Table 2 Summary of VPPTs tested in the study

From: Evaluating variant pathogenicity prediction tools to establish African inclusive guidelines for germline genetic testing

Tool

Cut-off

Year developed

Prediction model method

SIFT53

*

2001

MSA

bStatistics54

≄500

2009

MSA

LRT55

*

2009

MSA

MutPred56

≄0.5

2009

MSA + Protein parameters + Supervised ML (built on SIFT)

SiPhy57

≄12.17

2009

MSA

phastCons470way-mammalian58

≄0.5

2010

MSA

phastCons17way-primate58

≄0.5

2010

MSA

phastCons100way-vertebrate58

≄0.5

2010

MSA

phyloP470way-mammalian58

≄1.6

2010

MSA

phyloP17way-primate58

≄1.6

2010

MSA

phyloP100way-vertebrate58

≄1.6

2010

MSA

PolyPhen2-DIV59

*

2010

MSA + Protein parameters + Supervised ML

PolyPhen2-VAR59

*

2010

MSA + Protein parameters + Supervised ML

MutationAssessor60

*

2011

MSA

PROVEAN61

*

2012

MSA

FATHMM62

*

2013

MSA

VEST463

≄0.5

2013

Supervised ML

CADD64

>20

2014

Meta-predictor + Supervised ML + Unsupervised ML

MutationTaster65

*

2014

MSA

DANN66

≄0.99

2015

Supervised ML + DL (with the same training data set and features as CADD)

fathmm-MKL67

*

2015

Supervised ML

GenoCanyon68

≄0.5

2015

Unsupervised ML

GM12878_fitcons69

≄0.6

2015

Unsupervised ML

h1_fitcons69

≄0.6

2015

Unsupervised ML

HUVEC_fitcons69

≄0.6

2015

Unsupervised ML

integrated_fitcons69

≄0.6

2015

Unsupervised ML

MetaLR70

*

2015

Meta-predictor + Supervised ML

MetaSVM70

*

2015

Meta-predictor + Supervised ML

BayesDel_addAF71

*

2016

Meta-predictor + Supervised ML

BayesDel_noAF71

*

2016

Meta-predictor + Supervised ML

Eigen-PC46

≄0

2016

Unsupervised ML

Eigen-raw46

≄0

2016

Unsupervised ML

M-CAP72

*

2016

Supervised ML

REVEL73

≄0.5

2016

Meta-predictor + Supervised ML

SIFT-4G74

*

2016

MSA

DEOGEN275

*

2017

Supervised ML

LINSIGHT76

≄0.6

2017

Unsupervised ML

MPC77

≄2

2017

MSA (also combined PolyPhen2)

ClinPred78

*

2018

Meta-predictor + Supervised ML + Unsupervised ML

fathmm-XF79

*

2018

Supervised ML

PrimateAI80

*

2018

Supervised ML + DL

GERP-NR81

≄4

2020

MSA

GERP-RS81

≄4

2020

MSA

LIST-S282

*

2020

MSA

EVE83

≄0.5

2021

Unsupervised ML

MVP84

≄0.75

2021

Supervised ML + DL

VARITY-ER85

≄0.5

2021

Supervised ML

VARITY-ER-LOO85

≄0.5

2021

Supervised ML

VARITY-R85

≄0.5

2021

Supervised ML

VARITY-R-LOO85

≄0.5

2021

Supervised ML

gMVP86

≄0.75

2022

Supervised ML

MetaRNN87

*

2022

Meta-predictor + Supervised ML + DL

AlphaMissense88

*

2023

Unsupervised ML

ESM1b89

*

2023

Unsupervised ML + DL

  1. Tools with the directly predicted classification of variant pathogenicity were marked as *.
  2. DL deep learning, MSA multiple sequence alignment, ML machine learning.