Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Balancing autonomy and expertise in autonomous synthesis laboratories

Autonomous synthesis laboratories promise to streamline the plan–make–measure–analyze iteration loop. Here, we comment on the barriers in the field, the promise of a human on-the-loop approach, and strategies for optimizing accessibility, accuracy, and efficiency of autonomous laboratories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic demonstration of a ‘human-on-the-loop’ strategy in autonomous synthesis laboratories where flexible robots, specialized AI, and human experts interact synergistically.

References

  1. Wang, H. et al. Nature 620, 47–60 (2023).

    Article  Google Scholar 

  2. Szymanski, N. J. et al. Nature 624, 86–91 (2023).

    Article  Google Scholar 

  3. Szymanski, N. J. et al. Mater. Horiz. 8, 2169–2198 (2021).

    Article  Google Scholar 

  4. McCalla, E. ACS Eng. Au 3, 391–402 (2023).

    Article  Google Scholar 

  5. MacLeod, B. P., Parlane, F. G. L., Brown, A. K., Hein, J. E. & Berlinguette, C. P. Nat. Mater. 21, 722–726 (2022).

    Article  Google Scholar 

  6. Fei, Y. X. et al. Digit. Discov. 3, 2275–2288 (2024).

    Article  Google Scholar 

  7. Sim, M. et al. Matter 7, 2959–2977 (2024).

    Article  Google Scholar 

  8. Sun, W., Nasraoui, O. & Shafto, P. PLoS One 15, e0235502 (2020).

    Article  Google Scholar 

  9. Kononova, O. et al. Sci. Data 6, 203 (2019).

    Article  Google Scholar 

  10. Raccuglia, P. et al. Nature 533, 73–76 (2016).

    Article  Google Scholar 

  11. Szymanski, N. J. et al. npj Comput. Mater. 9, 31 (2023).

    Article  Google Scholar 

  12. Wang, L., He, T. & Ouyang, B. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2024-fmq8p (2024).

  13. Deng, B. W. et al. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Article  Google Scholar 

  14. Wang, L. & Ouyang, B. Adv. Mater. 36, e2307860 (2024).

    Article  Google Scholar 

  15. Davies, A. et al. Nature 600, 70–74 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the startup fundings for Y.Z. and B.O., respectively, from Florida State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Ouyang or Yan Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Ouyang, B. & Zeng, Y. Balancing autonomy and expertise in autonomous synthesis laboratories. Nat Comput Sci 5, 92–94 (2025). https://doi.org/10.1038/s43588-025-00769-x

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43588-025-00769-x

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics