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Benchmarking the performance of quantum 
computing software for quantum circuit 
creation, manipulation and compilation
 

Paul D. Nation    1  , Abdullah Ash Saki1, Sebastian Brandhofer2, 
Luciano Bello    3, Shelly Garion4, Matthew Treinish    1 & Ali Javadi-Abhari1

We present Benchpress, a benchmarking suite for evaluating the 
performance and range of functionality of multiple quantum computing 
software development kits. This suite consists of a collection of over 1,000 
tests measuring key performance metrics for a wide variety of operations on 
quantum circuits composed of up to 930 qubits and 𝒪𝒪𝒪106) two-qubit gates, 
as well as an execution framework for running the tests over multiple 
quantum software packages in a unified manner. Here we give a detailed 
overview of the benchmark suite and its methodology and generate 
representative results over seven different quantum software packages. The 
flexibility of the Benchpress framework enables benchmarking that not only 
keeps pace with quantum hardware improvements but also can 
preemptively gauge the quantum circuit processing costs of future  
device architectures.

The promise of quantum computation lies in its ability to perform 
specific tasks more efficiently than otherwise possible using classi-
cal methods alone. However, quantum computers do not operate in 
isolation and require classical computing resources for data pre- and 
postprocessing. As quantum computers continue to grow in size, it is 
imperative that the associated classical computing costs be evaluated 
for scalability and the construction, manipulation and optimization of 
quantum circuits play an outsized role in terms of classical overhead. 
Moreover, the performance of quantum computation software for 
output circuit quality, runtime and memory consumption is critical to 
successful adoption of this technology. There is a variety of quantum 
software development kits (SDKs) that perform all or some fraction of 
quantum circuit pre-execution processing, such as Braket1, BQSKit2, 
Cirq3, Qiskit4, Qiskit Transpiler Service (QTS) extension5, Staq6 and 
Tket7, among others, focusing primarily on quantum circuit construc-
tion, manipulation and optimization. The need to evaluate the per-
formance of these software stacks has led to the creation of several 
collections of assessment circuits8–10 and Hamiltonians11, as well as some 
examples of how to execute collections of circuits in a benchmarking 
framework12,13.

However, these earlier works have several limitations. First, col-
lections of quantum circuits are usually stored in OpenQASM14 com-
patible format and, thus, do not consider the performance of circuit 
synthesis15 in the transpilation process. Doing so requires abstract 
circuits that must be written directly in the language of the SDK, mak-
ing testing across several SDKs difficult. In addition, previous testing 
frameworks are not made to accommodate the testing of circuits at 
large qubit counts and runtimes, nor are they flexible enough to allow 
testing over collections of two-qubit (2Q) entangling gate topologies 
(coupling maps), quickly adding additional SDKs or storing diverse 
sets of output metrics.

So far, there has been no systematic study of the relative per-
formance of mainstream quantum computing SDKs over extensive 
collections of quantum circuits at scale, nor has there been a flexible 
method by which these comparisons can be easily generated. Such 
a study is critical as quantum devices and experiments push toward  
100 qubits or more16–35, and the differences in software performance 
and scaling become pronounced. An open-source test suite that not 
only evaluates multiple SDKs at these scales but also provides an execu-
tion framework that yields uniform testing over quantum software with 
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The breadth of functionality available in the tested SDKs varies 
widely and must be accounted for when benchmarking. In general, 
current quantum software packages can be categorized as having 
the ability to create and manipulate circuits and/or offering prede-
fined transpilation toolchains that map quantum circuits to quan-
tum hardware systems. This Venn diagram of functionality is shown  
in Fig. 1.

In what follows, we break the test suite into two components: 
grouping circuit creation and manipulation and evaluating circuit 
transpilation tests as a whole. All results presented here are generated 
using an AMD 7900 processor with 128 GB memory running Linux Mint 
21.3. SDKs were run on Python 3.12 with the version numbers presented 
in Table 1. Complete system information is recorded in the JavaScript 
Object Notation ( JSON) files output by Benchpress and is openly  
available (see ‘Data availability’).

Circuit construction and manipulation
Results for the circuit creation and manipulation tests, as defined in 
the Methods, are shown in Fig. 2. While there is no clear winner when 
looking at each test in isolation, the aggregate timing information and 
number of failed or skipped tests tell a different story. Qiskit is the only 
SDK that passes all of the circuit construction tests, and does so in a 
time of 2.0 s. The next closest competitor is Tket, which completes all 
but one test in 14.2 s. BQSKit fails two tests and clocks the slowest total 
completion time over successful tests at 50.9 s. Results worth highlight-
ing include Cirq’s performance at constructing a set of Hamiltonian 
simulation circuits (test_DTC100_set_build) in a time 55× faster than 
the nearest competitor Qiskit. Likewise, Qiskit outperforms the other 
SDKs in the parameter binding test (test_param_circSU2_100_bind), 
recording a time 13.5× faster than the next closest SDK.

The most notable feature in Fig. 2 is the number of skipped, fails or 
expected-fail tests. Here, we address those issues. Starting at the top of 
Fig. 2, the first XFAIL test is for BQSKit on multicontrolled circuit build-
ing. BQSKit heavily uses dense numerical linear algebra throughout its 
compilation pipeline, and the 16-qubit multicontrolled X-gate used in 
the test took more memory than the test machine had. A similar reason 
is behind the other XFAIL for BQSKit in the multicontrolled decomposi-
tion manipulation test (test_multi_control_decompose). Next, Braket 
failed the QV OpenQASM import test because there is no native support 
for the qelib1.inc file that is a standard include file in OpenQASM 2, for 
example, both the Feynman8 and QasmBench9 collections of circuits 

disparate feature sets and capabilities would help researchers, develop-
ers and end users alike to ascertain the relative value of quantum com-
puting software packages when targeting current and future quantum 
computing devices. With fault-tolerant computation out of reach in  
the near term, this initial version of Benchpress is focused on test  
cases and metrics compatible with execution on noisy quantum 
processors.

To address these needs, we have developed Benchpress, an 
open-source collection of tests explicitly designed to measure the 
performance of quantum computing software for quantum circuit 
creation and transformation. Benchpress stands out for its common 
framework that allows testing across three key areas: quantum circuit 
construction, manipulation and optimization. Although the intersec-
tion of functionality varies dramatically across the quantum com-
puting software landscape, Benchpress utilizes notional collections 
of tests called workouts that allow the full test suite to be executed 
across any quantum SDK with tests defaulting to being skipped if they 
are not explicitly overwritten with an SDK-specific implementation. 
Benchpress is thus able to quantify not only relative performance 
metrics among SDKs but also the breadth of functionality in a given 
software package.

To supplement functionality missing in other SDKs, Benchpress 
uses Qiskit4 throughout its infrastructure, particularly its compatibility 
with other SDKs and OpenQASM import and export capabilities. In 
addition, Qiskit allows the generation of reference implementations 
for constructs such as abstract backend coupling maps that can, with 
minimal effort, be consumable by the other SDKs. This yields a uniform, 
less error-prone testing environment that simplifies benchmarking. 
Moreover, in making Benchpress open-source we endeavor to cre-
ate an open and transparent platform by which progress in quantum 
computing software can be faithfully evaluated.

In this Article, we present results running the initial version of 
Benchpress, evaluating 1,066 tests for each of seven different quan-
tum SDKs considered. We give a detailed analysis of these results, 
present the test selection criteria and highlight the key takeaways from  
the findings.

Results
Results are presented covering the seven SDKs listed in Table 1. Other 
packages, such as Nvidia CUDA-Q36, are not included in this study as 
their feature sets at the time of testing were insufficient to accommo-
date the test cases. Benchpress is designed to be modular, and other 
SDKs beyond those considered here can be added straightforwardly. 
Unlike other SDKs, the QTS augments the transpilation tools of Qiskit 
with reinforcement learning methods for Clifford synthesis and qubit 
routing and, thus, is better viewed as an extension to Qiskit rather than 
a competing package.

Table 1 | SDK and corresponding version numbers used in 
generating the reported sample results

SDK Version number

Amazon-braket-sdk (Braket) 1.86.1

BQSKit 1.1.2

Cirq 1.4.1

Pytket (Tket) 1.31.0

Qiskit 1.2.0

QTS 0.4.8

Staq 3.5

Each version represents the latest release with pertinent functionality as of 30 August 2024. 
Tket version 1.31.1, which was released while testing was in progress, includes only cosmetic 
changes to documentation. In addition, after testing was completed, the qiskit_transpiler_
service changed names to qiskit_ibm_transpiler.

Braket

Cirq

BQSKit

Qiskit

Tket
Staq

Circuit creation and 
manipulation

Circuit 
transpilation

a

b PASSED SKIPPED FAILED XFAIL
BQSKit 841 22 201 2
Braket 7 1,057 2 0
Cirq 10 1,054 2 0

Qiskit 1,044 22 0 0
QTS 1,013 34 19 0
Staq 549 515 2 0
Tket 957 22 87 0

QTS

SDK functionality

Fig. 1 | SDK functionality and corresponding test results. a, Venn diagram 
of SDK functionality. b, Status of all 1,066 tests for each SDK based on the 
definitions given in the Methods. Twenty-two tests are universally skipped due 
to insufficient qubit count for the target used in device transpilation (see the 
Methods for details).
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use this include file. Finally, three out of five SDKs could not load an 
OpenQASM file with an integer larger than 64 bits. Here, BQSKit failed 
because of the lack of dynamic circuit support, Braket failed in the same 

manner as the previous QASM test, and the C++ JSON library used in 
Tket lacks support for these ‘BigInt’ numbers.

For circuit manipulation, both Qiskit and Tket complete all tests, 
with Qiskit completing all four tests in 5.5 s versus 7.1 s for Tket. The 
large number of skipped tests for Braket is due to the lack of basis 
transformation capabilities. However, add-on packages such as the 
Qiskit Braket Provider37 allow this to be done in other SDKs and then 
passed back to Braket. The two failed tests for Cirq are due to using the 
basis set of gates: RZ, X, √X  and CZ, which, despite being supported 
gates, hits a recursion limit. In addition to timing information, the 
multicontrolled decomposition test allows one to examine the quality 
of the synthesis algorithms in each SDK via the number of 2Q gates in 
the output circuit. Here, Tket produced the circuit with the fewest 2Q 
gates, 4,457, versus 7,349 and 17,414 for Qiskit and Cirq, respectively. 
The relative gate counts and depth for the circuit manipulation tests 
are shown in the Supplementary Information.

Device and abstract transpilation
Figure 3 shows the results for the five SDKs that support transpilation 
(Fig. 1) over the combined set of device and abstract tests defined in 
the Methods. Out of 1,054 total tests, 22 are device transpilation tests 
larger than the target Heron device and are SKIPPED regardless of the 
SDK. In addition, the Staq compiler takes OpenQASM files as input and, 
thus, is unable to execute the Hamiltonian simulation tests, defaulting 
to those tests being skipped. Only passing tests are shown in Fig. 3. As 
Qiskit is the only SDK that passes the entire set of transpilation tests, 
we use those values as a baseline when presenting results. Here, we 
focus on the statistics of ensembles of circuits as a whole, as opposed 
to looking at individual tests cases. A lower-level analysis can be done 
using the published results (see ‘Data availability’). A breakdown of 
the test results per open-source test library is presented in the Sup-
plementary Information.

Figure 3 breaks the results apart by target topology for each of the 
three reported metrics. The dashed diagonal line represents the Qiskit 
baseline above which any data points indicate that the specified SDK 
test result is worse than the corresponding Qiskit value. The markers 
below this line highlight an SDK performing better than Qiskit. Table 2 
numerically quantifies these results, tabulating the statistical values 
of results across each SDK and topology.

From Fig. 3 and Table 2, we see a few trends emerge. First, we see 
that, as a whole, Qiskit outperforms BQSKit, Staq and Tket in terms of 
2Q gate count, a trend clearly seen in the BQSKit and Tket data. This is 
particularly true when targeting topologies with limited connectivity. 
By contrast, while the 2Q gate depth is worse than Qiskit for BQSKit and 
Staq, Tket outperforms Qiskit overall, with prominent gains for more 
connected topologies. In particular, there is a collection of Hamiltonian 
simulation tests on which Tket yields substantial 2Q depth reduction 
relative to Qiskit. This set is the largest for ‘all-to-all’ coupling topolo-
gies, suggesting that this improvement comes from the synthesis 
steps performed by Tket. This is corroborated by the synthesis results 
in ‘Circuit construction and manipulation’. Data for other topologies 
indicate that this improved synthesis becomes less critical as the con-
nectivity decreases and circuit routing becomes dominant. Note that, 
for transpilation pipelines that include stochastic components, such 
as the Sabre-based routing routine in Qiskit, both the number and 
depth of 2Q gates can vary across different transpilations of the same 
circuit. When looking at a single test case, this randomness can have a 
large impact on relative performance numbers. However, when looking 
across large collections of tests, as done here, the fluctuations between 
runs approximately average out. We have confirmed that this is the 
case, running multiple instances of Benchpress for Qiskit and noting 
that the results do not change appreciably between runs.

The QTS utilizes much of the Qiskit transpilation pipeline inter-
nally, differing only in the use of a routing method based on rein-
forcement learning5. Therefore, we expect to see identical results for  
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Fig. 2 | Benchmark results for the circuit construction and manipulation 
portions of Benchpress. Benchpress was used to measure the performance of five 
SDKs for quantum circuit creation and transformation. Shorter times are better. 
Tests that are SKIPPED or marked as FAILED or XFAIL are labeled accordingly.
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2Q gate count and depth between Qiskit and the QTS for the all-to-all 
coupling tests. This is confirmed in Table 2. In terms of 2Q-gate count, 
the QTS performs a few percent better than Qiskit on restricted cou-
pling maps, with on average an 11% reduction on heavy-hex topologies. 
However, larger gains from the QTS appear in the 2Q-gate depth where 
a geometric mean improvement of 12% over Qiskit is observed over all 
topologies, and up to 22% when looking solely at heavy-hex results. 
These results are in line with the fact that the QTS routing step is trained 
only over heavy-hex topologies and, thus, is expected to perform bet-
ter there. Like the Tket 2Q-depth results, the performance gains from 
the QTS come from a handful of tests with markedly lower depths than 
the corresponding Qiskit circuits, as opposed to an across-the-board 
advantage. However, in contrast to Tket where the synthesis step is 
responsible for the improved depth characteristics, the QTS benefits 
are isolated to the routing stage.

The differences in test runtimes shown in Fig. 3 clearly show that 
Staq is the fastest of the transpilation pipelines, while the QTS and 
Tket are over an order of magnitude slower that Qiskit. BQSKit has 
the longest runtimes, performing two orders slower than Qiskit. Note 
that, for circuits over restricted topologies that take ~10 s or more, as 
measured by Qiskit, the corresponding Tket time begins to diverge, 
suggesting an unfavorable scaling for the routing algorithm used by 
Tket compared with that of Qiskit. The results for Staq are an excellent 
example of the quality-versus-time trade-off made when designing 
transpilation pipelines; it is possible to gain performance at the cost 
of reduced circuit quality or vice versa. As discussed in the Methods, 
Staq also does not perform the same collection of steps as the other 
SDKs. Being a service, the QTS has a minimum input–output (IO) time 
of a few seconds, as seen in Fig. 3 for tests with short Qiskit runtimes. 
By contrast, this IO overhead is immaterial for more complex circuits 
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Fig. 3 | Results generated from the device and abstract transpilation tests 
in Benchpress. The rows indicate the topology used in the tests, whereas the 
columns label the reported metric. For brevity, only the top row of plots is 
labeled. The target topology for the device transpilation tests is ‘heavy-hex’, 
using a snapshot of the IBM Torino device as the target processor. Markers 

above the dashed line indicate tests where Qiskit performs better on a given 
metric relative to the specified SDK. By contrast, markers below highlight SDK 
performance that is better than that of Qiskit. The total number of passed tests in 
each dataset is given in the legends.
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that take longer time, and it is seen that the QTS runtime remains longer 
than that of Qiskit irrespective of the target topology, but this overhead 
is approximately constant for each topology.

While Qiskit completes the full set of transpilation tests in 
0.18 days, the failed tests for the other SDKs makes a direct timing 
comparison impractical. However, using the relative timing informa-
tion in Table 2 together with the corresponding Qiskit test times, we can 
estimate the full transpilation test suite time of the remaining SDKs. As 
the fastest SDK tested, the estimated full time of the Staq tests comes 
in less than Qiskit at 0.15 days. By contrast, BQSKit, QTS and Tket are 
estimated to run more than a day at 20.5, 1.3 and 4.73 days, respectively.

Targeting a fake IBM Quantum system that includes timing infor-
mation, we can use the device transpilation tests to gauge the relative 
timing for circuit transpilation verses that of actual execution on hard-
ware. To this end, we schedule each Qiskit circuit to obtain the execu-
tion time on chip and add the idle time between circuits, called the 
default_rep_delay in Qiskit, to get the total time per circuit execution. 
Note that these data were added after the initial version of Benchpress 
and are not included in the published results found in ‘Data availabil-
ity’. Multiplying this value by the default number of executions for 
IBM Quantum hardware, currently 4,096, gives us a good estimate 
for circuit execution time without requiring hardware usage. For the 
Qiskit device transpilation tests, the total compilation time was 1,055 s, 
whereas the total execution time of all circuits would be 968 s. Restrict-
ing ourselves to circuits with ≥100 qubits, the total compilation time 
is ~1.4× longer than the 78-s hardware runtime; the compilation costs 
begin to dominate at larger qubit counts. Table 2 shows that other 
comparable SDKs such as BQSKit and Tket take one to two orders of 
magnitude longer to compile circuits, while only marginally increas-
ing the overall circuit depth, indicating that the ratio of compilation to 
runtime is more pronounced when using these compilation stacks to 
target the same quantum device. Note, however, that this conclusion is 
dependent on the targeted quantum hardware modality. For example, 
platforms such as trapped-ion systems have greater connectivity and, 
in general, require less compilation time because of this. In addition, 
trapped-ion runtimes are two orders of magnitude or more longer 
than those on superconducting devices38, and therefore the ratio of 
compilation to hardware runtimes may be less than those presented 
here when targeting diffing hardware platforms.

Not included in Fig. 3 and Table 2 is information on skipped or 
failed tests. Outside of the 22 device transpilation tests that do not 
fit the target device, Qiskit is the only SDK that passed the full 1,032 
collection of tests. BQSKit failed 200 (19%), QTS 19 (2%), Staq 2 (0.3%) 
and Tket 86 (8%) tests. Note that, as an OpenQASM-based compiler, 
Staq can execute only the 551 tests that do not include synthesis. These 
failures are, in large part, due to the timeout limit set on the tests. How-
ever, additional failure modes include QASM parsing issues in BQSKit, 
IO service errors in the QTS, C++ errors in Tket and circuit validation 
failures in Staq, where the output circuit did not match the topology 
of the target device.

Discussion
Benchpress is designed for transparent and reproducible comparisons 
between quantum SDKs. Benchpress, along with all of the results pre-
sented here, are open-sourced and can be readily executed by anyone 
looking to validate our findings. Indeed, our aim is to make the bench-
marking process community-driven, with experts fluent in each SDK 
helping to refine the testing process or push it in new directions. Unlike 
most other benchmarking frameworks, we envision a fluid approach to 
quantum SDK testing, with tests being refined as quantum hardware 
and software mature, and target performance metrics being adjusted 
or expanded as necessary, using Benchpress version numbering to 
track the underlying test suite changes.

This work aims to benefit the community of quantum research-
ers, developers and end users at large by providing a trusted source 
by which absolute and/or relative improvements in quantum software 
can be faithfully examined. For researchers and developers, this can 
mean highlighting performance bottlenecks that need to be improved. 
For example, the small number of circuits on which both Tket and QTS 
outperform Qiskit in terms of 2Q-gate depth are of interest to us and 
identify areas for improved circuit synthesis and routing, respectively, 
in Qiskit. For others, this work may serve as a guide for where to target 
future SDK improvements for improving runtime and/or fixing coding 
bugs. As an open-source project, Benchpress is aimed at benefiting 
the quantum community as a whole, and we welcome contributions 
in the form of bug fixes, code improvements and new test cases at the 
project’s GitHub website in ‘Code availability’. Finally, end users can 
use this work as a guide for selecting the appropriate SDK, or perhaps 
combinations of SDKs, that are optimal for a given task. In all cases, 
shedding light on the performance of quantum computing software 
can only push the field further and aid in the successful adoption of 
this computing paradigm.

Methods
Test suite
The organization of Benchpress is shown in Extended Data Fig. 1. 
The test suite does not need to be installed, but executing the tests 
requires pytest39 and any SDK-specific dependencies. In addition, we 
use pytest-benchmark40, which provides a robust method for timing 
tests and generating result information in JSON format. However, 
because these tools are typically used in the context of unit testing, 
they are primarily aimed at tests requiring only short durations of 
time. Here, we are interested in the opposite regime where test times 
can easily approach an hour or more and, in some cases, have run for 
a week before being manually terminated. With the large number of 
tests considered here, running all tests to completion is impractical. 
As such, we run all tests using a modified version of pytest-benchmark 
that wraps each test in a subprocess that can optionally be terminated 
after a specified timeout. Tests that exceed a timeout are automatically 
added to the skipfile.txt shown in Extended Data Fig. 1. This file dramati-
cally reduces the overhead from repeated test evaluations. However, it 

Table 2 | Geometric mean49/median values for SDK performance metrics, normalized to the corresponding Qiskit values

BQSKit QTS Staqb Tket

2Q gates 2Q depth Time 2Q gates 2Q depth Time 2Q gates 2Q depth Time 2Q gates 2Q depth Time

All testsa 1.26/1.13 1.27/1.18 108/98.0 0.96/1.0 0.89/1.0 18.7/14.5 2.8/2.45 2.91/2.40 0.26/0.22 1.31/1.09 0.98/1.00 13.3/12.7

All-to-all 1.04/1.00 1.11/1.05 75.0/71.0 1.0/1.0 1.0/1.0 18.3/15.8 3.35/3.76 4.02/4.07 0.36/0.34 1.08/1.00 0.75/1.00 14.2/14.5

Square 1.31/1.25 1.30/1.22 104/112 0.96/1.0 0.85/0.97 19.1/14.8 2.15/2.13 2.36/2.14 0.23/0.19 1.21/1.12 0.95/1.00 12.4/12.1

Heavy-hex 1.50/1.32 1.47/1.29 125/129 0.90/1.0 0.82/0.92 18.6/13.5 2.27/2.09 2.31/1.77 0.21/0.19 1.30/1.16 1.04/1.07 12.0/11.2

Linear 1.23/1.08 1.25/1.20 115/92.1 0.98/1.0 0.91/0.99 21.5/17.0 3.92/3.48 3.66/2.75 0.30/0.31 1.76/1.31 1.21/1.10 17.2/14.5

Results are presented over all tests combined, as well as sorted by target device topology. aAll tests for BQSKit, QTS and Tket includes all nonfailing tests out of a total possible 1,032. bStaq 
results are over the subset of 551 tests that do not include a synthesis step.
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is tied to the specific computer on which it is generated and can mask 
performance improvements if used across different SDK versions. 
The file used in this work was generated using the same SDK versions 
given in Table 1. Note that using subprocesses to enforce timing can 
have adverse effects when timing software uses parallel processing. 
As such, the modified version of pytest-benchmark used for each SDK 
differs in the mechanism by which it spawns processes.

To define a uniform collection of tests across SDKs, Benchpress 
uses abstract classes of tests called workouts, where each test is defined 
as a method to a Python class, where the name of the method defines 
the test name, and each test is decorated with xpytest-benchmark by 
default. Each class of tests is also logically organized into groups using 
pytest-benchmark. Implementing the actual tests for a given SDK 
requires overloading the abstract definitions in the workouts with a 
specific implementation. These are included in the ‘gym’ directory cor-
responding to the given SDK (Fig. ??) and grouped into their respective 
categories. We have included a verification mechanism that verifies that 
only those tests defined in the workouts are allowed to be present at 
the gym level. We enforce this gym partitioning so that each SDK can 
be run in isolation, and we execute the tests in each gym in a separate 
environment. However, to make a uniform testing experience across 
SDKs, Benchpress makes use of Qiskit throughout its infrastructure, 
in particular its compatibility with other SDKs and OpenQASM import 
and export capabilities, to supplement functionality missing in other 
SDKs, as well as provide reference implementations for data such as 
abstract backend entangling gate topologies that can, with minimal 
effort, be consumable by the other SDKs. Thus, Qiskit is a requirement 
common across all SDKs, but the version of Qiskit can differ, needing 
to satisfy the minimal requirements only.

Customizing the execution process is done via a configuration 
file, default.conf, that allows one to set Benchpress-specific options 
such as the target system used for device transpilation, as well as the 
basis gates and set of topologies utilized for the abstract transpilation 
tests defined in the Methods. We have decided to allow multiple device 
topologies within a given benchmark run, but the basis gates are fixed 
throughout. This choice is motivated by the fact that we explicitly 
focus only on the number and depth of 2Q gates in a circuit. With most 
2Q gates equal in number up to additional single-qubit rotations, the 
basis set has less impact on final results than the choice of topology. 
SDK-specific settings, such as optimization level, can also be set in this 
file, and additional options can be easily added as there is no hard cod-
ing of parameters. In addition, pytest and pytest-benchmark options 
can be set using the standard pytest.ini file. In this file, we add the flag 
to allow only a single execution of a test to be performed, as opposed 
to the usual minimum of five to make runtimes manageable.

Test result definitions
Benchpress accommodates SDKs with disparate feature sets by running 
the full test suite over each SDK, regardless of whether the individual 
tests are supported. Our test environment is based on pytest?, and 
we map each of the standard pytest output types to the following 
definitions:

•	 PASSED: This indicates that the SDK has the functionality 
required to run the test, and doing so completed without error 
and within the desired time limit, if any.

•	 SKIPPED: The SDK does not have the required functionality to 
execute the test, or the test does not satisfy the problem’s con-
straints, for example, the input circuit is wider than the target 
topology. This is the default status for all notional tests.

•	 FAILED: The SDK has the necessary functionality, but the test 
failed or was not completed within the set time limit, if any.

•	 XFAIL: The test fails irrecoverably. It is therefore tagged as 
‘expected fail’ rather than being executed. For example, a test is 
trying to use more memory than available. Note that, because 

we execute tests in subprocesses to implement a timeout 
mechanism, some failures can kill the subprocess but otherwise 
not affect the remaining tests. These are considered FAILED per 
the definition here.

All tests have notional definitions called workouts (Methods) 
that are placeholders for SDK-specific implementations and default 
to SKIPPED unless explicitly overwritten in each SDK test suite. In this 
way, Benchpress can use skipped tests as a proxy for measuring the 
breadth of SDK functionality, and this can be tracked automatically 
when additional functionality is added in the form of new tests. Figure 1 
shows the distribution of tests by status for the results presented here 
when running the full Benchpress test suite against each SDK. While 
the specifics of test failures will be discussed below, we note that 97% 
of failures occur when running benchmarks originating from other test 
suites, as opposed to those created explicitly for Benchpress.

Circuit construction and manipulation tests
Although nominally a tiny part of an overall circuit processing work-
flow time budget, as compared with circuit transpilation, measuring 
the timing of circuit construction and manipulation gives a holistic 
view of quantum SDK performance. Moreover, if suitably chosen, 
such tests can provide insights into other parts of the entire circuit 
compilation process. The present version of Benchpress includes 12 
such tests, with tests aimed at representing scenarios encountered 
during real-world SDK usage. Circuit construction includes eight tests 
that look at timing information needed to build 100-qubit circuits for 
families of circuits such as quantum volume (QV)41 (test_QV100_build), 
Hamiltonian simulation16 (test_DTC100_set_build), random Clifford 
circuits42 (test_clifford_build), 16-qubit iterative construction of multi-
controlled gates (test_multi_control_circuit) and parameterized ansatz 
circuits with circular entangling topology (test_param_circSU2_100_
build). We will reuse many of these circuits in device benchmarking. 
We also include the time to bind values to parameterized circuits 
(test_param_circSU2_100_bind) and import from OpenQASM files 
into the construction category. This latter set of QASM tests includes 
importing a 100-qubit QV circuit and reading a file with an integer cor-
responding to a 301-bit classical register, test_QV100_qasm2_import 
and test_bigint_qasm2_import, respectively. Our focus on 100-qubit 
circuits stems from the need for sufficient complexity for gathering 
faithful timing information and the fact that these circuits are within 
the number of qubits available on present-day quantum processors.

Circuit manipulation is the set of operations that can be per-
formed on a fully built circuit. Out of the four such tests included, 
two represent basis transformations, test_QV100_basis_change and 
test_random_clifford_decompose43, taking an input OpenQASM file 
and expressing them in a differing set of gates. In a similar vein, we 
use the same multicontrolled circuit used in the circuit construction 
tests and time the decomposition into a QASM-compatible gate set 
in test_multi_control_decompose. In contrast to the previous tests, 
this decomposition requires a nontrivial synthesis step and provides 
additional insight into how well the SDKs transform abstract quantum 
circuits into primitive components. This is captured in the number of 
2Q gates in the circuit returned at the end of the test, and this value is 
also recorded. Finally, we also implement Pauli twirling44,45 in each SDK, 
test_DTC100_twirling, recording the time it takes to twirl 19,800 CNOT 
gates in a Hamiltonian simulation circuit.

Circuit transpilation tests
Due to their vast array of possible input parameters and a large frac-
tion of overall runtime, transpilation tests form the bulk of the tests in 
Benchpress. We split these tests into two groups depending on whether 
they target a model of a real quantum device, or if their target is an 
abstract topology defined by a generating function. We label these 
as ‘device’ and ‘abstract’ transpilation tests, respectively. These tests 
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differ because device testing targets a fixed model of a quantum sys-
tem, regardless of input quantum circuit size, and includes error rates 
that can be utilized in noise-aware compilation routines. Noise-aware 
heuristics can have an impact on both the duration of the compilation 
process, as well as the 2Q gate count and depth; they can paradoxically 
lead to worsened performance if applied overly aggressively. How-
ever, because we do not execute the resulting circuits on hardware, 
the impact of these techniques on output fidelity is not included. By 
contrast, abstract transpilation tests take an input circuit and finds the 
smallest topology compatible with the circuit. In this manner, we can 
benchmark SDKs across arbitrary circuit sizes and topology families, 
allowing for user configuration of the basis gates in the default.conf 
file (Fig. ??).

Device transpilation tests come from three sources. First, we 
include a collection of tests that focus primarily on 100-qubit circuits 
representing circuit families such as QV, quantum Fourier transform, 
Bernstein–Vazirani (BV) and random Clifford circuits. In addition, 
circuits generated from Heisenberg Hamiltonians over a square lat-
tice and the quantum approximate optimization algorithm circuits 
corresponding to random instances of a Barabási–Albert graph are 
also included. We also add 100- and 89-qubit instances of the same 
parameterized ansatz circuits used for the circuit construction and 
manipulation tests, where the former can be embedded precisely 
on a heavy-hex device, that is, there is an ideal mapping, while the 
latter cannot. This set also includes a circuit with a BV-like structure, 
but where the circuit can be optimized down to single-qubit gates if 
transpiled appropriately. Because this set of circuits is represented in 
OpenQASM form or generated using QASM-compatible gates only, they 
do not test the synthesis properties of each SDK. To do so, we include a 
set of 100 abstract circuits using Hamiltonians included in the HamLib 
library11 for time evolution. The choice of Hamiltonians is described in 
‘Hamiltonian selection criteria’ and results in a set of Hamiltonians from 
2 to 930 qubits in size. Finally, we include the Feynman collection8 of 
circuits that are up to 768 qubits, and also OpenQASM-based, in device 
transpilation tests. Depending on the target quantum system for device 
transpilation, some device tests may be skipped due to insufficient 
physical qubit count. For benchmarking against abstract topologies, 
we run the same set of Hamiltonian simulation circuits run for device 
transpilation and include OpenQASM tests from QasmBench9 that go 
up to 433 qubits.

Our performance metrics for both sets of tests are 2Q gate count, 
2Q gate depth and transpilation runtime. In addition, we record the 
number of qubits in the input circuit, QASM load time (if any) and num-
ber and type of circuit operations at the output. Any additional metrics 
that are compatible with JSON serialization can be included. The target 
system used in the device transpilation tests is the FakeTorino system, 
which is a snapshot of a 133-qubit Heron system from IBM Quantum 
that includes calibration data suitable for noise-aware compilation. 
Abstract topologies tested are all-to-all, square, heavy-hex and linear, 
which includes most typical device topologies, and are predefined 
graphs in the rustworkx library46. We have configured the abstract 
models to use the basis set ['sx', 'x', 'rz', 'cz']. Finally, to limit the dura-
tion of the tests, we have set a timeout limit of 3,600 s (1 h), after which 
the test is marked as FAILED.

In this Article, we focus on testing the predefined transpilation 
pipelines in each SDK. In this way, we aim to measure the relative per-
formance that a typical user would see, and eliminate the bias involved 
when creating bespoke transpilation workflows in SDKs of which we 
have less knowledge than Qiskit. In making Benchpress open-source, we 
hope that comparisons of optimal performance can be led by commu-
nity experts in each SDK. Here, we use the default optimization values 
for both Tket (2) and BQSKit (1). Qiskit does not have a well-defined 
default optimization level, with the transpile function having a default 
value of 1, whereas the newer generate_preset_passmanager interface 
must have the optimization level explicitly set. In this work, we use 

optimization level 2 for Qiskit that will be the default value for both 
ways of calling the transpiler functionality starting in version 1.3.0. 
This same optimization value is used for the QTS as well. Staq was set 
to optimization level 2 to generate circuits valid for the target topolo-
gies. All other transpiler values are left unchanged.

Hamiltonian selection criteria
Hamiltonians included in Benchpress originate from the HamLib 
Hamiltonian library11, which includes problems from chemistry, con-
densed matter physics, discrete optimization and binary optimization. 
We randomly selected Hamiltonians from HamLib to be included in 
the benchmark suite presented in this work. The random selection is 
biased toward reflecting the distribution of Hamiltonian character-
istics prevalent in HamLib such as the number of qubits and number 
of Pauli terms. Furthermore, we limited the number of qubits in the 
selected Hamiltonians to ≤1,092 and the number of Pauli terms to 
10,000 or fewer. Furthermore, the random selection is biased toward 
‘unique’ Hamiltonians; the selection of different encodings of the same 
Hamiltonian is discouraged. One-hundred HamLib Hamiltonians are 
included in this version of Benchpress, where 35 Hamiltonians are from 
chemistry and condensed matter physics problem classes each, and 15 
Hamiltonians are chosen from both discrete and binary optimization 
problem classes.

SDK-specific considerations
Given quantum computing software’s nascent stage of development, 
it is common to encounter pitfalls when benchmarking these software 
stacks. Here, we detail some of these issues as they pertain to executing 
tests in Benchpress.

BQSKit. BQSKit performs unitary synthesis up to a maximum size 
specified by the max_synthesis_size argument to the compiler. The 
compiler will fail if a unitary is larger than this value. However, given 
an OpenQASM circuit, an end user must first parse the file to learn the 
correct size for this argument; the returned error message does not 
include the required value. As there is no manner outside of parsing 
files to gain this information, we have this parameter to the default 
value, max_synthesis_size=3, letting tests fail if they have unitary gates 
outside of this value.

In addition, BQSKit does not support coupling maps that cor-
respond to 2Q entangling gates with directionality; the topology is 
assumed to be symmetric. The CZ gate used in this work is a symmetric 
gate, and thus the circuits returned from the BQSKit transpiler pass the 
structural validation performed here. Selecting a directional gate, such 
as an echoed cross-resonance gate, would, in general, fail validation.

Qiskit transpiler service. The default timeout value for the QTS is less 
than the 3,600-s timeout used in this work. As such, we explicitly set 
the timeout value to match when calling the QTS service for each test.

Tket. The OpenQASM import functionality in Tket requires the user to 
specify the size of classical registers in the circuit if those registers are 
larger than 32 bits. Given an arbitrary OpenQASM file, the user must 
first parse the file to gather the size of the classical registers or try 
importing the file first, capturing the exception and reading the register 
size from the error message. To get around this limitation, Benchpress 
includes a maxwidth parameter in the Tket section of the default.conf 
file that allows one to specify a maximum allowed classical register size. 
Given that the maximum number of qubits in the OpenQASM files is 
433, we have set this value to 500 in the default.conf.

Staq. Staq cannot return quantum circuits in the basis set of the target 
backend. Instead, the output is always expressed in generic one-qubit 
unitary U and CNOT gates. Because of this, we perform structural 
validation only on circuits returned by Staq. In addition, we compute 
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2Q gate counts and depth on the CNOT gates. This is valid provided the 
target 2Q gate is equivalent to a CNOT gate up to single-qubit rotations. 
For the CZ gate used here, this relation holds.

Optimization level 3 of Staq includes the compiler flag -c that 
applies a CNOT optimization pass. This pass generates output Open-
QASM files that do not obey the entangling gate topology of the target 
device; the output circuits fail the structural validation check at the 
end of each test. As such, we have set the default optimization level 
of Staq to 2.

Data availability
Results used for all figures and tables in this study are available via 
Zenodo at https://doi.org/10.5281/zenodo.14977295 (ref. 47) or the 
published_results directory at the 1.0 branch of the Benchpress reposi-
tory via GitHub at https://github.com/Qiskit/benchpress/tree/1.0, 
where data are stored in JSON format. Source data are provided with 
this paper.

Code availability
All code used in generating this dataset is open-source and available 
via Zenodo at https://doi.org/10.5281/zenodo.14977334 (ref. 48) or 
the Benchpress repository via GitHub at https://github.com/qiskit/
benchpress.
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Extended Data Fig. 1 | Organization of the Benchpress data set. The entry point 
is the benchpress directory, and SDK specific flags and options are set in the 
default.conf file. Optionally, tests taking longer than a specified timeout can be 
automatically included in the skipfile.txt. Abstract test definitions are included 
in the workouts directory, and test inputs in the form of OpenQASM files or 

Hamiltonians are included in the qasm and hamiltonian folders, respectively. 
Tests specific to each SDK are located in the corresponding “*_gym” directories. 
Inside each “gym”, tests are organized in groups based on the target functionality 
to be tested.
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