Table 3 SOML algorithms
From: Spatial omics-based machine learning algorithms for the early detection of hepatocellular carcinoma
Modela | A | B | C | D | E | F | G | |
---|---|---|---|---|---|---|---|---|
# of Glycoformsb | 7 | 12 | 15 | 3 | 12 | 5 | 39 | |
Clinical factorsc | Age, AFP | Age, AFP | Age, AFP | Age, AFP | Age, AFP | Age, AFP | Age, AFP, Gender | |
APd | AUCe | 0.90 | 0.92 | 0.93 | 0.88 | 0.92 | 0.90 | 0.97 |
SEf | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | |
95% CI-LLg | 0.86 | 0.88 | 0.90 | 0.83 | 0.89 | 0.85 | 0.94 | |
95% CI-ULh | 0.95 | 0.96 | 0.97 | 0.93 | 0.96 | 0.94 | 1.0 | |
5-fold CVi | Mean | 0.89 | 0.89 | 0.91 | 0.87 | 0.91 | 0.88 | 0.91 |
SE | 0.04 | 0.06 | 0.04 | 0.05 | 0.04 | 0.05 | 0.05 | |
Max | 0.98 | 0.98 | 0.99 | 0.97 | 1.0 | 0.96 | 1.0 | |
Min | 0.76 | 0.76 | 0.76 | 0.73 | 0.78 | 0.74 | 0.77 |