Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Computational electrochemistry of oxygen 250 years after Priestley

Since the first isolation of oxygen, chemists have explored oxygen reduction and evolution reactions. Now, computational chemists are trying to understand and predict the best catalysts for them. Here, the importance of various considerations for such calculations, as well as their challenges and opportunities, are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) in acidic and alkaline electrolytes and typical catalysts employed.

References

  1. Nørskov, J. K. et al. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  2. Zhang, J., Yang, H. B., Zhou, D. & Liu, B. Chem. Rev. 122, 17028–17072 (2022).

    Article  Google Scholar 

  3. Ringe, S., Hörmann, N. G., Oberhofer, H. & Reuter, K. Chem. Rev. 122, 10777–10820 (2022).

    Article  Google Scholar 

  4. Sun, Y. et al. ACS Appl. Mater. Interfaces 12, 763–770 (2020).

    Article  Google Scholar 

  5. Zhong, J., Reinhardt, C. R. & Hammes-Schiffer, S. J. Am. Chem. Soc. 144, 7208–7214 (2022).

    Article  Google Scholar 

  6. Xu, P. et al. Nat. Mater. 22, 503–510 (2023).

    Article  Google Scholar 

  7. Luo, Y., Zhang, Z., Chhowalla, M. & Liu, B. Adv. Mater. 34, 2108133 (2021).

    Article  Google Scholar 

  8. Zhang, D. et al. Chem. Sci. 15, 5123–5132 (2024).

    Article  Google Scholar 

  9. Xu, W., Diesen, E., He, T., Reuter, K. & Margraf, J. T. J. Am. Chem. Soc. 146, 7698–7707 (2024).

    Article  Google Scholar 

  10. Mints, V. A., Svane, K. L., Rossmeisl, J. & Arenz, M. ACS Catal. 14, 6936–6944 (2024).

    Article  Google Scholar 

  11. Zeng, Y. et al. Nat. Catal. 6, 1215–1227 (2023).

    Article  Google Scholar 

  12. Chen, T. et al. J. Am. Chem. Soc. 146, 1174–1184 (2024).

    Article  Google Scholar 

  13. Minamihara, H. et al. J. Am. Chem. Soc. 145, 17136–17142 (2023).

    Article  Google Scholar 

  14. Xie, H. et al. Nat. Energy 7, 281–289 (2022).

    Article  Google Scholar 

  15. Gavini, V. et al. Model. Simul. Mater. Sci. Eng. 31, 063301 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Science Foundation (award no. CHE-2245564). The author would like to thank Y. Sun and Y. Shao for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-en Jiang.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, De. Computational electrochemistry of oxygen 250 years after Priestley. Nat Comput Sci 4, 462–464 (2024). https://doi.org/10.1038/s43588-024-00664-x

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43588-024-00664-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing