assigned and no blinding was applied. We report 
how our target samples were defined, all data exclusions, quality con-
trol procedures and all measures used in the study. A full list of UKB 
variables is provided in the UKB data dictionary (https://biobank.
ndph.ox.ac.uk/showcase/) and LIFE-Adult data portal (https://ldp.
life.uni-leipzig.de/).

Sample characteristics
Participants were drawn from the UKB under application no. 423032. A 
detailed description of the UKB study design and quality control meth-
ods has been published previously26. For our discovery sample, partici-
pants were drawn from the UKB January 2020 imaging release (v.1.7). 
These data contained 40,681 participants with structural T1-weighted 
MRI scans (UKB data-field 20252). Scans in folders labeled ‘unusable’ 
were excluded, leaving 39,679 participants. Voxel-based morphom-
etry preprocessing was successfully completed for 39,677 MRI scans 
(see the ‘MRI preprocessing’ section of the Methods). Analyses were 
restricted to participants whose self-reported sex matched the genetic 
sex (data-fields 31 and 2200), without sex chromosome aneuploidy 
(data-field 22019) and who were no outliers in heterozygosity and miss-
ingness (data-field 22027). We only included unrelated participants as 
suggested by pairwise kinship coefficients below 0.0442 (precalculated 
coefficients retrieved using ‘ukbgene rel’). We included participants 
of White British ancestry (data-field 22006), yielding a final discovery 
sample of 32,634 participants (17,084 female, age range = 45.2–81.9 
years, mean age = 64.3 years).

For replication, we selected all remaining individuals without 
White British ancestry from the UKB January 2020 release (n = 4,870). 
Applying the same inclusion criteria, we added European and 
non-European UKB participants with imaging data released until May 
2024 (v.1.10), yielding 25,668 individuals. None of them were related to 
the discovery participants. We included individuals with valid ancestry 
assignment from the Pan-ancestry return (no. 2442; https://pan.ukbb.
broadinstitute.org/). This resulted in 337 African, 94 Admixed Ameri-
can, 638 Central/South Asian, 291 East Asian, 20,423 European and 98 
Middle Eastern ancestry participants. In total, we included 21,881 UKB 
participants for replication (11,451 female, age range = 45.5–81.9 years, 
mean age = 67.1 years). From the LIFE-Adult study29,30, we included 
another 1,833 unrelated participants of European ancestry (888 female, 
age range = 45.2–80.3 years, mean age = 65.3 years) with available 
T1-weighted MRI and genotype data, selected to match the UKB age 
range97. Altogether, the final replication sample included 23,714 par-
ticipants (12,339 female, age range = 45.2–81.9 years, mean age = 67.0 
years) from 7 subsamples.

MRI data acquisition
The UKB imaging acquisition protocol and processing pipeline have 
been detailed previously (http://biobank.ctsu.ox.ac.uk/crystal/refer.
cgi?id=1977). Brain MRI data were acquired at four UKB imaging cent-
ers (Cheadle, Newcastle, Reading and Bristol) on Siemens Skyra 3T MRI 
scanners (Siemens Healthcare) running the VD13A SP4 software, with 
a standard 32-channel radiofrequency head coil. We used T1-weighted 
structural MRI scans (UKB data-field 20252) acquired using a 3D 
magnetization-prepared rapid gradient-echo (MPRAGE) sequence 
in the sagittal plane, with a voxel size of 1 × 1 × 1 mm, 208 × 256 × 256 
acquisition matrix, 2,000-ms repetition time (TR), 2.01-ms echo time 
(TE), 880-ms inversion time (TI), 6.1-ms echo spacing, 8 ° flip angle, 
a bandwidth of 240 Hz per pixel, an in-plane acceleration factor of  
R = 2 and duration of 4 min 54 s.

In LIFE-Adult, brain imaging was performed on a 3T Verio MRI 
scanner (Siemens Healthcare) with a standard 32-channel head coil. 
T1-weighted images were obtained using a 3D MPRAGE sequence 
with a voxel size of 1 × 1 × 1 mm, 256 × 240 × 176 acquisition matrix, 
TR = 2,300 ms, TE = 2.98 ms, TI = 900 ms and 9 ° flip angle.

MRI preprocessing
T1-weighted MRI scans in NIfTI format were preprocessed using the 
voxel-based morphometry pipeline of CAT12 (r1364, http://dbm.neuro.
uni-jena.de) for SPM12 (r7487) in MATLAB R2021a (MathWorks). CAT12 
preprocessing included affine and DARTEL registration to a reference 
brain, segmentation into GM, WM and cerebrospinal fluid, bias cor-
rection for intensity inhomogeneity and modulation to account for 
volume changes because of spatial registration. Images were then 
smoothed using an 8 × 8 × 8-mm full-width-at-half-maximum Gaussian 
kernel and resampled to a voxel size of 8 mm3. Only scans with a CAT12 
overall image quality rating of less than 3.0 were retained, excluding 
119 (~0.3%) of 39,677 scans from the UKB imaging release v.1.7, and 101 
(0.4%) of 23,000 additional scans from release v.1.10.

Feature set for machine learning
Machine learning features were derived from CAT12-preprocessed 
GM and WM segmentations. Each smoothed, resampled brain image 
included 16,128 voxels. Voxels without interindividual variation were 
excluded, yielding 5,416 GM and 5,123 WM voxels. Because of spatial cor-
relation across voxels, we applied principal component analysis (PCA) 
in MATLAB to reduce dimensionality. The first 500 principal compo-
nents—explaining ~90% of the total variance—were selected as features.

Machine learning algorithms
We implemented three complementary algorithms to model age from 
the brain imaging data: the sparse Bayesian RVM using the MATLAB 
toolbox SparseBayes v.2 with the wrapper and kernel in refs. 27,98, 
and extreme gradient boosting using XGBoost v.0.82.1 in R28, using 
both decision tree (gbtree) and linear (gblinear) boosters. These algo-
rithms were chosen for their demonstrated efficacy in previous brain 
age studies5,15,99,100. XGBoost was configured with a learning rate of 
η = 0.02, 5,000 training iterations, early stopping after 50 iterations 
without improvement and maximum tree depth of 3. Default settings 
were used for all other training parameters. To exploit their comple-
mentary strengths in handling high-dimensional data, modeling linear 
and nonlinear relationships, and regularization, we combined all three 
(RVM, XGBoost tree and XGBoost linear) in an ensemble.

Age estimation models and BAG calculation
Age estimation models were trained using PCA-derived brain imaging 
features to predict chronological age. Training and application were 
performed in the discovery sample using tenfold cross-prediction with 
100 repeats. This cross-prediction approach was chosen to maximize 
precision and avoid bias from external datasets with differing MRI pro-
tocols, similar to previous studies15,20–22. The discovery sample was split 
into ten equally sized subsets. In each iteration, nine subsets served for 
model training and one for testing. PCA was performed on the training 
data and the transformation parameters were applied to the test set. 
This procedure was cycled through all ten folds, so each subset served 
once as the test set. The entire tenfold cross-prediction procedure was 
repeated 100 times, generating 100 predictions for each individual. This 
process was run for each tissue type (GM and WM) and model type (RVM, 
XGBoost tree and XGBoost linear), yielding 600 brain-predicted age 
estimates per individual (2 tissues × 3 models × 100 repeats). A nested 
tenfold cross-prediction was used to stack model-type predictions into 
tissue-specific ensemble estimates for GM and WM. To derive estimates 
for combined GM and WM, we stacked tissue-specific predictions rather 
than training new models on combined inputs. This yielded 100 age 
estimates per tissue type (GM, WM, combined), which were averaged 
to obtain 1 final brain-predicted age estimate per tissue type. Model 
performance was evaluated using the product-moment correlation 
coefficient (r), the coefficient of determination (R2) and MAE100.

In the replication samples, age predictions were generated using 
all tenfold discovery models and compared to predictions from models 
trained on the full discovery sample. Results were highly concordant for 
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all three tissue types (r > 0.997; Supplementary Fig. 15). For improved 
practicability, subsequent replication analyses used models trained 
on the full discovery sample.

BAG was calculated as the difference between predicted brain age 
and chronological age as:

BAG = Âbrain − Achron

where BAG reflects the brain age gap estimate. Âbrain is the predicted 
(modeled) age based on an individual’s brain imaging data and Achron 
is the actual chronological age of the individual.

Because of regression dilution, BAG is typically confounded by 
age, with younger individuals showing higher and older individuals 
lower BAG values31. To correct this bias, we included both age and age2, 
alongside additional covariates (sex, scanner site, total intracranial 
volume, genotyping array, genetic principal components), in all asso-
ciation analyses31,32,100.

Cross-trait association analysis
We performed cross-trait association analyses using PHESANT v.1.1 
(ref. 33), an automated pipeline for phenome-wide association analyses 
in the UKB. Each BAG phenotype was tested against 7,088 nonimaging 
UKB variables. Covariates included sex (field 31), age (derived from 
fields 34, 52 and 53), age2, scanner site (field 54) and total intracranial 
volume (from CAT12 segmentation). PHESANT selected regression 
models (linear, logistic, ordinal logistic or multinomial logistic)  
based on the type of variable. Continuous variables were inverse- 
rank-normalized before linear regression. To obtain standardized effect 
sizes, we calculated product-moment correlations (r) via correspond-
ing z-statistics: r = sign (β)√z2/(z2 + (N − k − 2)). For visualization, vari-
ables were grouped into categories based on the UKB data dictionary 
path. We also performed sex-stratified analyses and tested sex differ-
ences by comparing PHESANT beta coefficients in males (βm) and 
females (βf): z = (βm − βf)/√(s.e.2m + s.e.2f ). The resulting z-values were 
converted into P values using standard normal probabilities.

FreeSurfer associations
To examine associations between BAG and individual brain regions, we 
analyzed brain measures from the FreeSurfer aparc and aseg output 
files (UKB data-field 20263)35, including surface area, cortical thickness 
and volume from 34 bilateral cortical and 8 bilateral subcortical regions 
(220 measures in total). We calculated partial product-moment corre-
lations between BAG and brain measures, adjusting for sex, age, age2, 
scanner site and total intracranial volume. Visualizations were created 
using the ENIGMA toolbox v.2.0.3 for MATLAB101. We also performed 
sex-stratified analyses and tested sex differences using Fisher’s r-to-z 
transformation with the cocor R package102. Associations between brain 
regions and chronological age are reported in Supplementary Table 3.

UKB genotyping and imputation
We retrieved genotype data (called: BED; imputed: BGEN v.3) from the 
UKB. Genotype collection, processing and quality control have been 
described previously26,103. Genotyping was performed on DNA from 
EDTA blood using 2 Affymetrix arrays with 95% marker overlap: the 
UKB BiLEVE Axiom Array (807,411 markers used in 49,950 participants) 
and the UKB Axiom Array (825,927 markers used in 438,427 partici-
pants). Marker-based quality control included a call rate greater than 
0.90, tests for batch, plate, array and sex effects, and Hardy–Weinberg 
equilibrium (P < 1.0 × 10−12). Sample-based quality control excluded 
individuals with a missingness greater than 0.05, high heterozygosity, 
sex discordance or sex chromosome aneuploidy. Relatedness was 
inferred using KING104. White British ancestry (data-field 22006) was 
defined via self-report and genetic principal components. Genotypes 
were phased using SHAPEIT3 and imputed using IMPUTE4 (https://
jmarchini.org/software/) with the Haplotype Reference Consortium, 

UK10K Project and 1000 Genomes Project Phase 3 serving as reference. 
Imputation yielded ~97 M markers. We selected biallelic SNPs and 
indels with MAF > 0.01 and INFO > 0.80. Biallelic variants were defined 
as those without duplicate coordinates or duplicate identifiers. This 
resulted in 9,669,330 variants for the discovery GWAS. In the replica-
tion samples, the number of variants passing quality control ranged 
between 8,345,339 (EAS ancestry) and 15,371,587 (AFR ancestry).

LIFE-Adult genotyping and imputation
Genotype collection, processing and quality control in LIFE-Adult have 
been described previously97. DNA from peripheral blood leukocytes 
was genotyped on the Axiom Genome-Wide CEU 1 Array (Applied 
Biosystems) (587,352 markers). Marker-based quality control removed 
variants with call rate lower than 0.97, Hardy–Weinberg equilibrium 
P < 1.0 × 10−6 or plate effects P < 1.0 × 10−7. Sample quality control 
excluded individuals with Dish QC < 0.82, missingness > 0.03, sex 
discordance or cryptic relatedness. Genotypes were phased using 
SHAPEIT and imputed with IMPUTE2 using the 1000 Genomes Project 
Phase 3 as reference. This yielded 85,063,807 markers in 7,776 indi-
viduals. Quality control after imputation (MAF > 0.01, INFO > 0.8) left 
9,472,504 biallelic SNPs or indels that also passed UKB quality control 
for inclusion in the meta-analysis.

Control for population structure
In the discovery sample, we calculated 20 genetic principal compo-
nents using the randomized PCA algorithm (--pca 20 approx) imple-
mented in PLINK v.2.00a2LM105, based on the same variants used by the 
UKB group (resource 1955; 146,988 markers passing our own quality 
checks). For the UKB replication samples, we used principal com-
ponents from the Pan-ancestry UKB project (return 2442), using 20 
components for the larger UKB European-ancestry sample and 4 for 
all other groups.

Heritability and partitioned heritability
Estimates of SNP-based heritability (h2

SNP) were derived by applying 
LDSC36,37 to our GWAS summary statistics, with precalculated LD scores 
and regression weights from the 1000 Genomes Project Phase 3. Analy-
ses were limited to HapMap3 variants with MAF > 0.01, excluding the 
MHC region. Partitioned heritability was assessed using stratified 
LDSC38 with baseline-LD model v.2.2. We tested the 33 main annota-
tions reported in ref. 106, considering annotations with an FDR < 0.05 
as significant.

Genome-wide association analysis
GWAS analyses were performed in PLINK v.2.00a2LM105 using allelic 
dosage data, including autosomal (chromosomes 1 and 22), gonosomal 
(chromosomes X and Y) and pseudoautosomal (chromosomes XY) 
variants. Dosage scales were 0–2 for diploid regions (chromosomes 
1–22, chromosomes XY), 0–1 for haploid chromosome Y and 0–2 for 
chromosome X. We modeled additive genetic effects and used sex, 
age, age2, total intracranial volume, scanner site, type of genotyp-
ing array and the first 20 genetic principal components as covariates  
(4 components for the LIFE-Adult and non-European-ancestry samples).

Genome-wide association meta-analysis
The European-ancestry GWAS results were meta-analyzed 
using fixed-effects inverse-variance-weighted models in METAL  
(v.2020-05-05)107. Variants with a sample size of less than 67% of the 
90th percentile (adapted from LDSC)37 or heterogeneity P < 1.0 × 10−6 
were excluded. The final GWAS meta-analysis in individuals of Euro-
pean ancestry included 9,628,877 variants for GM and WM BAG, and 
9,628,868 variants for the combined BAG, analyzed in up to 54,890 
individuals. Multi-ancestry meta-analyses were performed with 
MR-MEGA v.0.2 (ref. 108), including the White British discovery 
sample, six UKB replication samples (European, African, Admixed 
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American, Central/South Asian, East Asian, Middle Eastern ancestry) 
and the European-ancestry LIFE-Adult cohort. Ancestry effects were 
modeled using three axes of genetic variation derived from allele fre-
quency differences. For comparison, fixed-effects and random-effects 
meta-analyses were also conducted in GWAMA v.2.2.2 (ref. 109). The 
multi-ancestry GWAS results included 8,618,923 variants in up to 56,348 
individuals.

Identification of independent discoveries
We identified independent association signals using stepwise condi-
tional analyses in GCTA-COJO39. A 10,000-kb window size and collinear-
ity cutoff of 0.9 were applied. Multiple signals within a locus were only 
considered independent if the P value of the subsidiary signal did not 
increase by more than two orders of magnitude relative to its unad-
justed value. Variants reaching P < 5.0 × 10−8 in the conditional analysis 
were considered genome-wide significant; those with P < 1.0 × 10−6 
were deemed suggestive. We refer to lead variants from these signals 
as index variants. To identify nonredundant signals across the three 
BAG GWAS, all index variants were LD-clumped (r2 < 0.1, window size 
= 10,000 kb) using PLINK v.1.90b6.8.105.

Definition of variant replication and power calculations
From the discovery GWAS, we selected index variants from genome- 
wide significant loci (conditional P < 5.0 × 10−8) and 45 additional sug-
gestive loci (conditional P values between 1.0 × 10−6 and 5.0 × 10−8) for 
replication. Consistency between discovery and replication was tested 
using sign tests (binomial), based on the agreement in effect direction. 
Variants with a replication P < 0.05 (one-tailed nominal significance) 
were considered replicated. To estimate the expected replication yield, 
we performed power calculations based on standardized discovery 
betas, MAF and replication sample size110. Beta coefficients were cor-
rected for winner’s curse111. Expected replications were computed as 
the sum of individual variant-level power estimates.

Novelty of the discovered loci
To assess novelty, we compared our findings against nine prior 
BAG GWAS reporting genome-wide significant loci15,17–24. Using 
PLINK v.1.90b6, we clumped variants based on LD (R2 > 0.1, window 
size = 10,000 kb)105 and defined loci as novel if they did not cluster 
with previously reported variants. Parameter choices were guided by 
GCTA-COJO39 and Psychiatric Genomics Consortium studies79,112. Of the 
59 loci identified, 39 were classified as novel, a result consistent across 
clumping thresholds (R2 of 0.10 or 0.05) and window sizes (10,000 kb 
or 3,000 kb).

ANNOVAR enrichment test
We used the ANNOVAR (v.2017-07-17)44 enrichment test implemented 
in FUMA v.1.6.0 (https://fuma.ctglab.nl/)113 to evaluate whether 
genome-wide significant regions were enriched for specific functional 
annotations. All candidate variants in LD (R2 > 0.6) with independent 
significant autosomal variants (P < 5.0 × 10−8) were included. Candi-
date variants were defined as those with P < 0.05 and R2 > 0.60 with an 
independent significant variant. UKB release 2 served as the LD refer-
ence panel. If a variant had multiple annotations, each was counted 
separately. Enrichment was computed as the proportion of candidate 
variants with a given annotation relative to the proportion of variants 
with that annotation among all variants in the reference panel. Signifi-
cance was tested using a two-tailed Fisher’s exact test.

Credible sets of variants
We used SBayesRC, a Bayesian mixture model implemented in GCTB 
v.2.5.2 (refs. 40,41), to construct 95% credible sets of variants per locus, 
capturing the cumulative posterior probability of including a causal 
variant. Unlike region-specific fine-mapping approaches, such as 
susieR42 and FINEMAP43, SBayesRC jointly models multiple genomic 

regions alongside functional annotations. We used SBayesRC with the 
eigendecomposition data of LD matrices from our discovery dataset of 
32,634 individuals (~9.7 M imputed SNPs), and functional annotations 
from the stratified LDSC baseline-LF UKB model (v.2.2)114. We used 
default settings with five mixture components (scaling factors of 0, 
0.001, 0.01, 0.1 and 1%). Credible sets were assigned to a discovered 
locus if they contained at least 1 genome-wide significant credible vari-
ant in strong LD (R2 > 0.8) within 3,000 kb from the index variant. We 
report sets with PIP > 0.95 and posterior enrichment probability > 0.50. 
For comparison, we also applied susieR v.0.12.35 (ref. 42) and FINEMAP 
v.1.4.2 (ref. 43). For each locus, a 10,000-kb window was used to identify 
the outermost variants in LD (R2 > 0.1), defining region boundaries. 
LD matrices were computed using LDstore v.2.0 (ref. 115) in 53,074 
individuals of European ancestry from the combined discovery and 
UKB replication sample. For FINEMAP, we allowed up to k = 10 causal 
variants per region, reporting 95% credible sets for the most probable 
k model. For susieR, we allowed up to L = 10 causal signals per region, 
reporting 95% credible sets with minimum purity greater than 0.5.

Functional annotation of variants
Variants were annotated using ANNOVAR44, which assigns functional 
categories based on physical position relative to genes. RefSeq gene 
annotations (hg19) were retrieved from the UCSC Genome Browser 
(https://genome.ucsc.edu/)116. The nearest gene was identified using 
ANNOVAR’s default prioritization of variant function and genomic 
distance. The transcript consequences of nonsynonymous exonic vari-
ants were predicted; deleteriousness scores from CADD were obtained 
from dbnsfp35a (hg19)45,117.

Gene nomination through functional annotation  
of credible variants
Credible variants were annotated using ANNOVAR44, and variant pos-
terior probabilities were aggregated per gene implicated. Genes were 
then ranked according to their total variant posterior probabilities 
and nominated for gene prioritization. Additionally, genes implicated 
by nonsynonymous exonic variants were ranked based on the highest 
CADD Phred-scaled score among those variants.

Gene nomination through SMR
We applied summary-data-based Mendelian randomization imple-
mented in SMR v.1.03 (refs. 47,48) to test whether variant effects were 
potentially mediated by gene expression or splicing. SMR integrates 
GWAS summary statistics with omics data to prioritize gene targets 
and regulatory elements. It adopts the Mendelian randomization 
strategy by using a single genetic instrument (z) to test for pleiotropic 
association between gene regulation (exposure, x) and a trait of interest 
(outcome, y). The effect of gene regulation on a trait (βxy) is calculated 
as a two-step least squares estimate and defined as the ratio of the 
instrument’s effect on the outcome (βzy) to its effect on the exposure 
(βzx), that is, βxy = βzy/βyz. To distinguish pleiotropy from linkage, SMR 
incorporates the HEterogeneity In Dependent Instruments (HEIDI) 
test, which leverages multiple instruments in the regulatory region. 
We used cis-eQTL (gene expression) and cis-sQTL (gene splicing) sum-
mary statistics from BrainMeta v.2, derived from RNA-seq data of 
2,865 brain cortex samples from 2,443 individuals of European ances-
try48. Our GWAS variants were mapped to 16,375 eQTL and 58,941 sQTL 
probes. We retained results with an FDR < 0.05, PHEIDI > 0.01 and those 
mapping to genome-wide-significant GWAS loci. Significant SMR 
hits were assigned to index variants using PLINK clumping (window 
size = 3,000 kb; R2 > 0.80). Genes implicated by eQTL and sQTL SMR 
were nominated separately and ranked using the SMR P value.

Gene nomination through GTEx eQTL lookup
Index variants and their genome-wide significant neighbors in strong 
LD (R2 > 0.8) were mapped to cis-QTLs from the GTEx v.8 database46. 
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Single-tissue QTLs were retrieved from the prefiltered file (GTEx_Analy-
sis_v8_eQTL.tar), covering 49 tissues. Multi-tissue QTLs were obtained 
from the METASOFT results (GTEx_Analysis_v8.metasoft.txt.gz), retain-
ing variant–gene associations available in 10 or more tissues and with 
an m value equal to or greater than 0.9 (that is, the posterior probability 
that the effect exists) in 50% or more of tissues. To ensure robustness, 
only associations with meta-analytical P < 5.0 × 10−8 (Han and Eskin’s 
random-effects (RE2) model) were considered, yielding 4,420,841 
multi-tissue QTLs. Variant mapping was done using the GTEx hg19 
liftover variant IDs. If multiple variants implicated the same gene within 
a locus, we reported the variant in strongest LD with the index variant. 
Ensembl gene IDs were converted to HUGO Gene Nomenclature Com-
mittee symbols using biomaRt118. Genes implicated by single-tissue 
and multi-tissue QTLs were nominated separately for prioritization 
and ranked according to the number of significant tissue associations.

Gene nomination through polygenic priority scores
We used PoPS v.0.2 (ref. 49) to identify likely causal genes within signifi-
cant GWAS loci. PoPS builds on MAGMA119 gene-level associations and 
leverages subthreshold polygenic signals, integrating more than 57,000 
features from sources such as single-cell RNA-seq datasets, curated bio-
logical pathways and protein–protein interaction networks. We used the 
same PoPS feature map and MAGMA gene annotation file as in the origi-
nal publication (www.finucanelab.org/data)49. MAGMA v.1.10 was applied 
to our GWAS summary statistics using SNP-wise mean gene analysis, 
with LD data from 53,057 individuals of European ancestry (combined 
discovery and UKB replication sample). For each index variant identified 
through the conditional analyses, up to 3 genes within 500 kb with the 
highest PoPS scores were nominated for gene prioritization.

Gene prioritization
Genes were prioritized based on seven evidence streams: (1) ANNOVAR 
functional annotation of credible variants, summing the posterior 
probabilities per gene; (2) transcript consequences of nonsynonymous 
exonic variants, ranked according to CADD score; (3) SMR eQTLs ranked 
according to P value; (4) sQTLs ranked according to P value; (5) GTEx 
single-tissue eQTLs; and (6) multi-tissue eQTLs, ranked according to 
the number of significant associations across tissues; and (7) PoPS 
ranked according to prioritization score. A composite priority score 
was calculated for each nominated gene as described below.

Let i denote a gene and j denote the index of the nomination cat-
egory. The priority score (Pi) for gene i combines the cumulative pos-
terior probability (Ci) from variant annotations and the gene’s rank (Rij) 
across six additional evidence categories ( j ∈ [1,6]) as

Pi = Ci +
6
∑
j=1

2 (nj + 1 − Rij)
nj (nj + 1)

where Pi denotes the priority score for gene i, Ci denotes the cumula-
tive posterior probability of variants mapped to gene i, nj denotes the 
number of genes ranked in nomination category j and Rij denotes the 
rank of gene i in nomination category j.This formulation assigns greater 
weight to top-ranked genes and ensures that each category contributes 
equally (one point per category). The gene with the highest Pi per locus 
was designated the prioritized gene.

GWAS Catalog search
We queried the National Human Genome Research Institute GWAS 
Catalog (13 September 2024 release; gwas_catalog_v1.0-associations_
e112_r2024-09-13.tsv)52 for all index variants identified using condi-
tional analysis and their genome-wide significant neighbors in strong 
LD (3,000-kb window, R2 > 0.8). Neighboring variants were identified 
through P-value-informed clumping in PLINK v.1.90b6.8 (ref. 105). 
Only GWAS Catalog entries reaching genome-wide significance were 
retained.

Gene-based analysis
We performed gene-based analyses using fastBAT in GCTA v.1.93.1f70. 
Gene coordinates were obtained from the RefSeq GFF3 annotation file 
(GRCh37.p13; release 105.20201022)120. NCBI chromosome names were 
converted to UCSC format. We selected protein-coding genes located 
on chromosomes 1–22, X and Y, removing duplicates gene names, by 
keeping the first entry sorted according to chromosome, symbol and 
coordinates. This yielded 19,299 genes, of which 18,632 were success-
fully mapped to GWAS variants. Analyses used linkage data from the 
combined UKB discovery and replication sample (n = 53,057, European 
ancestry), applying no flanking window to reduce gene-level depend-
ency. Genes with an FDR < 0.05 were considered significant. To identify 
independent associations, we applied P-value-informed clumping with 
a 3,000-kb window size. Distinct associations across the 3 BAG traits 
were determined with second-level clumping, using each gene’s top  
P value, again with a 3,000-kb window size.

Pathway analyses
We conducted GO pathway analyses using the R package GOfuncR 
v.1.14.0, based on the GO.db v.3.14.0 and Homo.sapiens v.1.3.1 
annotations71,121,122. GO provides a curated framework to categorize 
genes based their molecular function, cellular components where 
they perform actions and the higher-order biological processes they 
contribute to. Gene set enrichment analyses were performed on the 
full fastBAT gene-based results, testing for lower-than-expected  
P value ranks using the Wilcoxon rank-sum test. By default, GOfuncR 
calculates family-wise error rates (FWERs) in each of the three GO 
aspects using random permutations. To reduce false discoveries, 
we joined these permutation-based results to calculate FWERs 
across the three GO aspects. We further refined significant results 
(FWER < 0.05) by applying the elim algorithm to decorrelate over-
lapping terms and retain the most specific123. For interpretation, we 
also determined the number of distinct loci contributing to each 
enriched term, applying 3,000 kb clumping to account for spatial 
gene clustering.

PGS analysis
To estimate the variance in BAG explained by PGS, we used a conventional 
clumping and P thresholding (C + P) approach implemented in PRSice-2 
v.2.3.3 (ref. 124) along with two Bayesian polygenic prediction methods, 
SBayesR and SBayesRC, implemented in GCTB v.2.5.2 (ref. 40). For the 
C + P approach, we used R2 > 0.1, a 500-kb window size and 10 predefined 
P value thresholds79,112. Unlike the C + P approach, SBayesR and SBayesRC 
jointly model all variant effects, with SBayesRC additionally incorporat-
ing functional annotations. SBayesR/RC were used with eigendecom-
posed LD matrices (~7 M variants), and stratified LDSC baseline-LD 
v.2.2 annotations. Missing variants were imputed. Default settings were 
used (--gamma 0,0.001,0.01,0.1,1 --pi 0.99,0.005,0.003,0.001,0.001 
--chain-length 3,000 --burn-in 1,000). The resulting weights were applied 
to calculate the PGS in target samples using PLINK (--score)105.

PGS weights derived from the discovery sample (n = 32,634) 
were tested in the European-ancestry replication sample (n = 20,423). 
To estimate PGS performance in the combined discovery and repli-
cation sample, we reran the GWAS meta-analysis excluding 2,000 
individuals of European ancestry held out as a target set (total train-
ing n = 52,890). Transferability was assessed in AFR (n = 337), CSA 
(n = 638) and EAS (n = 291) UKB subsamples. Associations between 
PGS and BAG were evaluated using partial product-moment cor-
relations, adjusting for sex, age, age2, scanner site, total intracranial 
volume, genotyping array and 20 genetic principal components (4 for  
non-European samples).

Genetic correlations
We used bivariate LDSC (v.1.0.1)36 to compute pairwise genetic corre-
lations among BAG traits and between BAG and other complex traits. 
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These included 38 commonly studied traits spanning the mental and 
physical health domains77–79 (Supplementary Table 28), as well as 989 
heritable UKB traits with publicly available GWAS summary statis-
tics80. Analyses were restricted to HapMap3 variants, excluding the 
MHC region. Genetic correlations with an FDR < 0.05 were considered 
significant.

Mendelian randomization
Potential causal associations were examined using GSMR implemented 
in GCTA v.1.93.1f81. GSMR uses multiple genetic variants (here clumped 
with an R2 < 0.001 and a 10,000-kb window) as instruments (z) to test 
for causality between an exposure (x) and outcome variable (y), using 
the ratio βxy = βzy/βzx. Designed for two-sample scenarios, GSMR esti-
mates the exposure–outcome effects using GWAS summary statistics 
from independent samples. Estimates from multiple instruments are 
integrated using generalized least squares. Instrument heterogeneity 
is assessed via HEIDI (P < 0.01), removing outliers deviating from the 
causal model. To facilitate effect-size comparisons, we standardized 
instrument effects on continuous exposures (βzx) based on z-statistic, 
allele frequency and sample size. GSMR has been demonstrated with 
superior power to inverse-variance-weighted MR and MR Egger regres-
sion81. We used GSMR as the primary method for inferring causality and 
conducted sensitivity analyses using nine alternative MR approaches: 
inverse-variance-weighted MR (simple, debiased and penalized); 
MR Egger regression; weighted median-base; maximum-likelihood; 
mode-based; MR lasso; and contamination-mixture MR, implemented 
in MendelianRandomization v.0.10.0 (ref. 125). These methods used 
the same variants as GSMR but without HEIDI-based outlier removal. 
Twelve risk factors were selected based on the availability of large-scale 
GWAS, not including UKB individuals79,81. Both forward and reverse MR 
were performed to assess any potential bidirectional effects between risk  
factors and BAG.

Polygenicity
We used GENESIS v.1.0 (commit e4e6894) to infer genetic effect-size 
distributions and estimate the number of susceptibility variants under-
lying BAG under a normal-mixture model of variant effects84. Analyses 
included 1.07 million HapMap3 variants with MAF > 0.05, excluding the 
MHC region, SNPs with a sample size of less than 0.67 × 90th percentile 
and those with extreme effect sizes (z2 > 80). We fitted the GENESIS 
three-component model, which assumes that 99% of variant effects are 
null, while the remaining 1% follow a mixture of 2 normal distributions, 
allowing a subset of susceptibility variants to exhibit larger effects. We 
chose the three-component model over the simpler two-component 
model because it provides better fits across diverse traits, is robust 
to model misspecification and reduces downward bias in polygenic-
ity estimates84. Default settings were used for defining tagging SNPs 
(R2 > 0.1 and 1,000-kb window). Neuroticism and height served as 
benchmark traits for comparison86,87.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The individual-level data used in this study were obtained from the 
UKB and LIFE-Adult study. Access to these datasets is restricted to 
researchers with approved projects. The GWAS summary statistics and 
polygenic score weights generated from our analyses are available via 
Zenodo at https://doi.org/10.5281/zenodo.14826943 (ref. 126). Genetic 
correlation analyses involving UKB traits were conducted using the 
GWAS summary statistics provided in ref. 80 (https://doi.org/10.5281/
zenodo.7186871). Additional GWAS summary statistics used for genetic 
correlation and Mendelian randomization analyses are detailed in 
Supplementary Tables 28 and 31.

Code availability
All scripts, conda environments and a complete list of software and 
resources used in this study are available via GitHub at https://github.
com/pjawinski/ukb_brainage.
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Extended Data Fig. 1 | Accuracy and reliability of brain age estimation 
models across tissue classes and samples. (a) grey matter, (b) white matter, 
and (c) combined grey and white matter age estimation models. Blue dots in 
the first three plots (from left to right) show brain-predicted age estimates 
plotted against the chronological age in the UKB discovery sample (n = 32,634; 
white-British ancestry), UKB replication sample (n = 21,881; multi-ancestry), 
and LIFE-Adult replication sample (n = 1,833; European ancestry). To facilitate 
comparisons, results of the UKB discovery sample are also shown as grey dots 
in the background of the LIFE replication plots. At this stage, brain-predicted 
age estimates have not yet been bias-corrected for regression dilution, that is, 

younger participants’ ages are systematically overestimated and vice versa, as 
indicated by the linear regression line (solid) crossing the identity line (dashed). 
The fourth plot shows the test-retest reliabilities of brain age gap (i.e., the 
difference between brain-predicted and chronological age) in a subset of the  
UKB discovery (grey dots, n = 3,751) and UKB replication sample (blue dots,  
n = 395). For test-retest comparisons, brain age gap was residualized for effects 
of age, age2, sex, scanner site, and total intracranial volume. MAE: mean absolute 
error; rho: product-moment correlation coefficient. ICC: intraclass correlation 
coefficient (C, 1).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Cross-trait associations between brain age gap and 
other UK Biobank phenotypes. Each dot represents an association between 
brain age gap and one of 7,088 non-imaging derived phenotypes in the UKB 
discovery sample (n = 32,634). P values (-log10 scale) are shown on the y-axis, 
with phenotypes on the x-axis categorized by their UK Biobank data dictionary 
path. Analyses were conducted using PHESANT, which applies data-type-specific 

regression models (linear, logistic, ordered logistic, or multinomial logistic 
regression). All models included sex, age, age2, scanner site, and total intracranial 
volume as covariates. Horizontal lines indicate the Bonferroni-adjusted (solid) 
and FDR-adjusted (dashed) level of significance (two-sided). The top associations 
in each category are annotated. (a) GM BAG, (b) WM BAG, (c) combined BAG.
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Extended Data Fig. 3 | Results of the multi-ancestry GWAS meta-regression 
for brain age gap. Manhattan plots (a-c) and quantile-quantile (QQ) plots (d-f) 
show the results of the multi-ancestry meta-regression (MR-MEGA) for the three 
brain age gap traits (up to N = 56,348). Multi-ancestry analyses combine results 
from the discovery sample (n = 32,634) and up to seven replication samples: 
UKB African ancestry (n = 337), UKB Admixed American ancestry (n = 94); UKB 
Central/South Asian ancestry (n = 638), UKB East Asian ancestry (n = 291), UKB 
European ancestry (n = 20,423), UKB Middle Eastern ancestry (n = 98), and LIFE-
Adult (European ancestry; n = 1,833). Manhattan plots show the P values (-log10 
scale) of the tested genetic variants on the y-axis and base-pair positions along 
the chromosomes on the x-axis. P values were derived from two-sided linear 

regression models using PLINK, followed by meta-regression using MR-MEGA. 
The solid horizontal line indicates the threshold of genome-wide significance 
(p = 5.0e-08, two-sided, accounting for multiple testing). Pseudoautosomal 
variations have been added to chromosome ‘X’. Index variants are highlighted by 
diamonds and were identified by positional clumping with 3,000 kb window-
size (no LD threshold was applied in multi-ancestry analyses). Quantile-quantile 
plots show the observed P values from the association analysis vs. the expected 
P values under the null hypothesis of no effect (-log10 scale). For illustrative 
reasons, the y-axis has been truncated at p = 1.0e-40. a,d grey matter brain age 
gap (Manhattan and QQ); b,e white matter brain age gap (Manhattan and QQ);  
c,f combined brain age gap (Manhattan and QQ).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Functional partitioning of heritability for brain age  
gap. Enrichment of heritability (h2) across functional genomic categories for  
(a) grey matter brain age gap, (b) white matter brain age gap, (c) combined brain 
age gap. Results are based on GWAS meta-analyses in individuals of European 
ancestry (n = 54,890). Heritability enrichment is defined as the proportion of 
h2 attributable to a given category divided by the proportion of SNPs in that 
category. Error bars represent jackknife standard errors around the estimates 

of enrichment. Please note that significance is tested based on the covariance 
matrix for the tau coefficient estimates (adjusted for all other baseline 
categories), which may differ from interpretations based solely on jackknife 
SEs. Functional categories are ordered by the proportion of SNPs they contain 
(x-axis), with percentages shown at tick marks. Categories with significant 
enrichment are marked by red diamonds.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Heritability enrichment in genes specifically expressed 
in selected tissue groups. SNP-based heritability (h2) enrichment across 
genomic regions near genes with specific expression in various tissue types, for 
(a) grey matter brain age gap, (b) white matter brain age gap, (c) combined brain 
age gap. Results are based on GWAS meta-analyses in individuals of European 
ancestry (n = 54,890). Heritability enrichment is defined as the proportion of 
h2 attributable to a given category divided by the proportion of SNPs in that 

category. Error bars represent jackknife standard errors around the estimates 
of enrichment. Please note that significance is tested based on the covariance 
matrix for the tau coefficient estimates (adjusted for all other baseline 
categories), which may differ from interpretations based solely on jackknife 
SEs. Functional categories are ordered by the proportion of SNPs they contain 
(x-axis), with percentages shown at tick marks. Categories with significant 
enrichment are marked by red diamonds.
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Extended Data Fig. 6 | Gene-based association results for brain age gap traits. 
Manhattan plots (a-c) and quantile-quantile (QQ) plots (d-f) showing the results of 
the gene-based association analyses for the three brain age gap traits (n = 54,890 
individuals of European ancestry). Manhattan plots display the P values  
(-log10 scale) of the tested genes on the y-axis and base-pair positions (gene start 
coordinates) along the chromosomes on the x-axis. In total, 18,639 protein-coding 
genes (RefSeq assembly GRCh37.p13, 09-05-2019) have been included. The solid 
horizontal line reflects the Bonferroni-corrected level of significance. The dashed 
horizontal line reflects the FDR-corrected level of significance. Diamonds and 

circles highlight the index gene in each genomic locus (diamonds: Bonferroni-
significant index gene; red diamonds: Bonferroni-significant index gene exceeding 
the y-axis limit; circles: FDR-significant index gene). Genes within 3,000 kb of each 
other are considered to belong to the same locus and share the same index gene. 
Quantile-quantile plots show the observed P values from the association analysis 
vs. the expected P values under the null hypothesis of no effect (-log10 scale). For 
illustrative reasons, the y-axis has been truncated at p = 1.0e-40. a,d grey matter 
brain age gap (Manhattan and QQ); b,e white matter brain age gap (Manhattan and 
QQ); c,f combined brain age gap (Manhattan and QQ).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Mendelian randomization analyses linking modifiable 
risk factors to brain age gap. Results of the generalized summary-data-based 
Mendelian randomization (GSMR) results for 12 risk factors (exposures) and 
combined brain age gap (outcome). Each plot shows multiple genetic variants 
serving as instruments to test for causality between the exposure and outcome 
variable. Under a causal model, variant effects on the outcome (bzy; y-axis) are 

expected to be linearly proportional to the variant effects on the exposure 
variable (bzx; x-axis). The ratio between bzy and bzx provides an estimate of 
the mediation effect of x on y (bxy). Variants flagged for potential horizontal 
pleiotropy were excluded using the HEIDI-outlier method. s.e. standard error of 
the mediation effect; pxy P value of the mediation effect.
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Extended Data Fig. 8 | Relationship between genetic and phenotypic 
correlations of brain age gap with other complex traits. This figure compares 
genetic and phenotypic correlation coefficients between brain age gap and 
673 other complex traits. Genetic correlations were estimated using GWAS 
meta-analysis summary statistics for BAG (n = 54,890, European ancestry), while 
phenotypic correlations were calculated in the UK Biobank discovery sample 

(n = 32,634, European ancestry) using PHESANT. Summary statistics for other UK 
Biobank traits were obtained from Neale et al. (10.5281/zenodo.7186871). Results 
indicate a positive association between genetic and phenotypic correlation 
estimates. r: product-moment correlation coefficient, p: P value, MAD: mean 
absolute difference. (a) grey matter brain age gap, (b) white matter brain age gap, 
(c) combined brain age gap.
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