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Background In radiotherapy, 2D orthogonally projected kV images are used for patient
alignment when 3D-on-board imaging (OBI) is unavailable. However, tumor visibility is
constrained due to the projection of patient’s anatomy onto a 2D plane, potentially leading to
substantial setup errors. In treatment room with 3D-OBI such as cone beam CT (CBCT), the
field of view (FOV) of CBCT is limited with unnecessarily high imaging dose. A solution to this
dilemma is to reconstruct 3D CT from kV images obtained at the treatment position.
Methods We propose a dual-models framework built with hierarchical ViT blocks. Unlike a
proof-of-concept approach, our framework considers kV images acquired by 2D imaging
devices in the treatment room as the solo input and can synthesize accurate, full-size 3D CT
within milliseconds.

Results We demonstrate the feasibility of the proposed approach on 10 patients with head
and neck (H&N) cancer using image quality (MAE: < 45HU), dosimetric accuracy (Gamma
passing rate ((2%/2 mm/10%): > 97 %) and patient position uncertainty (shift

error: < 0.4 mm).

Conclusions The proposed framework can generate accurate 3D CT faithfully mirroring
patient position effectively, thus substantially improving patient setup accuracy, keeping
imaging dose minimal, and maintaining treatment veracity.

Effective and accurate imaging guidance is
critical for precise patient alignment, accurate
tumor tracking, accurate delivery of radiation
therapy and to protect organs that should not
be irradiated. However, high-quality imaging
guidance usually can only be provided fol-
lowing detailed imaging using a large amount
of radiation. We propose a computational
method that can generate the full size 3D
images required as image guidance from
X-Ray images. We demonstrated its utility
using data from 10 people with head and neck
cancer. Our proposed approach can be used
by existing treatment machines to improve
the accuracy of patient alignment and hence
ensure more accurate treatment of patients.

Radiotherapy (RT) is a standard and a favored treatment modality for head
and neck (H&N) cancer patients. Among the cutting-edge approaches in
RT, intensity-modulated proton therapy (IMPT) distinguishes itself by
precisely delivering maximum cell-killing energy to tumors while mini-
mizing exposure to surrounding organs at risk (OARs)'™. Despite its pre-
cision, IMPT remains highly susceptible to factors such as patient setup,
proton beam range uncertainties, respiratory motion, and inter-fractional
anatomical changes”"'. These uncertainties may potentially result in
undertreatment of tumors or excessive exposure of surrounding OARs,
leading tolocal recurrence and unexpected treatment-related adverse events
( AES)IZ_lS.

Image-guided patient alignment is an essential step for patient setup in
most RT modalities, especially for the more uncertainty-vulnerable IMPT.
During treatment, before delivering the prescribed dose, the therapists need
to carefully adjust the patient’s position and posture to align with the
planning CT, on which the treatment plan was designed. Hence, accurate
dose delivery depends on accurate patient setup, for which minimizing
patient alignment error is vital. In RT, commonly employed on-board
imaging (OBI) techniques are CT-on-rails (CToR), cone beam CT (CBCT),
and orthogonal kV images, etc. CToR has the diagnostically equivalent
imaging quality (same as planning CT) but requires effective transfer of the
patient from the CT scanner to the position of treatment. During the
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transfer, any uncertainty caused by either patients’ movement or position/
posture discrepancy can negate the effectiveness of image guidance. CBCT is
used at the treatment position but has artifacts that could produce greater
dosimetric errors in the correspondingly calculated dose distribution in the
patient. Meanwhile, CToR and CBCT are relatively expensive, which
impedes their widespread adoption, especially in low-income, rural areas In
addition, the rather high imaging doses from both CToR and CBCT, which
may have unknown, potential risks act as a barrier to frequent use, such as
the promising daily online adaptive radiation therapy (ART)'*"**. Thus, we
aim to follow the dose management principle adopted by the diagnostic
imaging community, which is summarized as the principle ALARA, i.e., as
low as (is) reasonably achievable', improving the patient alignment accu-
racy while maintaining imaging dose as minimal as possible.

A recent study” proposed to synthesize virtual 3D CT from CBCT
utilizing the commercially available software, partially addressing the
drawbacks of CToR (additional alignment uncertainty due to indispensable
position transfer and posture change) and CBCT (low image quality).
However, the imaging dose is still not reduced and the process was com-
plicated such that any errors accumulated during the procedure may ulti-
mately lead to significant setup errors. Orthogonal kV image performs in a
real-time manner with much less expense and a much lower imaging dose
compared to CToR and CBCT. Nevertheless, image quality-wise, KV image
only shows clear bony anatomies in a 2D x-ray projection(e.g. the middle
image in Fig. 3), making it barely usable in online ART workflow except for
patient alignment. Even for patient alignment, these 2D images often lack
sufficient soft tissue details, leading to large patient setup uncertainties. The
ad hoc handling of large patient setup uncertainties by using large target
margins can lead to unnecessarily high doses to nearby OARs and thus
unnecessary AEs. Overall, there is currently no imaging guide technique for
radiation therapy that can simultaneously be real-time in efficiency, diag-
nostically equivalent in quality, and cheap and low dose for frequent and
widespread use.

