Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Leveraging generative models with periodicity-aware, invertible and invariant representations for crystalline materials design

Abstract

Designing periodicity-aware, invariant and invertible representations provides an opportunity for the inverse design of crystalline materials with desired properties by generative models. This objective requires optimizing representations and refining the architecture of generative models, yet its feasibility remains uncertain, given current progress in molecular inverse generation. In this Perspective, we highlight the progress of various methods for designing representations and generative schemes for crystalline materials, discuss the challenges in the field and propose a roadmap for future developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computational strategies for materials generation.
Fig. 2: Typical invertible representations for crystalline materials.
Fig. 3: Text-based representations for crystalline materials.
Fig. 4: Generative architecture with diffusion models and flow-based models.
Fig. 5: Future research directions.

Similar content being viewed by others

References

  1. Wieder, B. J. et al. Topological materials discovery from crystal symmetry. Nat. Rev. Mater. 7, 196–216 (2021).

    Article  Google Scholar 

  2. Firaha, D. et al. Predicting crystal form stability under real-world conditions. Nature 623, 324–328 (2023).

    Article  Google Scholar 

  3. Guan, X., Heindel, J. P., Ko, T., Yang, C. & Head-Gordon, T. Using machine learning to go beyond potential energy surface benchmarking for chemical reactivity. Nat. Comput Sci. 3, 965–974 (2023).

    Article  Google Scholar 

  4. Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Article  Google Scholar 

  5. Ko, T. W. & Ong, S. P. Recent advances and outstanding challenges for machine learning interatomic potentials. Nat. Comput. Sci. 3, 998–1000 (2023).

    Article  Google Scholar 

  6. Wan, K., He, J. & Shi, X. Construction of high accuracy machine learning interatomic potential for surface/interface of nanomaterials—a review. Adv. Mater. 36, 2305758 (2024).

    Article  Google Scholar 

  7. Yan, D., Smith, A. D. & Chen, C.-C. Structure prediction and materials design with generative neural networks. Nat. Comput. Sci. 3, 572–574 (2023).

    Article  Google Scholar 

  8. Gusev, V. V. et al. Optimality guarantees for crystal structure prediction. Nature 619, 68–72 (2023).

    Article  Google Scholar 

  9. Wang, X. et al. Data-driven prediction of complex crystal structures of dense lithium. Nat. Commun. 14, 2924 (2023).

    Article  Google Scholar 

  10. Anstine, D. M. & Isayev, O. Generative models as an emerging paradigm in the chemical sciences. J. Am. Chem. Soc. 145, 8736–8750 (2023).

    Article  Google Scholar 

  11. Singh, S. & Sunoj, R. B. Molecular machine learning for chemical catalysis: prospects and challenges. Acc. Chem. Res. 56, 402–412 (2023).

    Article  Google Scholar 

  12. Jiang, S., Dieng, A. B. & Webb, M. A. Property-guided generation of complex polymer topologies using variational autoencoders. npj Comput. Mater. 10, 139 (2024).

    Article  Google Scholar 

  13. Krenn, M. et al. On scientific understanding with artificial intelligence. Nat. Rev. Phys. 4, 761–769 (2022).

    Article  Google Scholar 

  14. Kang, Y. & Kim, J. ChatMOF: an artificial intelligence system for predicting and generating metal–organic frameworks using large language models. Nat. Commun. 15, 4705 (2024).

    Article  Google Scholar 

  15. Wang, Z., Chen, A., Tao, K., Han, Y. & Li, J. MatGPT: a vane of materials informatics from past, present, to future. Adv. Mater. 36, 2306733 (2024).

    Article  Google Scholar 

  16. Walters, W. P. & Murcko, M. Assessing the impact of generative AI on medicinal chemistry. Nat. Biotechnol. 38, 143–145 (2020).

    Article  Google Scholar 

  17. Du, Y. et al. Machine learning-aided generative molecular design. Nat. Mach. Intell. 6, 589–604 (2024).

    Article  Google Scholar 

  18. Zhung, W., Kim, H. & Kim, W. Y. 3D molecular generative framework for interaction-guided drug design. Nat. Commun. 15, 2688 (2024).

    Article  Google Scholar 

  19. Jiang, Y. et al. PocketFlow is a data-and-knowledge-driven structure-based molecular generative model. Nat. Mach. Intell. 6, 326–337 (2024).

    Article  Google Scholar 

  20. Chang, J. & Ye, J. C. Bidirectional generation of structure and properties through a single molecular foundation model. Nat. Commun. 15, 2323 (2024).

    Article  Google Scholar 

  21. Westermayr, J., Gilkes, J., Barrett, R. & Maurer, R. J. High-throughput property-driven generative design of functional organic molecules. Nat. Comput. Sci. 3, 139–148 (2023).

    Article  Google Scholar 

  22. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988).

    Article  Google Scholar 

  23. Heller, S. R., McNaught, A., Pletnev, I., Stein, S. & Tchekhovskoi, D. InChI, the IUPAC international chemical identifier. J. Cheminform. 7, 23 (2015).

    Article  Google Scholar 

  24. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

    Article  Google Scholar 

  25. Krenn, M., Häse, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A. Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation. Mach. Learn. Sci. Technol. 1, 045024 (2020).

    Article  Google Scholar 

  26. Park, H., Li, Z. & Walsh, A. Has generative artificial intelligence solved inverse materials design? Matter 7, 2355–2367 (2024).

    Article  Google Scholar 

  27. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article  Google Scholar 

  28. Friederich, P., Häse, F., Proppe, J. & Aspuru-Guzik, A. Machine-learned potentials for next-generation matter simulations. Nat. Mater. 20, 750–761 (2021).

    Article  Google Scholar 

  29. Hippalgaonkar, K. et al. Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics. Nat. Rev. Mater. 8, 241–260 (2023).

    Article  Google Scholar 

  30. Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  31. Draxl, C. & Scheffler, M. NOMAD: the FAIR concept for big data-driven materials science. MRS Bull. 43, 676–682 (2018).

    Article  Google Scholar 

  32. Sbailò, L., Fekete, Á., Ghiringhelli, L. M. & Scheffler, M. The NOMAD artificial-intelligence toolkit: turning materials-science data into knowledge and understanding. npj Comput. Mater. 8, 250 (2022).

    Article  Google Scholar 

  33. Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).

    Article  Google Scholar 

  34. Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article  Google Scholar 

  35. Wang, R. et al. MatSwarm: trusted swarm transfer learning driven materials computation for secure big data sharing. Nat. Commun. 15, 9290 (2024).

    Article  Google Scholar 

  36. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).

    Article  Google Scholar 

  37. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31, 3564–3572 (2019).

    Article  Google Scholar 

  38. Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

    Article  Google Scholar 

  39. Yan, K., Liu, Y., Lin, Y. & Ji, S. Periodic graph transformers for crystal material property prediction. In Advances in Neural Information Processing Systems (eds Oh, A. H. et al.) 1096 (Curran Associates Inc., 2022).

  40. Banik, S. et al. CEGANN: crystal edge graph attention neural network for multiscale classification of materials environment. npj Comput. Mater. 9, 23 (2023).

    Article  Google Scholar 

  41. Noh, J. et al. Inverse design of solid-state materials via a continuous representation. Matter 1, 1370–1384 (2019).

    Article  Google Scholar 

  42. Long, T. et al. Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures. npj Comput. Mater. 7, 66 (2021).

    Article  Google Scholar 

  43. Court, C. J., Yildirim, B., Jain, A. & Cole, J. M. 3-D inorganic crystal structure generation and property prediction via representation learning. J. Chem. Inf. Model. 60, 4518–4535 (2020).

    Article  Google Scholar 

  44. Yan, Z., Wei, D., Li, X. & Chung, L. W. Accelerating reliable multiscale quantum refinement of protein–drug systems enabled by machine learning. Nat. Commun. 15, 4181 (2024).

    Article  Google Scholar 

  45. Siebenmorgen, T. et al. MISATO: machine learning dataset of protein–ligand complexes for structure-based drug discovery. Nat. Comput. Sci. 4, 367–378 (2024).

    Article  Google Scholar 

  46. Yang, M., Raucci, U. & Parrinello, M. Reactant-induced dynamics of lithium imide surfaces during the ammonia decomposition process. Nat. Catal. 6, 829–836 (2023).

    Article  Google Scholar 

  47. Gu, Q. et al. Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy. Nat. Commun. 15, 6772 (2024).

    Article  Google Scholar 

  48. Kim, S., Noh, J., Gu, G. H., Aspuru-Guzik, A. & Jung, Y. Generative adversarial networks for crystal structure prediction. ACS Cent. Sci. 6, 1412–1420 (2020).

    Article  Google Scholar 

  49. Ren, Z. et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. Matter 5, 314–335 (2022).

    Article  Google Scholar 

  50. Nanotechnology for Microelectronics and Optoelectronics (Elsevier, 2006); https://doi.org/10.1016/B978-0-08-044553-3.X5000-0

  51. Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    Article  Google Scholar 

  52. Phan, B. K. et al. Gas permeability, diffusivity, and solubility in polymers: simulation-experiment data fusion and multi-task machine learning. npj Comput. Mater. 10, 186 (2024).

    Article  Google Scholar 

  53. Zheng, X., Zheng, P. & Zhang, R.-Z. Machine learning material properties from the periodic table using convolutional neural networks. Chem. Sci. 9, 8426–8432 (2018).

    Article  Google Scholar 

  54. Yang, S. et al. Scalable diffusion for materials generation. In 12th International Conference on Learning Representations (ICLR, 2024).

  55. Van De Ven, G. M., Tuytelaars, T. & Tolias, A. S. Three types of incremental learning. Nat. Mach. Intell. 4, 1185–1197 (2022).

    Article  Google Scholar 

  56. Dohare, S. et al. Loss of plasticity in deep continual learning. Nature 632, 768–774 (2024).

    Article  Google Scholar 

  57. Antunes, L. M., Butler, K. T. & Grau-Crespo, R. Crystal structure generation with autoregressive large language modeling. Nat. Commun. 15, 10570 (2024).

    Article  Google Scholar 

  58. Xiao, H. et al. An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning. Nat. Commun. 14, 7027 (2023).

    Article  Google Scholar 

  59. Spicher, S. & Grimme, S. Robust atomistic modeling of materials, organometallic, and biochemical systems. Angew. Chem. Int. Ed. 132, 15795–15803 (2020).

    Article  Google Scholar 

  60. Zang, X., Zhao, X. & Tang, B. Hierarchical molecular graph self-supervised learning for property prediction. Commun. Chem. 6, 34 (2023).

    Article  Google Scholar 

  61. Nouira, A., Sokolovska, N. & Crivello, J.-C. CrystalGAN: learning to discover crystallographic structures with generative adversarial networks. Preprint at https://arxiv.org/abs/1810.11203 (2018).

  62. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  63. Zhao, Y. et al. Physics guided deep learning for generative design of crystal materials with symmetry constraints. npj Comput. Mater. 9, 38 (2023).

    Article  Google Scholar 

  64. Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11, 5966 (2020).

    Article  Google Scholar 

  65. Zhang, Y. et al. Machine learning on microstructure–property relationship of lithium-ion conducting oxide solid electrolytes. Nano Lett. 24, 5292–5300 (2024).

    Article  Google Scholar 

  66. Xie, T., Fu, X., Ganea, O.-E., Barzilay, R. & Jaakkola, T. Crystal diffusion variational autoencoder for periodic material generation. In 10th International Conference on Learning Representations (ICLR, 2022).

  67. Wines, D., Xie, T. & Choudhary, K. Inverse design of next-generation superconductors using data-driven deep generative models. J. Phys. Chem. Lett. 14, 6630–6638 (2023).

    Article  Google Scholar 

  68. Zeni, C. et al. A generative model for inorganic materials design. Nature 639, 624–632 (2025).

    Article  Google Scholar 

  69. Song, Y. et al. Score-based generative modeling through stochastic differential equations. In 9th International Conference on Learning Representations (ICLR, 2021).

  70. Sultanov, A., Crivello, J.-C., Rebafka, T. & Sokolovska, N. Data-driven score-based models for generating stable structures with adaptive crystal cells. J. Chem. Inf. Model. 63, 6986–6997 (2023).

    Article  Google Scholar 

  71. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article  Google Scholar 

  72. Bastek, J.-H. & Kochmann, D. M. Inverse design of nonlinear mechanical metamaterials via video denoising diffusion models. Nat. Mach. Intell. 5, 1466–1475 (2023).

    Article  Google Scholar 

  73. Zhang, L., Rao, A. & Agrawala, M. Adding conditional control to text-to-image diffusion models. In IEEE International Conference on Computer Vision (ICCV) (IEEE, 2023).

  74. Bengio, E., Jain, M., Korablyov, M., Precup, D. & Bengio, Y. Flow network based generative models for non-iterative diverse candidate generation. In Advances in Neural Information Processing Systems, 27381–27394 (Curran Associates, Inc., 2022).

  75. Hernandez-Garcia, A. et al. Crystal-GFN: sampling crystals with desirable properties and constraints. In AI4MAt 2023 - AI for Accelerated Materials Design workshop at 37th Conference on Neural Information Processing Systems (NeurIPS, 2023).

  76. Galanakis, N. & Tuckerman, M. E. Rapid prediction of molecular crystal structures using simple topological and physical descriptors. Nat. Commun. 15, 9757 (2024).

    Article  Google Scholar 

  77. Karimitari, N. et al. Accurate crystal structure prediction of new 2D hybrid organic–inorganic perovskites. J. Am. Chem. Soc. 146, 27392–27404 (2024).

    Article  Google Scholar 

  78. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  Google Scholar 

  79. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  Google Scholar 

  80. Fei, N. et al. Towards artificial general intelligence via a multimodal foundation model. Nat. Commun. 13, 3094 (2022).

    Article  Google Scholar 

  81. Cohen Kalafut, N., Huang, X. & Wang, D. Joint variational autoencoders for multimodal imputation and embedding. Nat. Mach. Intell. 5, 631–642 (2023).

    Article  Google Scholar 

  82. Xiao, Y. et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat. Mater. 20, 984–990 (2021).

    Article  Google Scholar 

  83. Cui, L. et al. A cathode homogenization strategy for enabling long-cycle-life all-solid-state lithium batteries. Nat. Energy 9, 1084–1094 (2024).

    Google Scholar 

  84. Lu, S. et al. Towards n-type conductivity in hexagonal boron nitride. Nat. Commun. 13, 3109 (2022).

    Article  Google Scholar 

  85. Wang, H., Zhang, L., Han, J. & E, W. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).

    Article  Google Scholar 

  86. Joll, K., Schienbein, P., Rosso, K. M. & Blumberger, J. Machine learning the electric field response of condensed phase systems using perturbed neural network potentials. Nat. Commun. 15, 8192 (2024).

    Article  Google Scholar 

  87. Batatia, I. et al. A foundation model for atomistic materials chemistry. Preprint at https://arxiv.org/abs/2401.00096 (2024).

  88. Li, C.-N., Liang, H.-P., Zhao, B.-Q., Wei, S.-H. & Zhang, X. Machine learning assisted crystal structure prediction made simple. J. Mater. Inf. 4, 15 (2024).

    Article  Google Scholar 

  89. Hessmann, S. S. P. et al. Accelerating crystal structure search through active learning with neural networks for rapid relaxations. npj Comput. Mater. 11, 44 (2025).

    Article  Google Scholar 

  90. Yang, H. et al. MatterSim: a deep learning atomistic model across elements, temperatures and pressures. Preprint at https://arxiv.org/abs/2405.04967 (2024).

  91. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  Google Scholar 

  92. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  Google Scholar 

  93. Moret, M., Friedrich, L., Grisoni, F., Merk, D. & Schneider, G. Generative molecular design in low data regimes. Nat. Mach. Intell. 2, 171–180 (2020).

    Article  Google Scholar 

  94. Ramsundar, B. et al. Deep Learning for the Life Sciences (O’Reilly Media, 2019).

  95. Ward, L. et al. Matminer: an open source toolkit for materials data mining. Comput. Mater. Sci. 152, 60–69 (2018).

    Article  Google Scholar 

  96. Dunn, A., Wang, Q., Ganose, A., Dopp, D. & Jain, A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. npj Comput. Mater. 6, 138 (2020).

    Article  Google Scholar 

  97. Li, H. et al. Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation. Nat. Comput. Sci. 2, 367–377 (2022).

    Article  Google Scholar 

  98. Gong, X., Louie, S. G., Duan, W. & Xu, Y. Generalizing deep learning electronic structure calculation to the plane-wave basis. Nat. Comput. Sci. 4, 752–760 (2024).

    Article  Google Scholar 

  99. Yang, Z. et al. Scalable crystal structure relaxation using an iteration-free deep generative model with uncertainty quantification. Nat. Commun. 15, 8148 (2024).

    Article  Google Scholar 

  100. Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012).

    Article  Google Scholar 

  101. Hajinazar, S. & Zurek, E. XtalOpt version 13: Multi-objective evolutionary search for novel functional materials. Comput. Phys. Commun. 304, 109306 (2024).

    Article  Google Scholar 

  102. Wang, Z. et al. AlphaMat: a material informatics hub connecting data, features, models and applications. npj Comput. Mater. 9, 130 (2023).

    Article  Google Scholar 

  103. Zhao, X.-G. et al. JAMIP: an artificial-intelligence aided data-driven infrastructure for computational materials informatics. Sci. Bull. 66, 1973–1985 (2021).

    Article  Google Scholar 

  104. Jacobs, R. et al. The Materials Simulation Toolkit for Machine learning (MAST-ML): an automated open source toolkit to accelerate data-driven materials research. Comput. Mater. Sci. 176, 109544 (2020).

    Article  Google Scholar 

  105. Hu, J. et al. MaterialsAtlas.org: a materials informatics web app platform for materials discovery and survey of state-of-the-art. npj Comput. Mater. 8, 65 (2022).

    Article  Google Scholar 

  106. Tran, R. et al. The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts. ACS Catal. 13, 3066–3084 (2023).

    Article  Google Scholar 

  107. Zhong, X. et al. Explainable machine learning in materials science. npj Comput. Mater. 8, 204 (2022).

    Article  Google Scholar 

  108. Wang, Z. et al. IonML: a physically inspired machine learning platform to directed design superionic conductors. Energy Stor. Mater. 59, 102781 (2023).

    Google Scholar 

  109. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  Google Scholar 

  110. Wang, Z., Han, Y., Li, J. & He, X. Combining the fragmentation approach and neural network potential energy surfaces of fragments for accurate calculation of protein energy. J. Phys. Chem. B 124, 3027–3035 (2020).

    Article  Google Scholar 

  111. Han, Y. et al. Machine learning accelerates quantum mechanics predictions of molecular crystals. Phys. Rep. 934, 1–71 (2021).

    Article  Google Scholar 

  112. Zeng, Z. et al. Mechanistic insight on water dissociation on pristine low-index TiO2 surfaces from machine learning molecular dynamics simulations. Nat. Commun. 14, 6131 (2023).

    Article  Google Scholar 

  113. Abdin, O. & Kim, P. M. Direct conformational sampling from peptide energy landscapes through hypernetwork-conditioned diffusion. Nat. Mach. Intell. 6, 775–786 (2024).

    Article  Google Scholar 

  114. Van De Walle, A., Asta, M. & Ceder, G. The alloy theoretic automated toolkit: a user guide. Calphad 26, 539–553 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This project is partially supported by the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship, a program of Schmidt Sciences, LLC.

Author information

Authors and Affiliations

Authors

Contributions

Z.W.: conceptualization, methodology, visualization, data curation, writing—original draft. F.Y.: conceptualization, methodology, supervision, resources, writing—review and editing.

Corresponding author

Correspondence to Fengqi You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Ming Hu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Kaitlin McCardle, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

An overview of generative models of crystalline materials design. This table summarizes the representative studies from this Perspective, highlighting their main representations, artificial intelligence architectures, materials applications, properties and access links.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., You, F. Leveraging generative models with periodicity-aware, invertible and invariant representations for crystalline materials design. Nat Comput Sci 5, 365–376 (2025). https://doi.org/10.1038/s43588-025-00797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43588-025-00797-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing