Table 3 SOML algorithms

From: Spatial omics-based machine learning algorithms for the early detection of hepatocellular carcinoma

 

Modela

A

B

C

D

E

F

G

 

# of Glycoformsb

7

12

15

3

12

5

39

 

Clinical factorsc

Age, AFP

Age, AFP

Age, AFP

Age, AFP

Age, AFP

Age, AFP

Age, AFP, Gender

APd

AUCe

0.90

0.92

0.93

0.88

0.92

0.90

0.97

 

SEf

0.02

0.02

0.02

0.02

0.02

0.02

0.02

 

95% CI-LLg

0.86

0.88

0.90

0.83

0.89

0.85

0.94

 

95% CI-ULh

0.95

0.96

0.97

0.93

0.96

0.94

1.0

5-fold CVi

Mean

0.89

0.89

0.91

0.87

0.91

0.88

0.91

 

SE

0.04

0.06

0.04

0.05

0.04

0.05

0.05

 

Max

0.98

0.98

0.99

0.97

1.0

0.96

1.0

 

Min

0.76

0.76

0.76

0.73

0.78

0.74

0.77

  1. aSeven diagnostic algorithms were created using a support vector machine with a linear kernel.
  2. bThe number of glycoforms (proteins with unique glycans in each model).
  3. cClinical factors such as age, AFP, or gender are used in model.
  4. dAP, apparent validation.
  5. eArea under the curve for each model for apparent validation.
  6. fSE, standard error.
  7. g95%CI-LL, lower limit of 95% confidence interval.
  8. h95%CI-UL, upper limit of 95% confidence interval.
  9. i5-fold CV, fivefold cross-validation.