Lately, artificial intelligence (AI) has undergone rapid development
and its application in radiation oncology has been growing quickly*'~**. The
feasibility of using AI models to inversely reconstruct the 3D CT from 2D
clean and noise-free digital reconstructed radiography (DRR) images (e.g.
the right image in Fig. 3) has been explored and validated” . Though
conceptually inspiring, such a model itself is chronologically inapplicable in
clinical practice since the DRR image is generated based on the planning CT
or CToR images previously obtained. Only independent 2D images without
prerequisite 3D images, such as kV images, are the practically meaningful
inputs to such 2D-to-3D deep learning-based models. Although™ attempted
to test on the 2D X-Ray images in the reference stage, the images need to be
converted to DRR first and the attempt lacked both quantitative and qua-
litative evaluation, making clinical application challenging.In addition, most
existing deep learning-based 3D CT reconstruction approaches are tested
and validated on small-size images only (typically 128 x 128 x 100), which
are far from clinically satisfactory.

More recently”, explored synthesizing 3D CT from planar X-ray
considering the fact that the CT scanners are rare in low and mid-resource
settings due to their costs — a motivation that aligns with our work.
Nevertheless, the DRR images were used rather than planar X-ray in the
experiments, limiting the work to theoretical concepts. In other reported
literature™* and™, all the 2D images used for training and testing were
synthesized by ray-tracing from the 3D images, ensuring a strict one-to-one
correspondence. Unfortunately, this pre-assumption does not hold in
clinical scenario.

Therefore, as far as we are aware, we propose an innovative deep
learning-based framework kV2CTConverter (Fig. 1a) composed of dual
models built with hierarchical vision transformer (ViT) blocks’”*. The
proposed framework will take kV images as the exclusive input to synthesize
the corresponding full-size 3D CT within milliseconds, which can be used
for reflecting 3D patient’s position in time, thus achieving high-quality but
almost “zero-dose” image-guided patient alignment. To our best knowledge,
kV2CTConverter might be the one of the pioneering Al-based attempts that

utilizes only clinically available images (daily kV images) and timely
reconstructs ready-to-use, full-size 3D CT, paving the way towards Al-based
online ART. We believe this work will have broad impact upon image-
guided interventional procedures such as radiation therapy and needle
biopsy, especially for pediatric patients who are sensitive to imaging dose. In
addition, it may help simplify the hardware of tomographic imaging sys-
tems. Also, the developed timely CT reconstruction with limited projections
can benefit radiation therapy in low-income, rural areas, where many
radiotherapy machines lack 3D OBI capability.

At the core of bridging the theoretical algorithm and the practical
application, a hierarchical vision transformer is adopted and adapted to the
medical images (i.e., kV images and 3D CT) with a dual-model setting and a
data augmentation strategy termed as geometry property reserved shifting
and sampling (GRSS) is also proposed. To our best knowledge, GRSS is an
advanced yet easy-to-implement data augmentation method that takes the
geometrical relation between the treatment couch and kV imaging source
and detector into consideration. This strategy enables kV2CTConverter to
take full advantage of the noisy but ultra-sparse 2D kV images to fulfill
accurate 3D CT reconstruction while avoiding model overfitting. We vali-
dated the effectiveness of the kV2CTConverter using 10 independent
patients with H&N cancer from three perspectives: (1) image quality eva-
luation of the synthesized CTs, (2) dosimetric evaluation of the dose dis-
tributions calculated using the synthesized CT's, and (3) robustness of the
framework to random shifts that mimic patient alignment uncertainties
during treatment. In both image quality and dosimetric evaluations,
kV2CTConverter exhibited high accuracy. In random shift test, the
kV2CTConverter achieved a minimum shift error of 0.4mm, which meets
the clinical criterion.

Methods

10 H&N patients previously treated with IMPT were retrospectively selected
for this study and the need to obtain informed consent was waived with
approval from Mayo Clinic Arizona institutional review board (IRB#: 13-
005709). We repeatedly trained independent patient-specific model for each
of the selected 10 H&N patients included our study. For each patient, there
are multiple pairs of kV images and CToR images. Also, for each patient, we
used the leave-one-out strategy to evaluate the model performance and
student t-test to measure the significance. To be specific, we randomly chose
one pair of kV-CToR images for model validation and used the other pairs
of kV-CToR images for model training. The number of raw images, the
number of samples in dataset for training the primary model and secondary
model used in this study along with the basic treatment plan information are
listed in Table 1. For proton treatment, it is imperative to set up patients such
that their anatomy matches the planning CT as closely as possible. This
requires 1) precise patient positioning, and 2) ensuring that the patient’s
anatomy has not diverged from the planning CT. To monitor anatomical
changes, verification CT scans are performed regularly (for this study,
weekly verification CT scans were performed using the CToR), sometimes
leading to a new treatment plan, a process known as ART. Precise patient
positioning at our proton center is achieved using an orthogonal 2D kV
imaging system. See Figure 3. This system compares the real-time ortho-
gonal kV images with DRRs generated from the planning CT. After patients
are initially aligned, orthogonal kV images are captured and rigidly regis-
tered to their corresponding DRRs to determine whether the patient posi-
tion should be shifted/rotated. After a few iterations of this process, the
patient is ready for treatment. As a result of these processes, a large amount
of imaging and registration data are generated for each patient over the
course of treatment. Of relevance for this study, these data include the initial
planning CT, multiple verification CT's (weekly), rigid registration matrices
generated by registering the verification CTs to the planning CT (stored as
DICOM files), orthogonal kV images (for each treatment), and rigid
registration matrices generated by registering the orthogonal kV images to
the DRRs. In this study, we took advantage of the fact that patients were
typically treated shortly after undergoing a CToR scan. This meant that for
each CToR dataset (each patient in this study received a minimum of 3
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Fig. 1 | Overall architecture of kV2CTConverter. a Workflow of the proposed
method. The raw kV images were augmented by GRSS to get adequate samples for
model training. Then the processed images simultaneously went through dual
models (i.e., primary model and secondary model) to generate the whole CT and the
fractional CT that covered only the head region, respectively. Lastly, the full-size
synthesized CT was achieved by overlaying and concatenating the outputs from two
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models according to their spatial relationship. b The model structure of both pri-
mary and secondary model. c. The details of the hierarchical ViT blocks in the
encoder E;. d The details of the hierarchical ViT blocks in the decoder D,. e The
detailed illustration of the window-based Multi-Head Attention (W-MHA), the
tokenized patches were first spat to nW non-overlapped windows of a size of w x w
and the attention was only calculated on the windows instead of the whole inputs.

CToR scans), there was a corresponding pair of orthogonal kV images along
with its corresponding rigid registration matrices. In this work, we have
investigated the performance of a patient-specific model designed to gen-
erate synthetic CT's (sCTs) from a pair of 2D orthogonal kV images.

Data pre-processing

Firstly, the CToR and corresponding kV images were registered to the same
coordinates with the stored rigid registration matrices to exclude any pre-
existing positioning difference. Since the patients in this study were treated
with a so-called bolus helmet in place during treatment. The bolus helmet is
quite large in terms of volume and was therefore a considerable feature in all
of the patient imaging. For this reason, two models were developed, the
“primary” and “secondary” models. After registered to the same coordinate,
the kV images and the CToR image were used for the training of both
models as the input and as the ground truth respectively. While the primary
model utilized the whole images of the CToR as reference, the secondary
model was only provided with the images of the CToR within the head
region (see Fig. 1). Over the course of this study, it was discovered that the

overall model performance was improved by introducing a secondary
model that could focus specifically on the head region. The CToR datasets
for each patient had a resolution of 512 x 512 x N, where N was the number
of the CT slices along the superior-inferior (S-I) direction (varies from
patient to patient). CToR datasets were cropped to two different sizes, one
size for the primary model and a smaller size for the secondary model. For
the primary model, the CToR images were cropped to size 448 x 336 x 384
to exclude the excessive regions outside the patient BODY with low density
(i.e. air) as well as for the purpose of homogenizing the size of the datasets.
For the secondary model, the CT images were cropped to size M x 224 x 224,
where M indicates the minimum number of the voxels that covered the head
region along the R-L direction, which varies from patient to patient. Finally,
the corresponding kV images, initially having resolution of 1024 x 1024,
were cropped to 1008 x 1008 accordingly.

Data augmentation
Converting kV images into a 3D CT is an extremely ill-constrained problem,
going from 10° pixels to 10°. This process requires accurate geometric
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Table 1 | Statistical information for the 10 patients

Patient ID kV(raw) CToR(raw) Primary Secondary Total dose(Gy) Fractions
1 3 2 21,812 4824 60 30
2 2 2 14,544 3216 60 30
3 4 2 29,088 6432 60 30
4 3 2 21,812 4824 60 30
5 5 2 36,360 8040 60 30
6 3 2 21,812 4824 60 30
7 4 2 29,088 6432 60 30
8 4 2 29,088 6432 70 35
9 2 2 14,544 3216 60 30
10 4 2 29,088 6432 60 30

The second and third columns listed the number of raw kV images and CToR used in this study, respectively. The forth and fifth columns listed the total number of sample pairs in the dataset used for training
the primary model and secondary model, respectively. The last two columns listed the total prescription dose and number of fractions for the patient.

Table 2 | MAE (in HU) results from all 10 test patients

Patient ID kV2CTConverter Primary Difference
model only

1 30.19 34.47 —4.28

2 28.93 34.00 —5.07

3 75.14 88.53 —13.39

4 40.44 47.85 —7.41

5 33.76 38.44 —4.68

6 39.83 41.81 -1.98

7 34.34 38.56 —4.22

8 46.78 50.34 —3.56

9 86.98 99.05 -12.07

10 29.45 35.47 —6.02

Average 44.58 +20.21 50.85 +23.40 —6.27 +3.71

The lower the MAE value is, the better the image quality is. The second column showed the results
from kV2CTConverter while the third column was the results from only the primary model. The last
column was the difference between the kV2CTConverter and the primary model only. The last row
showcased the mean and standard deviation over all 10 results.

mapping from pixel to voxel and precise identification and localization of
H&N voxels amidst background voxels (the air). Therefore, commonly used
data augmentation techniques such as Gaussian noise and random image
transformations may not be suitable. For example, the former might not
generate sufficient data variations when the added noise magnitude is small,
or it could obscure the H&N voxels with noise patterns when the added
noise magnitude is large. The latter can complicate the pixel-voxel geo-
metrical relationships. Moreover, it is essential that the framework can
detect patient shifts and thereby improve patient alignment. For this reason,
an innovative data augmentation strategy, the so-called geometric
property-reserved shifting and sampling (GRSS) data augmentation
strategy was proposed to the extent of our knowledge. Given the layout of
the kV imaging system in the treatment room, as shown in Fig. 3, we noticed
that for a shift of the CToR along the S-1 direction, the kV images would shift
by a factor of 1.5 in the same direction based on the kV imaging system
geometry. Hence, we further augmented the kV-CT pairs by simultaneously
moving CT along the S-I direction in steps of 0.1 mm /0.05 mm (0.15 mm/
0.075 mm for kV images), + 5mm in total for primary and secondary model
respectively. In addition to the “property-reserved shifting" step, the shifted
datasets were also downsampled. For the primary model, the CT images
were downsampled with a factor of 4 along the R-L direction and a factor of
3 in the A-P and S-I directions, respectively. Correspondingly, the two
orthogonal kV images were downsampled with a factor of 6 in both
dimensions. Likewise, for the secondary model, the CT images were

downsampled with a factor of 2 along both the A-P and S-I directions, and
the corresponding kV images were downsampled with a factor of 2 in both
dimensions. Thus, a pair of initial CT and its corresponding kV images
yields 36 additional shifted and downsampled CT-kV image pairs for the
primary model dataset and 4 for the secondary model dataset. This method
helps to avoid overfitting issues due to the limited number of training
samples. In addition, it allowed for efficient model training since the size of
each sample was less than 200 voxels along any direction. Finally, a high-
resolution CT of full size (512 x 512 x N), desirable for clinical applications,
was obtained by spatially stacking the small-size reconstructed CT gener-
ated by both the primary model and secondary model.

kV2CTconventer framework

The proposed framework, entitled kV2CTconventer (Fig. la), has dual
models. Each has an asymmetric autoencoder-like architecture consisting of
an encoder E; and a decoder D, with hierarchical ViT blocks as the basic
building blocks. The overall architecture of both primary model and sec-
ondary model is shown in Fig. 1b. Specifically, both models consist of a patch
embedding layer (a convolutional layer), an encoder Ey, a decoder D, and a
final fully connected layer. The patch embedding layer is used for projecting
non-overlapping raw kV image patches to initial high-dimensional feature
representations that serves as the input for the encoder Ey. Both E;. (Fig. 1¢)
and D, (Fig. 1d) consist of multiple hierarchical ViT blocks, having a pattern
of “layer normalization, window-based multi-head attention(W-MHA),
layer normalization, multilayer perceptron (MLP), and patch merging/
unmerging layer”. The W-MHA ((Fig. 1e)) calculates the attention within
the windows only instead of the entire image, thus greatly reducing the
computational complexity’®”’. The patch merging layer in the E; con-
catenating nearby 2 x 2 patches with a linear merging layer to obtain a
hierarchical representation. Likewise, the unmerging layer in the D,
enlarged each patch by a factor of 2 along each dimension through a fully
connected layer. Lastly, the final fully connected layer converts from the
learned representations to the final output (i.e., the 3D sCT).

Training protocol. The proposed framework was implemented with the
PyTorch deep learning library”’. Moreover, distributed data parallel
(DDP)"" was employed to minimize memory usage and significantly
accelerate the training speed. We used the AdamW optimizer with
B1=10.9 and 3, = 0.999, and a cosine annealing learning rate scheduler
with an initial learning rate of ¢’ and 20 warm-up epochs. We used
smooth L1** as the loss function to obtain a smoother loss curve, which is
a combination of L1 and L2 loss. The batch size was set to 300 for both the
primary model and the secondary model.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Results

Image quality of the reconstructed 3D CT

We evaluated the sCT (In this paper, we use reconstructed CT and synthetic
CT interchangeably.) with mean absolute error (MAE) and absolute per-
voxel CT numbers (i.e., image intensity in terms of Housfield Unit (HU))
difference volume histogram (CDVH), compared to the CToR that was
taken on the same day as the input kV images (i.e. ground-truth CT (gCT)).
To measure the global similarity of the images, 3D Gamma analysis of the CT
numbers comparing the sCT and gCT was done. The calculation was done
twice, with sCT and gCT as the reference CT, respectively.

The second column in Table 2 listed the results given by
kV2CTConverter and the third column showed the results given by the
primary model only from 10 patients respectively in terms of MAE (in HU).
On average, the kV2CTConverter achieved an MAE of 44.58 with a stan-
dard deviation (SD) of 20.21 and a p-value of 0.00023 given by the student t-
test, indicating the sCT and gCT yielded a high agreement at the voxel level

and our proposed framework improve the MAE performance by a statis-
tically significant amount compared to the primary model only.

Figure 2 a depicted the CDVH of one typical patient. It is clear that the
majority of the voxels had a per-voxel CT number absolute difference of less
100 HU. Numerically, only 5% of the voxels had an absolute difference
larger than 128HU. We also randomly selected one slice from the 3D
CT image of one typical patient and conducted the HU number profile
comparison to visualize the difference in both right-left (R-L) and anterior-
posterior (A-P) directions between the gCT and sCT in Fig. 2b, where
the red curve represented the gCT while the black one represented the
sCT. We observed that the two curves were highly overlapped, showing
the sCT matched well with gCT. The 3D Gamma passing rates of comparing
sCT to gCT for all ten patients were calculated and the results were repor-
ted in Table 3. Regardless of reference CTs selected for calculation, our
proposed approach achieved mean 3D Gamma passing rate of 98.95%
(SD =1.75%, p = 0.004), 98.91% (SD = 1.76%, p = 0.002) and 98.90%
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Table 3 | 3D Gamma Passing rates (in %) comparing the CT
numbers (HU) of sCTs to gCTs

Table 4 | 3D Gamma Passing rates (in %) of the doses
calculated on the sCTs and the gCTs using the same plan

Patient 3%3mm 3%2mm 2%2mm Patient 3%3 mm 3%2 mm 2%2 mm
ID ID
sCT gCT sCT gCT sCT gCT sCT gCT sCT gCT sCT gCT
1 99.75 98.95 99.74 98.89 99.74 98.89 1 99.99 99.96 99.94 99.85 99.66 99.51
99.66 97.82 99.61 97.72 99.61 97.72 93.18 90.73 88.36 86.62 85.45 83.44
2 99.99 99.83 99.99 99.81 99.99 99.80 3 99.36 99.67 98.54 98.95 97.28 97.70
99.98 99.04 99.97 98.94 99.97 98.94 90.39 89.77 86.30 86.14 83.14 82.93
3 99.16 97.09 99.14 97.03 99.14 97.03 4 99.93 99.89 99.66 99.55 99.02 98.89
98.33 91.18 98.08 90.97 98.07 90.97 96.04 93.25 92.41 90.21 89.87 87.38
4 99.88 99.33 99.88 99.27 99.88 99.27 5 99.99 99.99 99.94 99.97 99.82 99.83
99.69 98.09 99.50 98.02 99.51 98.03 97.89 98.21 97.59 97.97 97.59 97.97
5 99.99 99.74 99.99 99.68 99.99 99.68 6 99.22 98.63 96.99 96.08 95.46 94.33
99.99 99.19 99.98 99.07 99.98 99.07 93.05 95.19 88.18 90.96 84.92 87.75
6 99.99 97.84 99.98 97.67 99.98 97.67 7 99.94 99.93 99.55 99.56 98.04 98.14
99.88 96.82 99.79 96.74 99.79 96.74 93.17 87.84 87.75 82.78 84.15 79.05
7 99.99 99.71 99.99 99.65 99.99 99.65 8 99.23 99.55 98.40 98.81 97.29 97.70
99.98 99.21 99.94 99.09 99.94 99.09 95.05 94.27 91.74 91.30 88.66 88.17
8 99.99 99.14 99.98 98.93 99.98 98.93 9 99.31 99.09 97.34 97.22 94.70 94.65
99.94 98.10 99.90 97.96 99.90 97.96 92.94 93.39 87.13 87.63 82.26 82.70
9 95.94 92.94 95.93 92.85 95.92 92.85 10 99.97 99.95 99.66 99.57 98.56 98.49
93.17 85.74 92.85 85.49 92.85 85.49 91.39 90.67 88.21 88.54 86.74 85.06
10 99.98 99.89 99.96 99.77 99.96 99.77 kV2CT 99.67 99.65 98.95 98.91 97.87 97.82
99.34 9888 9898  97.79 98.97 97.79 £034 =045  +108 #1727 +171 +189
kV2CT 9946 9845 9946  98.36 99.46 98.35 99.66 +039 9893 +1.15 9785 +1.76
+1.20 +2.03 +1.20 +2.04 +1.21 +2.04 Primary 94.11 93.04 90.32 89.69 87.59 86.65
98.95 +1.75 98.91 +1.76 98.90 +1.97 257 #3830 +384  £439 £483  £5.39
Primary 9899 9641 9886 9618+ 9886+  96.18x 93.57 £2.93 9001 £4.03 87.12 £5.00
+2.00 +4.21 +2.08 4.22 2.08 4.22 Three criteria were considered with the dose calculated on the sCT and gCT as the reference,
97.70 354 97.51 =358 9751 =358 respectively. In each cell two values were reported, the 1st row represented the kV2CTConverter

Three criteria were considered with sCT and gCT as the reference, respectively. In each cell two
values were reported, the 1st row represented the kV2CTConverter while the 2nd represented the
primary model only. The last four rows showed the mean and standard deviation value over the 10
patients.

(SD = 1.97%, p = 0.002) with criteria of 3%3mm, 3%2mm and 2%2mm,
respectively.

Dosimetric evaluation of the reconstructed 3D CT

We conducted forward dose calculation with Eclipse ™ (version 15.6, Varian
Medical System, Palo Alto, CA) on both the sCTs and gCTs using the same
plan and compared the dose distributions using 3D Gamma analysis. The
corresponding dose volume histogram (DVH) indices of targets and OARs
were compared as well. Fig. 2c depicted a typical dose profile comparison
between the doses calculated on the sCT and the dose calculated on the gCT
in both R-L and A-P directions. We found that the dose calculated on the sCT
was very close to that calculated on the gCT for every treatment field and all
fields accumulated. Table 4 showed the 3D Gamma passing rate results where
the calculation was done twice, with the dose calculated on the sCT's and the
dose calculated on the gCTs as the reference dose, respectively. Our frame-
work achieved high passing rates of 99.66% (SD = 0.39%, p = 1.015 e—08),
98.93% (SD = 1.15%, p = 1.386 e—07), and 97.85% (SD = 1.76%, p = 3.552¢
—06) on average with criteria of 3%3 mm, 3%2 mm, and 2%2 mm, respec-
tively. Table 5 showcased the difference in DVH indices of CTV and 4 OARs
between the doses calculated on the sCTs and the gCT's using the same plans,
respectively. It is worth noting that only the DVH index differences were
reported as the plans and dose-volume constraints varied from patient to
patient. Hence, DVH index difference was considered to be a better sCT-vs-
gCT similarity indicator than the DVH index absolute value itself. We noticed

while the 2nd represented the primary model only. The last four rows showed the mean and standard
deviation value over the 10 patients.

that the proposed framework achieved a negligible difference for D95% and
D2% of CTV, indicating the equivalence of CTV coverage and hot spot
control in both dose distributions. For the selected OARs, the DVH index
differences were also small. All these results showcased that the doses cal-
culated on the sCTs and gCT's using the same plan exhibited minimal dis-
parity, indicating that sCT could serve as a viable substitute for verification CT
for the purposes of plan evaluation or adaptive re-planning.

Shift robustness evaluation: mimicking patient setup uncertainty
As the primary application of the proposed framework is to generate
accurate 3D CT for patient alignment during RT treatment, we conducted a
comprehensive analysis of the robustness of the proposed framework to
generate sCTs in the face of patient setup uncertainties. We performed
random shifts of the kV images to simulate patient setup uncertainty. Given
manually shifted kV images within + 4.5 mm as input, on one hand, the
model predicted the shifted sCT(ssCT). On the other hand, the shifted gCT
(sgCT) could be calculated based on the geometrical relation between the
treatment couch and kV imaging system (see Fig. 3 for the detailed treat-
ment room layout). To obtain the shift error(SE), we first created a searching
pool $=sgCT + 8,8 € [ — 1,1], consisting of sgCT and its variances (shifting
sgCT within + Imm with a step of 0.1 mm), total 21 candidates. Next, the
MAE between each candidate sgCT in S and ssCT was calculated. Lastly, by
linear search, the sgCT with §,,, that gave the minimum MAE was identified
and the absolute value of §,, was defined as SE. We reported the results in
Fig. 4 and Table 6. The model yielded a mean SE of only 0.40 + 0.16mm on
average in the sCT robustness test mimicking daily clinic practice, the
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Table 5 | DVH index difference between the doses calculated on the sCTs and the gCTs using the same plan

Patient ID CTV CTV Brain stem Parotid total Oral cavity Mandible
(D95%) (D2%) (D0.01cc) (Mean) (Mean) (D0.03cc)

1 1.394 -0.97 27.1cGy 1.7cGy 43.1cGy -
—66.381 —2.96 2525cGy 19.9cGy —140.7cGy -

2 0.066 -0.08 44cGy —7.3cGy 0.1cGy 2.4cGy
-4.708 -0.25 148.4cGy 17cGy -14.6cGy 35.1cGy

3 -3.25 0.172 —11cGy - - -
-32.466 25 53cGy - - -

4 0.617 0.288 97.3cGy 10.1cGy 13.4cGy 13.2cGy
-6.248 3.09 -961.6cGy -8.2cGy -19.2cGy 120.4cGy

5 0.229 -0.045 69.3cGy 0.6cGy 0 32cCGy
0.45 -0.21 112.2cGy 3.8cGy 1.2cGy 38cGy

6 0.35 -0.69 210.8cGy - - -
-5.832 1.56 -1078.9cGy - - -

7 -1.786 0.31 0 0 -49cGy -3cGy
-15.927 0.33 0 0 -62.7cGy 128.8cGy

8 0.447 2.22 53.2cGy -21.8cGy 2.8cGy 329.8cGy
-0.652 2.91 91.6cGy 135.6cGy 57.3cGy 338.6cGy

9 0.094 -2.76 -7.6cGy -105.2cGy 15.7cGy 22.8cGy
2.583 4.44 188.1cGy 204cGy 105.3cGy -21.4cGy

10 1.673 0.045 132.9cGy 18.7cGy 12.9cGy -6.2cGy
7.221 4.421 212.2cGy 36.2cGy 32.7cGy 15.7cGy

The CTV and 4 OARs were considered and the constraints associated with each structure were shown in the (). For each patient, two results were reported, the first row showed the results from

kV2CTConverter, while the the second row was from the primary model only.
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Fig. 3 | The orthogonal kV x-ray system used at our proton center and exemplary
kV and DRR images. The orthogonal kV x-ray system is used for patient alignment
at our proton center (left). An exemplary kV image (middle) captured by this system

and its corresponding DRR image (right). Compared to the DRR image, the daily-
used kV image is often noisy and contains unwanted artifacts from essential medical
devices/accessories, such as dental implants or treatment couch attachments.

patient alignment tolerance for H&N patients is 2-3 mm clinically at our
institution.

Ablation study

To investigate if training the secondary model indeed improved the
quality of the sCTs, we conducted ablative experiments and reported the
results in Tables 2 and 3. From the last row of Table 2, we observed that
adding the secondary model reduced the mean MAE value(in HU) by
6.27 (SD = 3.71). Although not numerically significant, the visual details
in the sCTs trained with both the primary and secondary models, espe-
cially in the nasal cavity, brain stem, cochleas, and the surrounding bones
were much more distinct than those in the sCTs trained only with the

primary model (Fig. 2d). Moreover, the MAE decreased by 38.8% when
only calculated within the head region with the introduction of the sec-
ondary model. The observation from the 3D Gamma passing rates of the
CT numbers of sCT's reported in Table 3 also followed the same trend. In
addition, The 3D Gamma passing rates of the doses calculated using sCT's
and the corresponding DVH index comparison further validated such an
observation (Tables 4 and 5). This indicated that as a challenging task of
sCT generation in this study, which is indispensable to sub-tasks, i.e.,
locating the target (finding the position of the H&N region in the CT
images) and reconstructing the fine details of the patient anatomies, a
practical solution is to train a framework consisting of dual models, each
handling one sub-task.
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Statistics and reproducibity

The details about experimental design and statistics used in model training
and analysis performed in this study are given in the respective sections of
methods and results.

Discussion

kV2CTConverter can effectively reconstruct accurate high-
resolution 3D CT from two 2D kV images with arbitrary artefacts
This is the most prominent novelty in this proposed work. Specifically, to
our best knowledge, the proposed framework might be one of the innovative
initiatives to solely take the kV images and their corresponding CToR as the
training and testing datasets, without referring to supplementary images
such as DRRs. Moreover, different from the proof-of-concept results (i.e.
cropped small-size sCT images) reported in the existing approaches™****,
we can synthesize full-size sCTs, which can be directly applied in daily
clinical practice. In terms of image quality, compared to the numerical
results reported in****, although theirs were calculated on small-size 3D lung
CT (supposed to be easier as the structures were much larger and had more
distinct boundaries), ours still outperformed them by 53.56% and 62.01% on
average, respectively. We believe that such performance superiority has
demonstrated the potential of the proposed framework in clinical
applications.

kV2CTConverter can effectively handle patient shift uncertainty
and generate sCT that reflects the patient position shift in
milliseconds

To mimic patient position shift during RT treatment, which commonly
happens, we conducted a random shift simulation. The proposed fra-
mework was able to generate sCTs reflecting their positions effectively
with milliseconds and achieve a minimum SE of < 0.4 mm on average
compared with the shifted real patient positions, which is much lesser
than the clinic criteria, 2 mm or 3 mm for H&N cancer patients. The
robustness gain is closely related to the proposed GRSS data augmenta-
tion strategy, which not only achieved plenty of data samples for model
training but also enabled the framework to cope with random shifts of the
patient position accurately.

The secondary model is essential for fine details recovery in the
3D CT reconstruction

From the experiment results reported in Tables 2-4, we observed that the
secondary model indeed boosted the framework performance. Although ViT
has outperformed other deep learning-based models in natural image

1 |

0.8 —H d

0.6

0.4 | 1

0.2 ‘

. | |

Fig. 4 | The histogram of shift error (SE) (in mm) from all 10 patients. The Y-axis
shows the bin edges for the histogram. It is clear that the majority of the SEs are less
than 0.4 mm, which is far smaller than the clinically acceptable patient alignment
tolerance for H&N patients at our institution, set at 2-3 mm.

classification and reconstruction, it is still very challenging when employed for
tasks related to medical images, as there is a great gap between medical images
and natural images. Thus, we proposed a dual-model framework to enable the
state-of-the-art ViT to be adapted to medical images, in which the primary
model was dedicated to identifying the positions of structures of interest, and
the secondary model focused on reasoning the 2D-3D relations and recon-
structing the voxel-level fine details in 3D CT. Besides, such a dual-model
configuration is intuitive, easy to implement, resource-efficient, and can be
generalized to other medical imaging modalities, such as MRI, PET, etc.

Outlook

From the green boxes shown in Fig. 2b, we noticed that the areas corre-
sponding to the sinuses region, where locates the microscopic soft tissue
surrounded by an air cavity with an irregular shape, was not well recon-
structed (left green box). Moreover, the brain stem which has an irregular
shape and has a similar CT number to the surrounding cerebral hemisphere
matters, was not reconstructed with distinct boundaries either (right green
box). Intuitively, we can build another model to focus on these two small
regions respectively. However, different from the head region considered in
the secondary model, where the shape is regular and the position is inde-
pendent of the helmet, the properties of the two small regions are quite
opposite. Thus, it may complicate the framework and double the computing
resources. Fortunately, from a purely clinical point of view, those two small
regions don’t affect a lot: (1) if the tumor is located in those regions, it will
either shrink the air cavity or exhibit a clear difference in CT numbers
compared to the surrounding tissues, making it easier for the model to
distinguish the tumor from nearby organs in either way; (2) if the tumor
doesn’t appear in those regions, the dosimetric constraints to those regions
only possess a low priority when designing the treatment plan. In the future,
we will investigate how to further improve the quality of the reconstructed
CT regarding those two small regions.

Anatomical variations over the treatment is also critical that should
be taken into consideration in RT. However, following our current
clinical practice exactly (CToR and kV images on the first treatment day
of the week, only kV images for the remainder of the week), the fra-
mework may not effectively reflect notable inter-fractional anatomical
changes well since the long-term anatomical changes are only taken into
account with weekly CToRs. Nevertheless, methodologically, no funda-
mental difference exists between the current training scheme and the
scheme to account for long-term inter-fractional anatomical changes. If
our framework is trained with more CToRs and the associated kV images
along the treatment courses, our framework can predict long-term inter-
fractional anatomical changes. We will extend our framework to account
for long-term and possibly more significant inter-fractional anatomical
changes in the future work.

Moreover, if CT with intravenous (IV) contrast are available, it may
further improve the identification of the tumor and potentially improve the
accuracy of the sCT. However, typically, on the treatment day in clinical
practice, the patient will only have the kV images and/or regular CToR
whereas the IV contrast is not used. Because the IV contrast will change the
CT numbers of the tumor and consequently impact the accuracy of the dose
delivery". Therefore, we don’t have kV images and the corresponding CT
with IV contrast pairs available for the training of the model. We will leave it
for further exploration.

In addition, this work is a feasibility study about the 2D to 3D imaging
device which must be clinically commissioned (IMO). Thus, we will also
consider using a phantom for an end-to-end test in the future for a more
comprehensive assessment of the proposed framework.

Table 6 | The mean shift error (SE) (in mm) from all 10 patients. The lower the SE value is, the more robust the proposed

framework is

Patient ID 1 2 3 4

SE 0.37 0.56 0.66 0.25

0.44

0.34 0.63 0.26 0.31 0.22
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