nature computational science

Resource

https://doi.org/10.1038/s43588-025-00792-y

Benchmarking the performance of quantum
computing software for quantum circuit
creation, manipulation and compilation

Received: 22 September 2024 Paul D. Nation®'

Accepted: 17 March 2025

, Abdullah Ash Saki', Sebastian Brandhofer?,
Luciano Bello®3, Shelly Garion*, Matthew Treinish®' & Ali Javadi-Abhari’

Published online: 18 April 2025

W Check for updates

We present Benchpress, abenchmarking suite for evaluating the
performance and range of functionality of multiple quantum computing

software development kits. This suite consists of a collection of over 1,000
tests measuring key performance metrics for a wide variety of operations on
quantum circuits composed of up to 930 qubits and 9(10°) two-qubit gates,
aswell as an execution framework for running the tests over multiple
quantum software packages in a unified manner. Here we give a detailed
overview of the benchmark suite and its methodology and generate
representative results over seven different quantum software packages. The
flexibility of the Benchpress framework enables benchmarking that not only
keeps pace with quantum hardware improvements but also can
preemptively gauge the quantum circuit processing costs of future

device architectures.

The promise of quantum computation lies in its ability to perform
specific tasks more efficiently than otherwise possible using classi-
cal methods alone. However, quantum computers do not operate in
isolation and require classical computing resources for data pre- and
postprocessing. As quantum computers continue to grow in size, it is
imperative that the associated classical computing costs be evaluated
for scalability and the construction, manipulation and optimization of
quantum circuits play an outsized role in terms of classical overhead.
Moreover, the performance of quantum computation software for
output circuit quality, runtime and memory consumptionis critical to
successful adoption of this technology. There is a variety of quantum
software developmentkits (SDKs) that perform all or some fraction of
quantum circuit pre-execution processing, such as Braket', BQSKit?,
Cirg?, Qiskit*, Qiskit Transpiler Service (QTS) extension’, Staq® and
Tket’,among others, focusing primarily on quantum circuit construc-
tion, manipulation and optimization. The need to evaluate the per-
formance of these software stacks has led to the creation of several
collections of assessment circuits® '° and Hamiltonians", as well as some
examples of how to execute collections of circuits in abenchmarking
framework'*",

However, these earlier works have several limitations. First, col-
lections of quantum circuits are usually stored in OpenQASM" com-
patible format and, thus, do not consider the performance of circuit
synthesis® in the transpilation process. Doing so requires abstract
circuits that must be written directly in the language of the SDK, mak-
ing testing across several SDKs difficult. In addition, previous testing
frameworks are not made to accommodate the testing of circuits at
large qubit counts and runtimes, nor are they flexible enough to allow
testing over collections of two-qubit (2Q) entangling gate topologies
(coupling maps), quickly adding additional SDKs or storing diverse
sets of output metrics.

So far, there has been no systematic study of the relative per-
formance of mainstream quantum computing SDKs over extensive
collections of quantum circuits at scale, nor has there been a flexible
method by which these comparisons can be easily generated. Such
astudy is critical as quantum devices and experiments push toward
100 qubits or more'®, and the differences in software performance
and scaling become pronounced. An open-source test suite that not
only evaluates multiple SDKs at these scales but also provides an execu-
tionframework that yields uniformtesting over quantumsoftware with

'IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA. 2BM Quantum, IBM Germany Research and Development, Béblingen,

Germany. °IBM Quantum, IBM Research Europe, Zurich, Switzerland. *lBM Quantum, IBM Research Israel, Haifa, Israel.

e-mail: paul.nation@ibm.com

Nature Computational Science | Volume 5 | May 2025 | 427-435

427

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-025-00792-y
http://orcid.org/0000-0002-0045-6118
http://orcid.org/0000-0002-3530-6283
http://orcid.org/0000-0001-9713-2875
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-025-00792-y&domain=pdf
mailto:paul.nation@ibm.com

Resource

https://doi.org/10.1038/s43588-025-00792-y

Table 1| SDK and corresponding version numbers used in
generating the reported sample results

SDK Version number
Amazon-braket-sdk (Braket) 1.86.1

BQSKit 11.2

Cirq 141

Pytket (Tket) 1.31.0

Qiskit 1.2.0

QTS 04.8

Staqg 3.5

Each version represents the latest release with pertinent functionality as of 30 August 2024.
Tket version 1.31.1, which was released while testing was in progress, includes only cosmetic
changes to documentation. In addition, after testing was completed, the qiskit_transpiler_
service changed names to giskit_ibm_transpiler.

disparate feature sets and capabilities would help researchers, develop-
ersand end users alike to ascertain the relative value of quantum com-
puting software packages when targeting current and future quantum
computing devices. With fault-tolerant computation out of reach in
the near term, this initial version of Benchpress is focused on test
cases and metrics compatible with execution on noisy quantum
processors.

To address these needs, we have developed Benchpress, an
open-source collection of tests explicitly designed to measure the
performance of quantum computing software for quantum circuit
creation and transformation. Benchpress stands out for its common
framework that allows testing across three key areas: quantum circuit
construction, manipulation and optimization. Although the intersec-
tion of functionality varies dramatically across the quantum com-
puting software landscape, Benchpress utilizes notional collections
of tests called workouts that allow the full test suite to be executed
across any quantum SDK with tests defaulting to being skipped if they
are not explicitly overwritten with an SDK-specific implementation.
Benchpress is thus able to quantify not only relative performance
metrics among SDKs but also the breadth of functionality in a given
software package.

To supplement functionality missing in other SDKs, Benchpress
uses Qiskit* throughout itsinfrastructure, particularly its compatibility
with other SDKs and OpenQASM import and export capabilities. In
addition, Qiskit allows the generation of reference implementations
for constructs such as abstract backend coupling maps that can, with
minimal effort, be consumable by the other SDKs. This yields a uniform,
less error-prone testing environment that simplifies benchmarking.
Moreover, in making Benchpress open-source we endeavor to cre-
ate an open and transparent platform by which progress in quantum
computing software can be faithfully evaluated.

In this Article, we present results running the initial version of
Benchpress, evaluating 1,066 tests for each of seven different quan-
tum SDKs considered. We give a detailed analysis of these results,
present the test selection criteriaand highlight the key takeaways from
the findings.

Results

Results are presented covering the seven SDKs listed in Table 1. Other
packages, such as Nvidia CUDA-Q*, are not included in this study as
their feature sets at the time of testing were insufficient to accommo-
date the test cases. Benchpress is designed to be modular, and other
SDKs beyond those considered here can be added straightforwardly.
Unlike other SDKs, the QTS augments the transpilation tools of Qiskit
with reinforcementlearning methods for Clifford synthesis and qubit
routing and, thus, is better viewed as an extension to Qiskit rather than
acompeting package.

a SDK functionality

Circuit creation and
manipulation

BQSKit
Braket QTS
Qiskit
Cirq Staq
Tket
b PASSED | SKIPPED FAILED XFAIL
BQSKit 8M 22 201 2
Braket 7 1,057 2 0
Cirq 10 1,054 2 0
Qiskit 1,044 22 [o] 0
QTS 1,013 34 19 0
Staq 549 515 2 0
Tket 957 22 87 0

Fig.1|SDK functionality and corresponding test results. a, Venn diagram

of SDK functionality. b, Status of all 1,066 tests for each SDK based on the
definitions given in the Methods. Twenty-two tests are universally skipped due
toinsufficient qubit count for the target used in device transpilation (see the
Methods for details).

The breadth of functionality available in the tested SDKs varies
widely and must be accounted for when benchmarking. In general,
current quantum software packages can be categorized as having
the ability to create and manipulate circuits and/or offering prede-
fined transpilation toolchains that map quantum circuits to quan-
tum hardware systems. This Venn diagram of functionality is shown
inFig.1.

In what follows, we break the test suite into two components:
grouping circuit creation and manipulation and evaluating circuit
transpilation tests asawhole. All results presented here are generated
usingan AMD 7900 processor with 128 GB memory running Linux Mint
21.3.SDKs were run on Python 3.12 with the version numbers presented
in Table 1. Complete system information is recorded in the JavaScript
Object Notation (JSON) files output by Benchpress and is openly
available (see ‘Data availability’).

Circuit construction and manipulation

Results for the circuit creation and manipulation tests, as defined in
the Methodes, are shown in Fig. 2. While there is no clear winner when
looking ateachtestinisolation, the aggregate timing information and
number of failed or skipped tests tell a different story. Qiskit is the only
SDK that passes all of the circuit construction tests, and doessoina
time of 2.0 s. The next closest competitor is Tket, which completes all
butonetestin14.2 s. BQSKit fails two tests and clocks the slowest total
completion time over successful tests at 50.9 s. Results worth highlight-
ing include Cirq’s performance at constructing a set of Hamiltonian
simulation circuits (test DTC100_set_build) in a time 55x faster than
the nearest competitor Qiskit. Likewise, Qiskit outperforms the other
SDKs in the parameter binding test (test_param_circSU2_100_bind),
recording a time 13.5x faster than the next closest SDK.

The most notable featurein Fig. 2 is the number of skipped, fails or
expected-fail tests. Here, we address those issues. Starting at the top of
Fig. 2, thefirst XFAIL test is for BQSKit on multicontrolled circuit build-
ing. BQSKit heavily uses dense numerical linear algebra throughoutits
compilation pipeline, and the 16-qubit multicontrolled X-gate used in
the test took more memory than the test machine had. A similar reason
isbehind the other XFAIL for BQSKit in the multicontrolled decomposi-
tion manipulation test (test_multi_control_decompose). Next, Braket
failed the QV OpenQASMimport test because thereis no native support
forthe gelibl.incfile thatisastandardinclude filein OpenQASM 2, for
example, both the Feynman® and QasmBench’ collections of circuits

Nature Computational Science | Volume 5 | May 2025 | 427-435

428

http://www.nature.com/natcomputsci

Resource

https://doi.org/10.1038/s43588-025-00792-y

Benchmark performance (shorter is better)

Circuit construction
Test_QV100_build

EEEEN
@©
S
=~
(0]
ol

Test_DTC100_set_build

Test_multi_control_circuit

XFAIL

—

est_clifford_build

Test_param_circSU2_100_build

Test_param_circSU2_100_bind

Test_QV100_gasm2_import

FAILED

Test_bigint_gasm2_import

FAILED
FAILED

FAILED

1s

Circuit manipulation

-
@
(2]
&
o
3
Q
o
S
I;—r
2
=
Es
@

Test_multi_control_decompose

XFAIL
SKIPPED

Test_QV100_basis_change

SKIPPED
FAILED

Test_random_clifford_decompose

|

I |

| |

SKIPPED ! !

FAILED | '

RN R R R L R T T RN AT T
10" 107 107 107 10° 10' 10

Time (s)

Fig. 2| Benchmark results for the circuit construction and manipulation
portions of Benchpress. Benchpress was used to measure the performance of five
SDKs for quantum circuit creation and transformation. Shorter times are better.
Tests that are SKIPPED or marked as FAILED or XFAIL are labeled accordingly.

use this include file. Finally, three out of five SDKs could not load an
OpenQASM file withaninteger larger than 64 bits. Here, BQSKit failed
because of the lack of dynamic circuit support, Braket failed in the same

manner as the previous QASM test, and the C++JSON library used in
Tket lacks support for these ‘BigInt’ numbers.

For circuit manipulation, both Qiskit and Tket complete all tests,
with Qiskit completing all four tests in 5.5 s versus 7.1 s for Tket. The
large number of skipped tests for Braket is due to the lack of basis
transformation capabilities. However, add-on packages such as the
Qiskit Braket Provider® allow this to be done in other SDKs and then
passed back to Braket. The two failed tests for Cirqare due to using the
basis set of gates: RZ, X, VX and CZ, which, despite being supported
gates, hits a recursion limit. In addition to timing information, the
multicontrolled decomposition test allows one to examine the quality
of the synthesis algorithms in each SDK via the number of 2Q gates in
the output circuit. Here, Tket produced the circuit with the fewest 2Q
gates, 4,457, versus 7,349 and 17,414 for Qiskit and Cirq, respectively.
The relative gate counts and depth for the circuit manipulation tests
areshownin the Supplementary Information.

Device and abstract transpilation

Figure 3 shows the results for the five SDKs that support transpilation
(Fig. 1) over the combined set of device and abstract tests defined in
the Methods. Out 0of 1,054 total tests, 22 are device transpilation tests
larger than the target Heron device and are SKIPPED regardless of the
SDK.Inaddition, the Staq compiler takes OpenQASMfiles asinputand,
thus, isunable to execute the Hamiltonian simulation tests, defaulting
to those tests being skipped. Only passing tests are shown in Fig. 3. As
Qiskit is the only SDK that passes the entire set of transpilation tests,
we use those values as a baseline when presenting results. Here, we
focus on the statistics of ensembles of circuits as awhole, as opposed
tolooking atindividual tests cases. A lower-level analysis can be done
using the published results (see ‘Data availability’). A breakdown of
the test results per open-source test library is presented in the Sup-
plementary Information.

Figure 3 breaks the results apart by target topology for each of the
three reported metrics. The dashed diagonal line represents the Qiskit
baseline above which any data points indicate that the specified SDK
test result is worse than the corresponding Qiskit value. The markers
below thisline highlight an SDK performing better than Qiskit. Table 2
numerically quantifies these results, tabulating the statistical values
of results across each SDK and topology.

FromFig. 3 and Table 2, we see a few trends emerge. First, we see
that, as awhole, Qiskit outperforms BQSKit, Staq and Tket in terms of
2Qgate count, atrend clearly seenin the BQSKit and Tket data. This is
particularly true when targeting topologies with limited connectivity.
By contrast, while the 2Q gate depthis worse than Qiskit for BQSKit and
Staq, Tket outperforms Qiskit overall, with prominent gains for more
connected topologies. In particular, thereis a collection of Hamiltonian
simulation tests on which Tket yields substantial 2Q depth reduction
relative to Qiskit. This set is the largest for ‘all-to-all’ coupling topolo-
gies, suggesting that this improvement comes from the synthesis
steps performed by Tket. This is corroborated by the synthesis results
in ‘Circuit construction and manipulation’. Data for other topologies
indicate that thisimproved synthesis becomes less critical as the con-
nectivity decreases and circuit routing becomes dominant. Note that,
for transpilation pipelines that include stochastic components, such
as the Sabre-based routing routine in Qiskit, both the number and
depth of 2Q gates can vary across different transpilations of the same
circuit. Whenlooking at a single test case, thisrandomness can have a
largeimpact onrelative performance numbers. However, whenlooking
across large collections of tests, as done here, the fluctuations between
runs approximately average out. We have confirmed that this is the
case, running multiple instances of Benchpress for Qiskit and noting
that the results do not change appreciably between runs.

The QTS utilizes much of the Qiskit transpilation pipeline inter-
nally, differing only in the use of a routing method based on rein-
forcement learning’. Therefore, we expect to see identical results for

Nature Computational Science | Volume 5 | May 2025 | 427-435

429

http://www.nature.com/natcomputsci

Resource

https://doi.org/10.1038/s43588-025-00792-y

2Q gate count 2Q gate depth Runtime
s BQSKit (191) 105 BQSKit (191)
10 QTS (220) e - QTS (220) s
Staq (123) ol Staq (123) "l
10° Tket (209) e 10° Tket (209) ~
e =
%3 5
® o ©
S o o)
A= =
= © ©
<2 o)
(¢} g
N N
BQSKit (191)
QTS (220)
Staq (123)
Tket (209)
10° 10' 10° 10° 10" 10° 10°
Qiskit 2Q gate count Qiskit 2Q gate depth
106 BQSKit (186) U 105 BQSKit (186)
QTS (220) L QTS (220)
Staq (123) P . Staq (123)
10° Tket (205) e 10 Tket (205)
4
° 10
S 10°
3
10°
BQSKit (186)
10’ e Vol
_: ’ QTS (220)
o] o 107 T Staq (123)
10" 1.7 Tket (205)
10° 10° 10" 10 10° 10 10° 10° 10° 10 10" 10° 10" 10 10°
7 e | o] o e :
10 QTS (356 . *
Staq (182) Lo . Staq (182) /ﬁ' 10
10° Tket (335) y’ 10 Tket (335) L 102
) 10 |
< 10
s 10° o
[}
T 10?
10" |
1 6 gl BQSKit (287)
10 102 o QTS (356)
L Staq (182)
10° 14 ,ﬁ Tket (335)
10° 10° 10 10° 10° 10* 10° 10° 10° 10 107 10° 10 10° 10°
7
10 BQSKit (168) 1 B BQSKit (168) L
o QTs (217) 10 QTs (217) . 10° L
10 Staq (123) o Staq (123) ’,r "’/
Tket (197) » 105 Tket (197) P4 102 ’
§ 10'
=
3 10°
-1
10 BQSKit (168)
5 QTs (217)
10 Staq (123)
Tket (197)
10° 10° 10? 107 10° 100 100 10°

Fig. 3| Results generated from the device and abstract transpilation tests
inBenchpress. The rows indicate the topology used in the tests, whereas the
columns label the reported metric. For brevity, only the top row of plots is
labeled. The target topology for the device transpilation tests is ‘heavy-hex’,
using asnapshot of the IBM Torino device as the target processor. Markers

above the dashed line indicate tests where Qiskit performs better on a given
metric relative to the specified SDK. By contrast, markers below highlight SDK
performance thatis better than that of Qiskit. The total number of passed tests in
each datasetis givenin the legends.

2Q gate count and depth between Qiskit and the QTS for the all-to-all
couplingtests. Thisis confirmedin Table 2. Interms of 2Q-gate count,
the QTS performs a few percent better than Qiskit on restricted cou-
pling maps, with onaverage an11% reduction on heavy-hex topologies.
However, larger gains from the QTS appear in the 2Q-gate depth where
ageometric meanimprovement of 12% over Qiskit is observed over all
topologies, and up to 22% when looking solely at heavy-hex results.
Theseresultsareinline with the fact that the QTS routing step is trained
only over heavy-hex topologies and, thus, is expected to perform bet-
ter there. Like the Tket 2Q-depthresults, the performance gains from
the QTS come from a handful of tests with markedly lower depths than
the corresponding Qiskit circuits, as opposed to an across-the-board
advantage. However, in contrast to Tket where the synthesis step is
responsible for the improved depth characteristics, the QTS benefits
areisolated to the routing stage.

The differences in test runtimes shown in Fig. 3 clearly show that
Staq is the fastest of the transpilation pipelines, while the QTS and
Tket are over an order of magnitude slower that Qiskit. BQSKit has
thelongest runtimes, performing two orders slower than Qiskit. Note
that, for circuits over restricted topologies that take ~10 s or more, as
measured by Qiskit, the corresponding Tket time begins to diverge,
suggesting an unfavorable scaling for the routing algorithm used by
Tket compared with that of Qiskit. The results for Staq are an excellent
example of the quality-versus-time trade-off made when designing
transpilation pipelines; it is possible to gain performance at the cost
of reduced circuit quality or vice versa. As discussed in the Methods,
Staq also does not perform the same collection of steps as the other
SDKs. Being aservice, the QTS has aminimum input-output (10) time
of afew seconds, as seen in Fig. 3 for tests with short Qiskit runtimes.
By contrast, this 10 overhead is immaterial for more complex circuits

Nature Computational Science | Volume 5 | May 2025 | 427-435

430

http://www.nature.com/natcomputsci

Resource

https://doi.org/10.1038/s43588-025-00792-y

Table 2 | Geometric mean“’/median values for SDK performance metrics, normalized to the corresponding Qiskit values

BQSKit QTS Staq® Tket
2Qgates 2Qdepth Time 2Qgates 2Qdepth Time 2Qgates 2Qdepth Time 2Qgates 2Qdepth Time
Alltests® 1.26/113 1.27/118 108/98.0 0.96/1.0 0.89/1.0 18.7/14.5 2.8/2.45 2.91/240 0.26/0.22 1.31/1.09 0.98/1.00 13.3/12.7
All-to-all 1.04/1.00 111/1.05 75.0/71.0 1.0/1.0 1.0/1.0 18.3/15.8 3.35/376 4.02/4.07 0.36/0.34 1.08/1.00 075/1.00 14.2/14.5
Square 1.31/1.25 1.30/1.22 104/112 0.96/1.0 0.85/0.97 19.1/14.8 215/213 2.36/214 0.23/019 1.21/112 0.95/1.00 12.4/121
Heavy-hex 1.50/1.32 1.47/1.29 125/129 0.90/1.0 0.82/0.92 18.6/13.5 2.27/2.09 231177 0.21/019 1.30/1.16 1.04/1.07 12.0/1.2
Linear 1.23/1.08 1.25/1.20 115/921 0.98/1.0 0.91/0.99 21.5/17.0 3.92/348 3.66/2.75 0.30/0.31 1.76/1.31 1.21/110 17.2/14.5

Results are presented over all tests combined, as well as sorted by target device topology. *All tests for BQSKit, QTS and Tket includes all nonfailing tests out of a total possible 1,032. *Staq

results are over the subset of 551 tests that do not include a synthesis step.

thattake longer time, and itis seen that the QTS runtime remains longer
thanthat of Qiskitirrespective of the target topology, but this overhead
isapproximately constant for each topology.

While Qiskit completes the full set of transpilation tests in
0.18 days, the failed tests for the other SDKs makes a direct timing
comparison impractical. However, using the relative timing informa-
tionin Table 2 together with the corresponding Qiskit test times, we can
estimate the full transpilation test suite time of the remaining SDKs. As
the fastest SDK tested, the estimated full time of the Staq tests comes
in less than Qiskit at 0.15 days. By contrast, BQSKit, QTS and Tket are
estimated torunmore thanadayat20.5,1.3 and 4.73 days, respectively.

Targeting afake IBM Quantum system that includes timing infor-
mation, we can use the device transpilation tests to gauge the relative
timing for circuit transpilation verses that of actual execution on hard-
ware. To this end, we schedule each Qiskit circuit to obtain the execu-
tion time on chip and add the idle time between circuits, called the
default_rep_delay in Qiskit, to get the total time per circuit execution.
Note that these data were added after theinitial version of Benchpress
and are notincluded in the published results found in ‘Data availabil-
ity’. Multiplying this value by the default number of executions for
IBM Quantum hardware, currently 4,096, gives us a good estimate
for circuit execution time without requiring hardware usage. For the
Qiskitdevice transpilationtests, the total compilation timewas1,055's,
whereas the total execution time of all circuits would be 968 s. Restrict-
ing ourselves to circuits with 2100 qubits, the total compilation time
is ~1.4x longer than the 78-s hardware runtime; the compilation costs
begin to dominate at larger qubit counts. Table 2 shows that other
comparable SDKs such as BQSKit and Tket take one to two orders of
magnitude longer to compile circuits, while only marginally increas-
ingthe overall circuit depth, indicating that the ratio of compilation to
runtime is more pronounced when using these compilation stacks to
target the same quantumdevice. Note, however, that this conclusion s
dependent onthe targeted quantum hardware modality. For example,
platforms such as trapped-ion systems have greater connectivity and,
in general, require less compilation time because of this. In addition,
trapped-ion runtimes are two orders of magnitude or more longer
than those on superconducting devices®, and therefore the ratio of
compilation to hardware runtimes may be less than those presented
here when targeting diffing hardware platforms.

Not included in Fig. 3 and Table 2 is information on skipped or
failed tests. Outside of the 22 device transpilation tests that do not
fit the target device, Qiskit is the only SDK that passed the full 1,032
collection of tests. BQSKit failed 200 (19%), QTS 19 (2%), Staq 2 (0.3%)
and Tket 86 (8%) tests. Note that, as an OpenQASM-based compiler,
Staq canexecute only the 551 tests that do not include synthesis. These
failuresare, inlarge part, due tothe timeoutlimit set on the tests. How-
ever, additional failure modesinclude QASM parsingissues in BQSKit,
10 service errors in the QTS, C++ errors in Tket and circuit validation
failures in Staq, where the output circuit did not match the topology
ofthe target device.

Discussion

Benchpressis designed for transparent and reproducible comparisons
between quantum SDKs. Benchpress, along with all of the results pre-
sented here, are open-sourced and can bereadily executed by anyone
looking to validate our findings. Indeed, our aimis to make the bench-
marking process community-driven, with experts fluent in each SDK
helping torefine the testing process or pushitin new directions. Unlike
most other benchmarking frameworks, we envision afluid approach to
quantum SDK testing, with tests being refined as quantum hardware
and software mature, and target performance metrics being adjusted
or expanded as necessary, using Benchpress version numbering to
track the underlying test suite changes.

This work aims to benefit the community of quantum research-
ers, developers and end users at large by providing a trusted source
by which absolute and/or relative improvements in quantum software
can be faithfully examined. For researchers and developers, this can
mean highlighting performance bottlenecks that need tobeimproved.
For example, the small number of circuits onwhich both Tketand QTS
outperform Qiskit in terms of 2Q-gate depth are of interest to us and
identify areas forimproved circuit synthesis and routing, respectively,
in Qiskit. For others, this work may serve asaguide for where to target
future SDKimprovements for improving runtime and/or fixing coding
bugs. As an open-source project, Benchpress is aimed at benefiting
the quantum community as a whole, and we welcome contributions
in the form of bug fixes, code improvements and new test cases at the
project’s GitHub website in ‘Code availability’. Finally, end users can
use this work as aguide for selecting the appropriate SDK, or perhaps
combinations of SDKs, that are optimal for a given task. In all cases,
shedding light on the performance of quantum computing software
can only push the field further and aid in the successful adoption of
this computing paradigm.

Methods

Test suite

The organization of Benchpress is shown in Extended Data Fig. 1.
The test suite does not need to be installed, but executing the tests
requires pytest® and any SDK-specific dependencies. In addition, we
use pytest-benchmark*’, which provides a robust method for timing
tests and generating result information in JSON format. However,
because these tools are typically used in the context of unit testing,
they are primarily aimed at tests requiring only short durations of
time. Here, we are interested in the opposite regime where test times
can easily approach an hour or more and, in some cases, have run for
aweek before being manually terminated. With the large number of
tests considered here, running all tests to completion is impractical.
Assuch, werunalltests using amodified version of pytest-benchmark
thatwraps eachtestinasubprocessthat canoptionally be terminated
after aspecified timeout. Tests that exceed a timeout are automatically
addedtotheskipfile.txtshown in Extended DataFig. 1. This file dramati-
callyreducesthe overhead fromrepeated test evaluations. However, it

Nature Computational Science | Volume 5 | May 2025 | 427-435

431

http://www.nature.com/natcomputsci

Resource

https://doi.org/10.1038/s43588-025-00792-y

istied to the specific computer on whichiitis generated and can mask
performance improvements if used across different SDK versions.
The file used in this work was generated using the same SDK versions
given in Table 1. Note that using subprocesses to enforce timing can
have adverse effects when timing software uses parallel processing.
Assuch, the modified version of pytest-benchmark used for each SDK
differs in the mechanism by which it spawns processes.

To define a uniform collection of tests across SDKs, Benchpress
uses abstract classes of tests called workouts, where each test is defined
asamethod to aPython class, where the name of the method defines
the test name, and each test is decorated with xpytest-benchmark by
default. Each class of testsis also logically organized into groups using
pytest-benchmark. Implementing the actual tests for a given SDK
requires overloading the abstract definitions in the workouts with a
specificimplementation. These are included in the ‘gym’ directory cor-
respondingto the given SDK (Fig. ??) and grouped into their respective
categories. We haveincluded a verification mechanismthat verifies that
only those tests defined in the workouts are allowed to be present at
the gym level. We enforce this gym partitioning so that each SDK can
beruninisolation, and we execute the tests in each gymin a separate
environment. However, to make a uniform testing experience across
SDKs, Benchpress makes use of Qiskit throughout its infrastructure,
inparticularits compatibility with other SDKs and OpenQASM import
and export capabilities, to supplement functionality missing in other
SDKs, as well as provide reference implementations for data such as
abstract backend entangling gate topologies that can, with minimal
effort, be consumable by the other SDKs. Thus, Qiskit is arequirement
common across all SDKs, but the version of Qiskit can differ, needing
to satisfy the minimal requirements only.

Customizing the execution process is done via a configuration
file, default.conf, that allows one to set Benchpress-specific options
such as the target system used for device transpilation, as well as the
basis gates and set of topologies utilized for the abstract transpilation
testsdefined in the Methods. We have decided to allow multiple device
topologies withinagiven benchmark run, but the basis gates are fixed
throughout. This choice is motivated by the fact that we explicitly
focus only onthe number and depth of 2Q gates in a circuit. With most
2Q gates equal in number up to additional single-qubit rotations, the
basis set has less impact on final results than the choice of topology.
SDK-specific settings, such as optimizationlevel, canalso be setin this
file,and additional options can be easily added as thereis no hard cod-
ing of parameters. In addition, pytest and pytest-benchmark options
canbeset using the standard pytest.inifile. In this file, we add the flag
to allow only a single execution of a test to be performed, as opposed
to the usual minimum of five to make runtimes manageable.

Test result definitions

Benchpressaccommodates SDKs with disparate feature sets by running
the full test suite over each SDK, regardless of whether the individual
tests are supported. Our test environment is based on pytest?, and
we map each of the standard pytest output types to the following
definitions:

« PASSED: This indicates that the SDK has the functionality
required to run the test, and doing so completed without error
and within the desired time limit, if any.

« SKIPPED: The SDK does not have the required functionality to
execute the test, or the test does not satisfy the problem’s con-
straints, for example, the input circuit is wider than the target
topology. This is the default status for all notional tests.

« FAILED: The SDK has the necessary functionality, but the test
failed or was not completed within the set time limit, if any.

« XFAIL: The test fails irrecoverably. It is therefore tagged as
‘expected fail’ rather than being executed. For example, a test is
trying to use more memory than available. Note that, because

we execute tests in subprocesses to implement a timeout
mechanism, some failures can kill the subprocess but otherwise
not affect the remaining tests. These are considered FAILED per
the definition here.

All tests have notional definitions called workouts (Methods)
that are placeholders for SDK-specific implementations and default
to SKIPPED unless explicitly overwritten in each SDK test suite. In this
way, Benchpress can use skipped tests as a proxy for measuring the
breadth of SDK functionality, and this can be tracked automatically
when additional functionality isadded in the form of new tests. Figure 1
shows the distribution of tests by status for the results presented here
when running the full Benchpress test suite against each SDK. While
the specifics of test failures will be discussed below, we note that 97%
of failures occur when running benchmarks originating from other test
suites, as opposed to those created explicitly for Benchpress.

Circuit construction and manipulation tests
Although nominally a tiny part of an overall circuit processing work-
flow time budget, as compared with circuit transpilation, measuring
the timing of circuit construction and manipulation gives a holistic
view of quantum SDK performance. Moreover, if suitably chosen,
such tests can provide insights into other parts of the entire circuit
compilation process. The present version of Benchpress includes 12
such tests, with tests aimed at representing scenarios encountered
during real-world SDK usage. Circuit construction includes eight tests
thatlook at timing information needed to build 100-qubit circuits for
families of circuits such as quantumvolume (QV)* (test_ QV100_build),
Hamiltonian simulation' (test DTC100 set_build), random Clifford
circuits* (test_clifford_build), 16-qubit iterative construction of multi-
controlled gates (test_multi_control_circuit) and parameterized ansatz
circuits with circular entangling topology (test_param_circSU2_100_
build). We will reuse many of these circuits in device benchmarking.
We also include the time to bind values to parameterized circuits
(test_param_circSU2_100_bind) and import from OpenQASM files
into the construction category. This latter set of QASM tests includes
importing a100-qubit QV circuit and reading afile with aninteger cor-
responding to a 301-bit classical register, test_ QV100_gasm2_import
and test_bigint_gqasm2_import, respectively. Our focus on 100-qubit
circuits stems from the need for sufficient complexity for gathering
faithful timing information and the fact that these circuits are within
the number of qubits available on present-day quantum processors.
Circuit manipulation is the set of operations that can be per-
formed on a fully built circuit. Out of the four such tests included,
two represent basis transformations, test_QV100_basis_change and
test_random_clifford_decompose®, taking an input OpenQASM file
and expressing them in a differing set of gates. In a similar vein, we
use the same multicontrolled circuit used in the circuit construction
tests and time the decomposition into a QASM-compatible gate set
in test_multi_control_decompose. In contrast to the previous tests,
this decomposition requires a nontrivial synthesis step and provides
additionalinsightinto how well the SDKs transform abstract quantum
circuitsinto primitive components. This is captured in the number of
2Qgatesin the circuit returned at the end of the test, and this value is
alsorecorded. Finally, we also implement Pauli twirling**** in each SDK,
test DTC100_twirling, recording the time it takes to twirl 19,800 CNOT
gates inaHamiltonian simulation circuit.

Circuit transpilation tests

Due to their vast array of possible input parameters and a large frac-
tion of overall runtime, transpilation tests form the bulk of the testsin
Benchpress. We split these tests into two groups depending on whether
they target a model of a real quantum device, or if their target is an
abstract topology defined by a generating function. We label these
as ‘device’ and “abstract’ transpilation tests, respectively. These tests

Nature Computational Science | Volume 5 | May 2025 | 427-435

432

http://www.nature.com/natcomputsci

Resource

https://doi.org/10.1038/s43588-025-00792-y

differ because device testing targets a fixed model of a quantum sys-
tem, regardless of input quantum circuit size, and includes error rates
that can be utilized in noise-aware compilation routines. Noise-aware
heuristics canhave animpact onboth the duration of the compilation
process, as well as the 2Q gate count and depth; they can paradoxically
lead to worsened performance if applied overly aggressively. How-
ever, because we do not execute the resulting circuits on hardware,
the impact of these techniques on output fidelity is not included. By
contrast, abstract transpilation tests take aninput circuit and finds the
smallest topology compatible with the circuit. In this manner, we can
benchmark SDKs across arbitrary circuit sizes and topology families,
allowing for user configuration of the basis gates in the default.conf
file (Fig.??).

Device transpilation tests come from three sources. First, we
include a collection of tests that focus primarily on 100-qubit circuits
representing circuit families such as QV, quantum Fourier transform,
Bernstein-Vazirani (BV) and random Clifford circuits. In addition,
circuits generated from Heisenberg Hamiltonians over a square lat-
tice and the quantum approximate optimization algorithm circuits
corresponding to random instances of a Barabasi-Albert graph are
also included. We also add 100- and 89-qubit instances of the same
parameterized ansatz circuits used for the circuit construction and
manipulation tests, where the former can be embedded precisely
on a heavy-hex device, that is, there is an ideal mapping, while the
latter cannot. This set also includes a circuit with a BV-like structure,
but where the circuit can be optimized down to single-qubit gates if
transpiled appropriately. Because this set of circuitsis represented in
OpenQASM form or generated using QASM-compatible gates only, they
donottest the synthesis properties of each SDK. To do so, weincludea
set of 100 abstract circuits using Hamiltonians included in the HamLib
library" for time evolution. The choice of Hamiltonians is described in
‘Hamiltonianselection criteria’and results in a set of Hamiltonians from
2t0 930 qubits in size. Finally, we include the Feynman collection® of
circuitsthatare up to 768 qubits, and also OpenQASM-based, indevice
transpilationtests. Depending on the target quantum system for device
transpilation, some device tests may be skipped due to insufficient
physical qubit count. For benchmarking against abstract topologies,
we run the same set of Hamiltonian simulation circuits run for device
transpilation and include OpenQASM tests from QasmBench’ that go
up to 433 qubits.

Our performance metrics for both sets of tests are 2Q gate count,
2Q gate depth and transpilation runtime. In addition, we record the
number of qubitsintheinput circuit, QASMload time (ifany) and num-
berandtype of circuit operations at the output. Any additional metrics
that are compatible withJSON serialization can beincluded. The target
systemused inthe device transpilation tests is the FakeTorino system,
which is a snapshot of a 133-qubit Heron system from IBM Quantum
that includes calibration data suitable for noise-aware compilation.
Abstract topologies tested are all-to-all, square, heavy-hex andlinear,
which includes most typical device topologies, and are predefined
graphs in the rustworkx library*°. We have configured the abstract
models to use the basis set ['sx’, X', 'rz', 'cz']. Finally, to limit the dura-
tion of the tests, we have set atimeoutlimit of 3,600 s (1 h), after which
the testis marked as FAILED.

In this Article, we focus on testing the predefined transpilation
pipelinesin each SDK. In this way, we aim to measure the relative per-
formancethatatypical user would see, and eliminate the bias involved
when creating bespoke transpilation workflows in SDKs of which we
have less knowledge than Qiskit. Inmaking Benchpress open-source, we
hope that comparisons of optimal performance canbe led by commu-
nity expertsin each SDK. Here, we use the default optimization values
for both Tket (2) and BQSK:it (1). Qiskit does not have a well-defined
default optimization level, with the transpile function having a default
value of 1, whereas the newer generate_preset_passmanager interface
must have the optimization level explicitly set. In this work, we use

optimization level 2 for Qiskit that will be the default value for both
ways of calling the transpiler functionality starting in version 1.3.0.
This same optimization value is used for the QTS as well. Staq was set
tooptimization level 2 to generate circuits valid for the target topolo-
gies. All other transpiler values are left unchanged.

Hamiltonian selection criteria

Hamiltonians included in Benchpress originate from the HamLib
Hamiltonian library", which includes problems from chemistry, con-
densed matter physics, discrete optimization and binary optimization.
We randomly selected Hamiltonians from HamLib to be included in
the benchmark suite presented in this work. The random selection is
biased toward reflecting the distribution of Hamiltonian character-
istics prevalent in HamLib such as the number of qubits and number
of Pauli terms. Furthermore, we limited the number of qubits in the
selected Hamiltonians to <1,092 and the number of Pauli terms to
10,000 or fewer. Furthermore, the random selection is biased toward
‘unique’ Hamiltonians; the selection of different encodings of the same
Hamiltonian is discouraged. One-hundred HamLib Hamiltonians are
included inthis version of Benchpress, where 35Hamiltonians are from
chemistry and condensed matter physics problem classes each, and 15
Hamiltonians are chosen from both discrete and binary optimization
problem classes.

SDK-specific considerations

Given quantum computing software’s nascent stage of development,
itiscommon to encounter pitfalls when benchmarking these software
stacks. Here, we detail some of these issues as they pertainto executing
testsin Benchpress.

BQSKit. BQSKit performs unitary synthesis up to a maximum size
specified by the max_synthesis_size argument to the compiler. The
compiler will fail if a unitary is larger than this value. However, given
an OpenQASMcircuit, an end user must first parse the file tolearn the
correct size for this argument; the returned error message does not
include the required value. As there is no manner outside of parsing
files to gain this information, we have this parameter to the default
value, max_synthesis_size=3, letting tests fail if they have unitary gates
outside of this value.

In addition, BQSKit does not support coupling maps that cor-
respond to 2Q entangling gates with directionality; the topology is
assumed tobe symmetric. The CZgate used in this workis asymmetric
gate, and thus the circuits returned from the BQSKit transpiler pass the
structural validation performed here. Selecting a directional gate, such
asan echoed cross-resonance gate, would, in general, fail validation.

Qiskit transpiler service. The default timeout value for the QTS s less
than the 3,600-s timeout used in this work. As such, we explicitly set
the timeout value to match when calling the QTS service for each test.

Tket. The OpenQASM import functionality in Tket requires the user to
specify the size of classical registersin thecircuitifthose registersare
larger than 32 bits. Given an arbitrary OpenQASM file, the user must
first parse the file to gather the size of the classical registers or try
importingthefilefirst, capturing the exception and reading theregister
size fromthe error message. To get around this limitation, Benchpress
includes amaxwidth parameterinthe Tket section of the default.conf
file that allows one to specify amaximum allowed classical register size.
Given that the maximum number of qubits in the OpenQASM files is
433, we have set this value to 500 in the default.conf.

Staq. Staq cannot return quantum circuits in the basis set of the target
backend. Instead, the outputis always expressed in generic one-qubit
unitary U and CNOT gates. Because of this, we perform structural
validation only on circuits returned by Staq. In addition, we compute

Nature Computational Science | Volume 5 | May 2025 | 427-435

433

http://www.nature.com/natcomputsci

Resource

https://doi.org/10.1038/s43588-025-00792-y

2Qgate countsand depth onthe CNOT gates. Thisis valid provided the
target 2Q gate is equivalent to a CNOT gate up to single-qubit rotations.
For the CZgate used here, this relation holds.

Optimization level 3 of Staq includes the compiler flag -c that
applies a CNOT optimization pass. This pass generates output Open-
QASM files that do not obey the entangling gate topology of the target
device; the output circuits fail the structural validation check at the
end of each test. As such, we have set the default optimization level
of Staqto2.

Data availability

Results used for all figures and tables in this study are available via
Zenodo at https://doi.org/10.5281/zenodo0.14977295 (ref. 47) or the
published_results directory at the 1.0 branch of the Benchpress reposi-
tory via GitHub at https://github.com/Qiskit/benchpress/tree/1.0,
where data are stored in JSON format. Source data are provided with
this paper.

Code availability

All code used in generating this dataset is open-source and available
via Zenodo at https://doi.org/10.5281/zenod0.14977334 (ref. 48) or
the Benchpress repository via GitHub at https://github.com/qiskit/
benchpress.

References

1. Amazon Braket. AWS https://aws.amazon.com/braket/ (2024).

2. Younis, E. et al. Berkeley Quantum Synthesis Toolkit (bgskit) v1.
US Department of Energy https://doi.org/10.11578/dc.20210603.2
(2021).

3. Cirg Developers. Cirqg. Zenodo https://doi.org/10.5281/
zenodo.4062499 (2024).

4. Javadi-Abhari, A. et al. Quantum computing with Qiskit. Preprint
at https://arxiv.org/abs/2405.08810 (2024).

5. Kremer, D. et al. Practical and efficient quantum circuit synthesis
and transpiling with reinforcement learning. Preprint at https://
arxiv.org/abs/2405.13196 (2024).

6. Amy, M. & Gheorghiu, V. stag—a full-stack quantum processing
toolkit. Quant. Sci. Technol. 5, 034016 (2020).

7. Sivarajah, S. et al. t|ket): a retargetable compiler for nisq devices.
Quant. Sci. Technol. 6, 014003 (2020).

8. Amy, M. Towards large-scale functional verification of universal
quantum circuits. In Proc. 15th Int. Conf. Quantum Phys. Log. (eds.
Selinger, P. & Chiribella, G.) 1-21 (EPTCS, 2019); https://doi.org/
10.4204/EPTCS.2871

9. Li, A., Stein, S., Krishnamoorthy, S. & Ang, J. QASMBench: a
low-level quantum benchmark suite for NISQ evaluation and
simulation. ACM Trans. Quant. Comput. 4,1-26 (2023).

10. Mori, Y. et al. Quantum circuit unoptimization. Preprint at
https://arxiv.org/abs/2311.03805 (2023).

1. Sawaya, N. P. et al. HamLib: a library of Hamiltonians for
benchmarking quantum algorithms and hardware. In 2023 IEEE
Int. Conf. Quantum Comp. Eng. vol. 2, 389 (IEEE, 2023);
https://doi.org/10.1109/QCE57702.2023.10296

12. Kharkov, Y., Ivanova, A., Mikhantiev, E. & Kotelnikov, A. Arline
benchmarks: automated benchmarking platform for quantum
compilers. Preprint at https://arxiv.org/abs/2202.14025 (2022).

13. Quetschlich, N., Burgholzer, L. & Wille, R. MQT Bench:
benchmarking software and design automation tools for quantum
computing. Quantum 7,1062 (2023).

14. Cross, A. et al. Opengasm 3: a broader and deeper
quantum assembly language. ACM Trans. Quant. Comput. 3, 1
(2022).

15. Yan, G. et al. Quantum circuit synthesis and compilation
optimization: overview and prospects. Preprint at https://arxiv.
org/abs/2407.00736 (2024).

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

27.

28.

29.

30.

31.

33.

34.

35.

36.

37.

38.

Zhang, V. & Nation, P. D. Characterizing quantum processors using
discrete time crystals. Preprint at https://arxiv.org/abs/2301.07625
(2023).

Kim, Y. et al. Evidence for the utility of quantum computing before
fault tolerance. Nature 618, 500-505 (2023).

Yu, H., Zhao, Y. & Wei, T.-C. Simulating large-size quantum spin
chains on cloud-based superconducting quantum computers.
Phys. Rev. Res. 5, 013183 (2023).

Majumdar, R., Rivero, P., Metz, F., Hasan, A. & Wang, D. S. Best
practices for quantum error mitigation with digital zero-noise
extrapolation. Preprint at https://arxiv.org/abs/2307.05203
(2023).

Shtanko, O. et al. Uncovering local integrability in quantum
many-body dynamics. Nat. Commun. 16, 552 (2025).

Yasuda, T. et al. Quantum reservoir computing with repeated
measurements on superconducting devices. Preprint at https://
arxiv.org/abs/2310.06706 (2023).

Chen, E. H. et al. Nishimori transition across the error threshold
for constant-depth quantum circuits. Nat. Phys. 21, 161-167 (2025).
Farrell, R. C., Illa, M., Ciavarella, A. N. & Savage, M. J. Scalable
circuits for preparing ground states on digital quantum
computers: the Schwinger model vacuum on 100 qubits. PRX
Quantum 5, 020315 (2024).

Pelofske, E., Bartschi, A., Cincio, L., Golden, J. & Eidenbenz,

S. Scaling whole-chip QAOA for higher-order Ising spin glass
models on heavy-hex graphs. npj Quant. Inf. 10,109 (2024).
Baumer, E. et al. Efficient long-range entanglement using
dynamic circuits. PRX Quant. 5, 030339 (2024).

Acharya, R. et al. Quantum error correction below the surface
code threshold. Nature 638, 920-926 (2024).

Bluvstein, D. et al. Logical quantum processor based on
reconfigurable atom arrays. Nature 626, 58-65 (2024).

Farrell, R. C., Illa, M., Ciavarella, A. N. & Savage, M. J. Quantum
simulations of hadron dynamics in the Schwinger model using 112
qubits. Phys. Rev. D109, 114510 (2024).

Shinjo, K., Seki, K., Shirakawa, T., Sun, R.-Y. & Yunoki, S. Unveiling clean
two-dimensional discrete time quasicrystals on a digital quantum
computer. Preprint at https://arxiv.org/abs/2403.16718 (2024).
Miessen, A., Egger, D. J., Tavernelli, |. & Mazzola, G. Benchmarking
digital quantum simulations above hundreds of qubits using
quantum critical dynamics. PRX Quant. 5, 040320 (2024).
Robledo-Moreno, J. et al. Chemistry beyond exact solutions on

a quantum-centric supercomputer. Preprint at https://arxiv.org/
abs/2405.05068 (2024).

. Montanez-Barrera, J. A. & Michielsen, K. Towards a universal

QAOA protocol: evidence of a scaling advantage in solving some
combinatorial optimization problems. Preprint at https://arxiv.org/
abs/2405.09169 (2024).

Cadavid, A. G., Dalal, A., Simen, A., Solano, E. & Hegade, N.

N. Bias-field digitized counterdiabatic quantum optimization.
Preprint at https://arxiv.org/abs/2405.13898 (2024).

Alevras, D. et al. mRNA secondary structure prediction using
utility-scale quantum computers. Preprint at https://arxiv.org/
abs/2405.20328 (2024).

Sachdeva, N. et al. Quantum optimization using a 127-qubit
gate-model IBM quantum computer can outperform quantum
annealers for nontrivial binary optimization problems. Preprint at
https://arxiv.org/abs/2406.01743 (2024).

cuda-quantum. GitHub https://github.com/NVIDIA/cuda-quantum
(2024).

qiskit-braket-provider. GitHub https://github.com/
qiskit-community/qiskit-braket-provider (2024).

Lotstedt, E. & Yamanouchi, K. Comparison of current quantum
devices for quantum computing of heisenberg spin chain
dynamics. Chem. Phys. Lett. 836, 140975 (2024).

Nature Computational Science | Volume 5 | May 2025 | 427-435

434

http://www.nature.com/natcomputsci
https://doi.org/10.5281/zenodo.14977295
https://github.com/Qiskit/benchpress/tree/1.0
https://doi.org/10.5281/zenodo.14977334
https://github.com/qiskit/benchpress
https://github.com/qiskit/benchpress
https://aws.amazon.com/braket/
https://doi.org/10.11578/dc.20210603.2
https://doi.org/10.5281/zenodo.4062499
https://doi.org/10.5281/zenodo.4062499
https://arxiv.org/abs/2405.08810
https://arxiv.org/abs/2405.13196
https://arxiv.org/abs/2405.13196
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.4204/EPTCS.287.1
https://arxiv.org/abs/2311.03805
https://arxiv.org/abs/2311.03805
https://doi.org/10.1109/QCE57702.2023.10296
https://doi.org/10.1109/QCE57702.2023.10296
https://arxiv.org/abs/2202.14025
https://arxiv.org/abs/2407.00736
https://arxiv.org/abs/2407.00736
https://arxiv.org/abs/2301.07625
https://arxiv.org/abs/2307.05203
https://arxiv.org/abs/2310.06706
https://arxiv.org/abs/2310.06706
https://arxiv.org/abs/2403.16718
https://arxiv.org/abs/2405.05068
https://arxiv.org/abs/2405.05068
https://arxiv.org/abs/2405.09169
https://arxiv.org/abs/2405.09169
https://arxiv.org/abs/2405.13898
https://arxiv.org/abs/2405.20328
https://arxiv.org/abs/2405.20328
https://arxiv.org/abs/2406.01743
https://github.com/NVIDIA/cuda-quantum
https://github.com/qiskit-community/qiskit-braket-provider
https://github.com/qiskit-community/qiskit-braket-provider

Resource

https://doi.org/10.1038/s43588-025-00792-y

39. pytest. GitHub https://github.com/pytest-dev/pytest (2024).

40. pytest-benchmark. GitHub https://github.com/ionelmc/
pytest-benchmark/ (2024).

41. Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D. & Gambetta,
J. M. Validating quantum computers using randomized model
circuits. Phys. Rev. A100, 032328 (2019).

42. Bravyi, S. & Maslov, D. Hadamard-free circuits expose the
structure of the Clifford group. IEEE Trans. Inf. Theory 67,

4546 (2021).

43. Bravyi, S., Shaydulin, R., Hu, S. & Maslov, D. Clifford circuit
optimization with templates and symbolic Pauli gates. Quantum
5,580 (2021).

44. Knill, E. Fault-tolerant postselected quantum computation:
threshold analysis. Preprint at https://arxiv.org/abs/
quant-ph/0404104 (2004).

45. Wallman, J. J. & Emerson, J. Noise tailoring for scalable quantum
computation via randomized compiling. Phys. Rev. A 94, 052325
(2016).

46. Treinish, M., Carvalho, I., Tsilimigkounakis, G. & Sa, N. rustworkx: a
high-performance graph library for python. J. Open Source Softw.
7, 3968 (2022).

47. 1BM Quantum & Nation, P. Results generated from
Benchpress 1.0 used in Nat. Comput. Sci. publication. Zenodo
https://doi.org/10.5281/zenodo.14977295 (2025).

48. 1BM Quantum & Nation, P. Benchpress 1.0. Zenodo
https://doi.org/10.5281/zenodo0.14977334 (2025).

49. Fleming, P. J. & Wallace, J. J. How not to lie with statistics: the
correct way to summarize benchmark results. Commun. ACM 29,
218 (1986).

Acknowledgements

We thank J. Gacon, A. lvrii and J. Lishman for helpful discussions.

L.B., MT. and A.J.-A. were supported by the US Department of Energy,
Office of Science, National Quantum Information Science Research
Centers, Co-design Center for Quantum Advantage (C2QA) under
contract number DE-SC0012704. The funders had no role in the study
design, data collection and analysis, decision to publish or preparation
of the manuscript.

Author contributions

P.D.N. devised the testing infrastructure and methodology, and
contributed to the code base. A.A.S. wrote the tests for both the
BQSKit and Staq SDKs and contributed to the infrastructure code. S.B.
wrote the code for Hamiltonian simulation tests from HamLib, and
selected the subset of Hamiltonians that are included in this work.
L.B. added the test logic that allows for skipping tests with timeout
logic, while S.G. added random Clifford tests. M.T. added the Feynman

suite of tests for the device transpilation tests, and A.J.-A. suggested
circuit libraries for inclusion and test cases to consider. All authors
contributed to the paper.

Competinginterests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s43588-025-00792-y.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s43588-025-00792-y.

Correspondence and requests for materials should be addressed to
Paul D. Nation.

Peer review information Nature Computational Science thanks
Tyson Jones and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Peer reviewer reports are
available. Primary Handling Editor: Jie Pan, in collaboration with the
Nature Computational Science team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share
adapted material derived from this article or parts of it. The images

or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit

line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Nature Computational Science | Volume 5 | May 2025 | 427-435

435

http://www.nature.com/natcomputsci
https://github.com/pytest-dev/pytest
https://github.com/ionelmc/pytest-benchmark/
https://github.com/ionelmc/pytest-benchmark/
https://arxiv.org/abs/quant-ph/0404104
https://arxiv.org/abs/quant-ph/0404104
https://doi.org/10.5281/zenodo.14977295
https://doi.org/10.5281/zenodo.14977334
https://doi.org/10.1038/s43588-025-00792-y
https://doi.org/10.1038/s43588-025-00792-y
https://doi.org/10.1038/s43588-025-00792-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/

Resource https://doi.org/10.1038/s43588-025-00792-y

A
skipfile
Entry point and configuration et
“
bgskit_gym braket_gym qiskit_gym
qgiskit_t piler_

Grouped test directories abstract_transpile device_transpile

Extended Data Fig. 1| Organization of the Benchpress dataset. The entry point Hamiltonians are included in the qasm and hamiltonian folders, respectively.

Test definitions and inputs

SDK specific test
definitions

is the benchpress directory, and SDK specific flags and options are set in the Tests specific to each SDK are located in the corresponding “*_gym” directories.
default.conffile. Optionally, tests taking longer than a specified timeout can be Inside each “gym”, tests are organized in groups based on the target functionality
automatically included in the skipfile.txt. Abstract test definitions are included tobe tested.

inthe workouts directory, and test inputs in the form of OpenQASM files or

Nature Computational Science

http://www.nature.com/natcomputsci

	Benchmarking the performance of quantum computing software for quantum circuit creation, manipulation and compilation

	Results

	Circuit construction and manipulation

	Device and abstract transpilation

	Discussion

	Methods

	Test suite

	Test result definitions

	Circuit construction and manipulation tests

	Circuit transpilation tests

	Hamiltonian selection criteria

	SDK-specific considerations

	BQSKit
	Qiskit transpiler service
	Tket
	Staq

	Acknowledgements

	Fig. 1 SDK functionality and corresponding test results.
	Fig. 2 Benchmark results for the circuit construction and manipulation portions of Benchpress.
	Fig. 3 Results generated from the device and abstract transpilation tests in Benchpress.
	Extended Data Fig. 1 Organization of the Benchpress data set.
	Table 1 SDK and corresponding version numbers used in generating the reported sample results.
	Table 2 Geometric mean49/median values for SDK performance metrics, normalized to the corresponding Qiskit values.

