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Variant calling from RNA-Seq data reveals
allele-specific differential expression of
pathogenic cancer variants
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Abstract

Background Genetic variants play a pivotal role in the initiation and progression of many
diseases, including cancer. Detecting these variants is the first step in understanding their
contribution to disease mechanisms. RNA sequencing (RNA-Seq) has become a crucial
assay in cancer research, offering insights beyond those provided byDNA sequencing. This
study introduces VarRNA, a novel method that utilizes RNA-Seq data to classify single
nucleotide variants and insertions/deletions from tumor transcriptomes.
Methods VarRNA distinguishes transcriptome variants as germline, somatic, or artifact
using a combination of two XGBoost machine learning models. These models were trained
and validated using a cohort of pediatric cancer samples with paired tumor and normal DNA
exome sequencing data serving as ground truth. We performed additional validation on
RNA-Seq data from two distinct cancer datasets, demonstrating that VarRNA outperforms
existing RNA variant calling methods.
Results VarRNA identifies 50% of the variants detected by exome sequencing and detects
unique RNA variants absent in paired tumor and normal DNA exome data. Some variants
classified by VarRNA exhibit variant allele frequencies distinct from the corresponding DNA
exome data. Strikingly, this phenomenon is prevalent in cancer-driving genes, where
VarRNA analysis of the RNA-Seq data reveals the variant allele expression as much higher
than expected based on the exome sequencing data.
Conclusions These findings highlight the potential of RNA-Seq not only to uncover clinically
relevant genetic variants but also to offer a deeper understanding of disease-specific
expression dynamics that influence cancer pathogenesis, with implications for prognosis
and therapeutic strategies.

Genetic variants are critical in the initiation and progression of many dis-
eases, including cancer. Next-generation sequencing (NGS) has radically
improved our ability to detect these variants, leading to a better under-
standing of their roles in disease. RNA sequencing (RNA-Seq) is a powerful
NGS assay for cancer research. Over the past decade, numerous analytical
methodshavebeendeveloped to elucidate the information containedwithin
RNA-Seqdata, such as gene expression analysis1, gene fusion identification2,
and allele-specific expression analysis (ASE)3,4. Gene expression analysis is
used to compare differential expression profiles between samples, such as

primary and recurrent tumors, to uncover variations in tumor biology in the
setting of relapse5 or across groups of cancers with similar histology to
pinpoint therapeutic targets6. ASE, which quantifies the difference in
expression of two alleles, can reveal mechanisms that promote tumor
progression7.

Reliably identifying variants in sequencing data from cancer and
matched normal samples is the first step in studying the relationship
between genotype and cancer pathogenesis. These variants are typically
identified in NGS analysis of tumor DNA (DNA-Seq) through targeted
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Plain language summary

When a cell’s genetic material (DNA) is
mutated, it’s growth may become
uncontrolled,andcancerdevelops.Decoding
the mutations in the DNA of cancer cells can
tell doctors how best to treat a cancer, but if a
cancer sample is too small to provide enough
DNA, this information is lost. RNA, which is
copied fromDNA,alsocanbeused todecode
cancer mutations, allows use of very small
samples, and provides unique information
aboutwhichmutationsmaybedriving cancer
cell growth. We used cancer and matched
normalDNAdata to trainacomputingmethod
called VarRNA that determines, using only
RNA data from a cancer sample, whether
eachmutation is unique to the cancer cells or
is inherited.

Communications Medicine |           (2025) 5:202 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-025-00901-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-025-00901-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-025-00901-y&domain=pdf
http://orcid.org/0000-0002-5218-5903
http://orcid.org/0000-0002-5218-5903
http://orcid.org/0000-0002-5218-5903
http://orcid.org/0000-0002-5218-5903
http://orcid.org/0000-0002-5218-5903
http://orcid.org/0000-0002-5892-1553
http://orcid.org/0000-0002-5892-1553
http://orcid.org/0000-0002-5892-1553
http://orcid.org/0000-0002-5892-1553
http://orcid.org/0000-0002-5892-1553
mailto:Elaine.Mardis@nationwidechildrens.org
www.nature.com/commsmed


approaches, such as exome sequencing (ES). However, variants can also be
called fromRNA-Seq data, providing unique insights into ASE by revealing
whether a variant observed inDNA is expressed in the tumor, or confirming
that a nonsense mutant allele undergoes nonsense-mediated decay, for
example4,8. RNA-Seq can present additional advantages over DNA-Seq for
variant detection. For example, high expression levels yield increased
sequencing depth and potentiate higher variant calling accuracy in those
genes. Post-transcriptional modifications, such as RNA editing, can also be
identified through variant calling in RNA-Seq. These modifications are
important to identify because they can increase protein diversity9 and reg-
ulate gene expression10. Variants detected with RNA-Seq are directly tied to
the transcriptome, providing immediate insights into potential functional
impacts by determiningwhether variants are associatedwith upregulated or
downregulated genes or pathways.

Outside of the cancer setting, several computational approaches have
been published that detect genetic variants using RNA-Seq data. These
methods generally use tools initially developed for variant calling in DNA
(e.g., GATKHaplotypeCaller orMutect211), and apply additionalmethods
for sequencing alignment and variantfiltering to reduce the higher number
of false positive calls produced from using RNA-Seq data as input. SNPiR
identifies single nucleotide variants (SNVs), specifically focusing on
reducing false positive variant calls that can arise from common issues,
such as mapping errors around splice sites or at repetitive loci12. RVBoost
implements a machine learning model trained on common variants to
prioritize true RNA variant calls over false positives13. DeepVariant RNA-
Seq does not use existing variant calling methods, but instead scans the
input RNA-Seq BAM file to identify evidence of variants and then uses a
convolutional neural net to classify the genotype of each candidate
position14.

A significant limitation of these methods is that they were developed
to identify germline variants from normal (e.g., non-disease involved)
tissue samples. Discerning somatic variants in cancer samples is, by con-
trast, a much more complex problem. Identifying somatic variants from
bulk tissue extracts is primarily challenged by tumor content and tumor
heterogeneity in the sample under study,which results in a range of variant
allele frequencies (VAFs) for detected variants. VAFs of somatic variants
typically range from 5 to 100%, while some assays allow for measurement
of VAFs below 5%. This variability makes it more difficult to identify
variants that do not follow the expected distribution of variants seen in a
germline genome, where the allele frequency should be 0% (reference),
50% (heterozygous), or 100% (homozygous or hemizygous). To overcome
this challenge, somatic variant calling in DNA-Seq data typically relies
upon a matched normal comparator sample to differentiate germline vs.
somatic variants. This approach is not plausiblewithRNA-Seq data, which
is generated from cancer tissue alone, because matched adjacent normal
tissue (the optimal comparator) is not routinely obtained surgically. No
existing approachhas beendescribed to classify germline and somatic SNV
and insertions or deletion (indel) calls from cancer tissue-derived RNA-
Seq data alone.

We present VarRNA15, a computational classification approach that
identifies SNV and indel variant calls from tumor RNA-Seq data and
classifies them as artifact, germline, or somatic. VarRNA was developed
using two XGBoost16 machine learning models: one to classify variants as
true variants or artifacts, and a second that classifies true variants as either
germline or somatic. The resulting variant calls are highly accurate com-
pared to the ground truth data, and outperform existing RNA-Seq variant
calling methods. In our application of VarRNA to RNA-Seq data from a
pediatric cancer cohort, we demonstrated its capability to identify about
50% of the variants detected by ES, while uniquely detecting ASE of mutant
alleles inoncogenes andadditional variantsnot foundbyES, underlining the
value of variant identification from RNA-Seq to uncover RNA editing and
allele-specific expression dynamics. These insights enhance our under-
standing of cancer pathogenesis, with potential implications for prognosis
and treatment strategies, promising to elevate the clinical relevance of RNA-
Seq variant analysis in precision oncology.

Methods
Ethical compliance
Ethical approval was not sought or required for this study, as it exclusively
employed publicly available datasets and thus did not involve direct human
subjects research. In conducting this analysis, we strictly adhered to the
dataset’s terms of use, access, and distribution as outlined by their respective
sources.We ensured that our researchmethods and objectives were aligned
with the ethical guidelines for research and data use, including respecting
privacy, intellectual property rights, and data integrity.

DNA sequencing, alignment, and variant calling
Sequencing reads frombothNationwideChildren’sHospital (NCH),ZERO
Childhood Cancer Program (ZCC), and glioblastoma (GBM) datasets were
processed with the same alignment and variant calling steps, using our
Churchill secondary analysis pipeline17. The FASTQ files for both tumor
and normal sampleswere aligned to the human reference genome assembly
GRCh38 using BWA-MEM. SNV and indel calling were performed with
GATK (v4.1.9). GATK HaplotypeCaller was run on each normal sample
using the GVCF workflow to generate a per-sample intermediate GVCF.
The GATK GenotypeGVCFs function was used to obtain genotypes for
each germline sample in VCF format. We then performed variant recali-
bration and filtering in the two-stage process using the GATK functions
VariantRecalibration andApplyVQSR. GATKMutect2 was run using both
tumor and normal samples as input. The GATK function FilterMutectCalls
was used to label false positives with a list of failed filters and true positives
with ‘PASS.’’ Only ‘PASS’’ somatic variants were used for further analysis.

VarRNA: RNA-Seq alignment and variant calling
We developed a computational approach, VarRNA, to process RNA-Seq
data to call and classify germline and somatic SNVs and indels (Fig. 1).
These steps included 1) alignment of raw sequence reads in FASTQ format,
2) postprocessing of aligned reads, 3) variant calling, 4) variant annotation,
and 5) variant filtering and application of the VarRNA model predictions.
The pipeline is available at https://github.com/nch-igm/VarRNA, where all
methods described below are fully documented and implemented with the
accompanying scripts. VarRNA was primarily developed in Python and
uses Snakemake18 to enhanceworkflow scalability. It is designed for efficient
deployment on high-performance computing systems by facilitating job
scheduling.

VarRNAfollowsamodifiedversionof theGATKbestpractices for short
variant discovery fromRNA-Seq data (https://gatk.broadinstitute.org/hc/en-
us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels).
RNA-Seq reads in FASTQ formatwere aligned toGRCH38.p13with STAR19

v2.7.10 two-pass alignment. The total reads for all samples ranged from 70 to
400million, and the percentage of reads aligned to the reference ranged from
70 to 96%. The percentage of reads mapped to the ribosome ranged from <1
to 10%, indicative of effective ribosomal RNA depletion. GATK v4.2.6.1 was
used for the following steps: add read groups, split reads with N in the cigar
string, which signifies spliced alignments where the read jumps from one
exon to the other, base quality score recalibration with known sites from
dbSNP20 (build 151), and variant calling with GATK HaplotypeCaller. Var-
iants were called with “do not-use-soft-clipped-bases,” “standard-min-con-
fidence-threshold-for-calling” set to 20, and “max-reads-per-alignment-start”
set to 0 to disable down-sampling reads.

Variant filtering
Variants called in the DNA-Seq and RNA-Seq data were filtered using the
same criteria. Two region-based filters were implemented: the removal of
repetitive regions and the removal of non-exonic regions. Repetitive regions
defined by RepeatMasker21 were downloaded from UCSC, and the chro-
mosome, start, stop, and repeat type fields were extracted and written to a
BEDfile.Variant callswere restricted to exonic regions using a targetedBED
file of the exome capture reagent used for the ES samples (IDT xGenExome
Hyb Panel v2 targets hg38 BED file). Variants were removed if they did not
meet the minimum criteria of DP > = 10, QUAL > = 100, quality by depth
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(QD) > = 2, andVAF > = 0.1. Additionally, we restricted variants to biallelic
only. These steps were implemented using BEDtools22 and BCFtools23

(Supplementary Equation (1)).

Ground truth label filtering
To train the model for predicting whether variants in the RNA-Seq data
were germline, somatic, or artifact, in addition to the filtering described
above, more stringent filtering was applied to ensure that our ground truth
labels coming from theDNA-Seqwere correct. In creating themodel, it was
also important to ensure that therewas adequate coverageof eachbase in the
tumor sample DNA-Seq, the normal sample DNA-Seq, and the tumor
sample RNA-Seq. For example, when there is evidence for the variant from
RNAbut not fromDNA (i.e., insufficient sequencing coverage or an exonic
region not well targeted by the ES capture kit), these regions were removed
from themodel training data. To do this, BAM files from the normal DNA,
tumorDNA, and tumorRNAwere used to generate three separate coverage
files, where the number of reads at each genomic position was recorded
usingBEDTools. Regionswith coverage equal to or greater than aminimum
threshold of ten reads were used to create a custom bed file for each
sequencing dataset (normal DNA, tumor DNA, tumor RNA). (Supple-
mentary Equation (2)). A single BED file for filtering was created by
intersecting the three coverage files and a BED file defining the exome
regions. (Supplementary Equation (3)). This file was used to restrict variant
calls across the three datasets per sample to those that fall within the regions
with sufficient coverage.

RNAediting sites were removed to avoidmislabeling anyRNAvariant
calls resulting fromRNA editing as artifacts since they are not present in the
DNA. This was done using the REDIportal24 database of known RNA
editing sites, whichwere downloaded from their website (http://srv00.recas.
ba.infn.it/webshare/ATLAS/donwload/TABLE1_hg38.txt.gz). These sites
were extracted to a VCF file and intersected with the query VCF (Supple-
mentary Equation (4)).

Transcript quantification
RNA-Seq transcripts were quantified with salmon52 v1.9.025 to derive
transcripts per million (TPM) values for each transcript. To get the

corresponding HUGO gene name and other information, the Ensembl
transcript names in the ‘Name’’ columnof the Salmonquantification output
were translated to Ensembl gene name, HUGO gene name, and biotype
(e.g., ‘protein coding,’’ ‘‘processed transcript,’’ ‘‘lncRNA’’). This translation
was achieved by cross-referencing sequence names (which include all these
identifiers) from the gentrome.fa.gz file. This file was generated using the
generateDecoyTranscriptome.sh script found in the Salmon documentation
(https://github.com/COMBINE-lab/SalmonTools/blob/master/scripts/
generateDecoyTranscriptome.sh).

Variant annotation
ANNOVAR26 was used to annotate RNA-Seq variant calls with informa-
tion, such as genenameand functional consequence (refGene27), population
allele frequencies (gnomad30_genome28), disease-specific variants
(clinvar_2022123129), functional predictions (dbnsfp42a30), and somatic
variants in cancer (cosmic7031). The identifiers in parentheses correspond to
existing ANNOVAR tables accessible for download using their tool.

Results from the Salmon quantification were also added to the VCFs
using the following method. HUGO gene name and biotype were extracted
from the ‘Name’’ column, and all other columns from the quantification
output (length, effective length, TPM, and number of reads) were extracted
and written to a tab-delimited annotation file. Chromosome start and stop
positionswere added to the annotationfile for each gene. Bcftools23 annotate
was used to annotate the VCF with results from Salmon.

Classifier development: dataset/labeling
The classifier development data consisted of pediatric cancer patients from
NCH with RNA-Seq of the tumor and DNA-Seq of the tumor and normal
DNA. The DNA-Seq variant calls were used as ground truth to label the
variant calls from RNA-Seq. After the machine-learning-specific filtering,
RNA-Seq variants were labeled as ‘Germline’’ if they were present in the
DNA-Seq Haplotype Caller VCF, ‘Somatic’’ if they were present in the
DNA-SeqMutect2 VCF, and ‘Artifact’’ if they were not called by either, i.e.,
variants that were entirely unique to the RNA-Seq data.

The variants were divided on a per-sample basis to create a training set
used for cross-validation to tune hyperparameters (25 subjects, 8612

Fig. 1 | VarRNA data processing and variant classification pipeline.Overview of all steps performed by VarRNA using RNA-Seq data as input. The output results are an
annotated variant table including classifier results for each sample. Files called out in white boxes are kept in the final output.
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variants) and a holdout benchmarking set to assess model performance
(26 subjects, 8931 variants) (Supplementary Fig. 1). This is done so that
variants from one sample are not used for both training and testing.

Classifier development: feature engineering
A variety of features were used, including quality scores, sequence context,
variant effect predictions, clinical significance, and population frequencies.
Sequence context features were calculated as follows. Nucleotide context
(reference and alternate nucleotide)wasused to indicatewhether the variant
represents a transition or a transversion event.GC contentwas calculated by
counting the number of G and C nucleotides six base pairs upstream and
downstreamof the variant. Linguistic complexity, or vocabulary richness, of
the six-base-pair windowwas calculatedusing an approximation previously
described32. Whether the variant is an SNV or an indel was added as a
feature, as separate models for these variant types were not created.

Categorical features (e.g., functional consequence, ClinVar sig-
nificance) were transformed into numerical values using one-hot encoding.
Features that were estimated to have low model impact or that were highly
correlated with other features were removed. To define low impact, we first
transformed each feature with amin–max scaler such that it was within the
range from zero to one. Then, we computed the standard deviation across
each transformed feature. We also performed an analysis of variance to
obtain anF-statistic for each transformed feature, where the groupswere the
three model labels: Germline, Somatic, or Artifact. A total of 124 features
were tested for association with the labels, based on 308,374 observations.
Features projected to have low impact were those that had both a standard
deviation less than 0.1 and an F-statistic less than 100, which corresponds to
the bottom 25th percentile (mean F-statistic is 4142) with an associated p
value less than 0.05. We calculated the effect size using Eta squared. The
mean Eta squared value for the features with low impact was 0.0002, while
the mean Eta squared value for the remaining features was 0.274. Corre-
lation between each pair of remaining features was calculated, and if a
featurepair hada greater than0.95 correlation, one feature fromthepairwas
removed. A final set of 64 features was selected for model training (Sup-
plementary Data 4).

The gnomAD annotation was used to filter out variants with gnomAD
raw allele frequency greater than 0.001, as these variants were contributing to
extremeclass imbalance.The ratioof variants in the germline: artifact: somatic
labels was about 1000:50:1, and removing variants with high gnomAD allele
frequency, which were mostly Germline variants, reduced the imbalance to a
ratio of about 20:15:1. The breakdown of labels in the training data was 4761
Germline variants, 3601 Artifact variants, and 250 Somatic variants.

Classifier development: model training
A gradient boosting framework implemented by the XGBoost library was
used for model training because of its computational efficiency, feature
importance capabilities, and ability to handle missing values easily. Scikit-
learn33 was used to create a pipeline to tune hyperparameters. Two separate
binary models were trained: one for classifying variants as true variants or
artifacts, and one for classifying true variants as germline or somatic.

A min–max scaler was used to normalize the feature values between 0
and1 tohelpprevent themodel frombeingbiased toward featureswith larger
magnitudes. A randomized search of the hyperparameter space (1000
combinations for True vs. Artifact and 2000 combinations for germline vs.
somatic) was performed to reduce training time. Stratified k-fold cross-
validation was used to fit the models across the hyperparameter space. The
model performance was reported on the benchmarking data. The Germline
vs. Somatic classifier was trained and evaluated on true variants only. Also,
this model includes an additional hyperparameter to handle class imbalance;
randomunder-sampling of the germline class, implementedwith imblearn34.

Statistics and reproducibility
Statistical methods are described in the context of the aforementioned
analytical methods. For reproducibility, all code is stably archived and open
sourced.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Composition and utilization of cancer cohorts for machine
learning and variant analysis
We analyzed data from 95 subjects with cancer, including 77 patients from
our NCH in-house cancer cohort35–38, nine subjects from the ZCC39, and
nine subjects from an adult cohort GBM. The data comprise patients with
both pediatric (NCH and ZCC) and adult cancer (GBM) across 40 cancer
subtypes (Supplementary Data 1). Each patient in the NCH and GBM
datasets hadRNA-Seq of the tumor and corresponding ES of the tumor and
matched normal DNAs (peripheral blood mononuclear cells or buccal
epithelial cells). The ZCC dataset contained RNA-Seq of the tumor and
matched genome sequencing (GS) of DNA from tumors and matched
normal tissues.

From these patients, a subset of 8612 variants (identified across
25 subjects) was used for training our XGBoost machine learning models,
and 8931 variants (identified across 26 subjects) were used for bench-
marking our models against existing methods. The remaining data (iden-
tified across 44 subjects) were held out for additional variant analyses
(Supplementary Fig. 1). We processed all RNA data with the VarRNA
pipeline (Fig. 1) (See “Methods”; RNA-Seq alignment and variant calling).

Evaluation of variant classification models
VarRNA’s two models, true variant vs. artifact and germline vs. somatic
variant, were evaluated using the benchmarking data across all three data-
sets (8931 variants). The true variant vs. artifact model showed high accu-
racy, demonstrating high precision (92.3%) and recall (95.1%) for true
variants (combined germline and somatic), and artifact precision and recall
of 93.6 and 90.0%, respectively (Table 1). This high recall rate for true
variants is crucial in a clinical setting, indicating that VarRNA has a low
probability of incorrectly classifying true variants as artifacts. This capability
allows VarRNA to retain important variant information while significantly
reducing the burden of artifactual variants.

Thegermlinevs. somatic variantmodelwas evaluatedon the subsetof the
hold-out test set consisting of true variants (5276 variants). This subset com-
prised 4908 germline variants and 368 somatic variants. The model demon-
strated high precision (97.3%) and recall (89.4%) for germline variants. For
somatic variants, the precision and recall were 32.0 and 66.6%, respectively.

Model results were accompanied by prediction probability scores
calculated using XGBoost. The germline vs. somatic labels were ranked by
model probabilities so that informed decisions on the likelihood of label
accuracy could be made (Supplementary Fig. 2). When we restricted the
model probability to greater than 60%, the somatic precision increased from
32.0 to 42.2%, and recall increased from 66.6 to 73.6% (Supplementary
Table 1). As we further restricted the model’s probability, these metrics
continued to improve; however, this performance gain comes at the expense
of losing additional germline variant calls. Beyond a 75% probability
threshold, there is anoticeable drop inperformance. (SupplementaryFig. 3).

Table 1 | Model performance

Performance metric

Classifier label Accuracy Precision Recall F1-
score

Support

Artifact 0.928 0.936 0.900 0.918 4221

True
variant

0.923 0.951 0.936 5276

Germline 0.929 0.973 0.894 0.932 4908

Somatic 0.320 0.666 0.432 368

Model performance is reported for each label. The support columns refer to the number of
occurrences of the corresponding label.
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Weexploredmodelperformanceasa functionof tumorpurity,definedas
the proportion of cancer cells in the tumor tissue utilized for nucleic acid
extraction. Tumor purity was calculated using ESTIMATE40, which uses gene
expressionsignatures to infer the fractionalproportionof stromal and immune
cells. We evaluated the effects of tumor purity on the subset of benchmarking
data, consisting of eight NCH samples, that were analyzed with ESTIMATE.
We found that macro-averaged precision, recall, and F1 scores for the true
variant vs. artifact model remained consistently high across the tumor purity
levels observed in our cohort (Supplementary Fig. 4a). The germline vs.
somatic model is more sensitive to tumor purity, and model performance
tends to increase as tumor purity increases (Supplementary Fig. 4b).

We evaluated variant calls and model performance across different
numbers of aligned reads, ranging from60 to 150million.As expected, fewer
mapped reads resulted in fewer variant calls (Supplementary Table 2). For
the True vs. Artifact model, performance slightly declined with fewer map-
ped reads, though it remained high across all read levels (Supplementary
Fig. 5a, b). The germline vs. somaticmodel showed amorenoticeable drop in
performance with fewer aligned reads (Supplementary Fig. 5c, d), but no
consistent trend was observed linking lower read counts to worse results.

We compared the performance of our models across the three
benchmarking datasets, consisting of pediatric and adult brain cancer
subjects. For the True vs. Artifact model, performance was consistent
between theNCHandGBMdatasets, with area under the receiver-operator
curve (AUROC) scores of 0.990 and 0.987, and area under the precision-
recall curve (AUPRC) scores of 0.993 for both (Supplementary Fig. 6a, b). In
contrast, the ZCC dataset showed lower performance, with an AUROC of
0.943 andanAUPRCof 0.886. For the germline vs. somaticmodel, theNCH
dataset exhibited the highest performance, followed by the GBM and ZCC

datasets (AUROC–NCH 0.924, GBM 0.873, ZCC 0.864; AUPRC–NCH
0.633, GBM 0.494, ZCC 0.280; Supplementary Fig. 6c, d).

Benchmarking VarRNA
While VarRNA offers comprehensive variant classification capabilities for
tumor samples by identifying artifacts and somatic variants, we bench-
marked its performance against two specialized tools, each addressing
specific aspects of VarRNA’s functionality. GATK Variant Filtration, typi-
cally used for detecting germline variants from RNA-Seq data, was
employed to assess VarRNA’s artifact identification capability. Conversely,
RNAIndel41, designed to call indels from tumor RNA-Seq data, provided a
comparative framework for VarRNA’s ability to categorize these variants as
artifacts, germline, or somatic. This benchmarking approach highlights
VarRNA’s multifaceted utility in a field where specialized tools often focus
on narrower tasks.

Two separate comparisons are presented because GATK variant fil-
tration only distinguishes variants as true or artifact, and although
RNAIndel classifies all three labels, it provides only results for indels. The
VarRNA True Variant vs. Artifact model was validated against GATK
variantfiltration for both SNVs and indels. The combinedVarRNAmodels,
which produce artifact, germline, and somatic labels, were validated against
RNAIndel for indels only. A detailed description of the steps to run each
model and gather performancemetrics is provided (SupplementaryNotes).
The three benchmarking datasets were used for this comparison (Supple-
mentary Fig. 1).

TheVarRNATrue vs.Artifactmodel substantially outperformsGATK
Variant Filtration with an AUROC of 0.967 compared to 0.764, and an
AUPRCof 0.961 compared to 0.786 (Fig. 2a, b).We compared performance

Fig. 2 | Benchmarking VarRNA against GATKVariant Filtration andRNAindel.
ROC (a) and Precision-Recall (b) curves of VarRNA (blue) and GATK Variant
Filtration (orange) on the benchmarking dataset of 19,291 SNVs and indels. ROC (c)

and Precision-Recall (d) curves of VarRNA (blue) and RNAindel (purple) on the
benchmarking dataset of 1830 indels.
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metrics (recall, precision, F1-score, and false positive rate per 1Mb) across
multiple VAF bins (Supplementary Fig. 7a, b). In general, both tools tended
to have a better performance as VAF increases. GATK variant filtration had
a higher recall across multiple VAF bins, while VarRNA had a higher
precision, F1-score, and lower false positive rate. We see higher variability
for indels because there are far fewer observations, particularly at
lower VAFs.

To compare VarRNA with RNAIndel, the output of both
VarRNA models was combined by multiplying the Germline vs.
Somatic model probabilities by the True Variant probability so that
the artifact, germline, and somatic probabilities sum to 1. The
observations were subset so that only indels were included to evaluate
performance, reducing the number of variants from 8931 to 2317.
Additionally, we only compared the subset of variants that were
called by both VarRNA and RNAIndel, reducing this number to
1507. Despite this RNAIndel limitation, we could determine that
VarRNA and RNAIndel performed comparably across indel variant
calls, with similar areas under the ROC and PR curves (Fig. 2c, d).
VarRNA shows a slightly increased precision and F1-score and a

slightly decreased false positive rate across most VAFs (Supplemen-
tary Fig. 7c). We did not observe a trend of increased recall, preci-
sion, or F1-score as VAF increased for indels.

Feature interpretation
We employed Shapley additive explanations (SHAP)42 values to rank the
importance of features used in training the VarRNA model. SHAP is a
powerfulmethod that demystifies the black-box nature ofmachine learning
models, enabling us to identify which features were most informative for
model classification. SHAP also permits an understanding of the rationale
behind our model’s predictions to rank the importance of features used to
train the VarRNAmodel. We calculated the mean of the absolute value of
each feature across all training observations to summarize the ranked order
of how informative each feature was (True Variant vs. Artifact: Supple-
mentary Data 2; germline vs. somatic: Supplementary Data 3). We addi-
tionally described their orientation, defined by the feature correlation with
the model output.

We summarized the top 20 most informative features for the True
Variant vs. Artifactmodel, ordered by themean of the absolute SHAP value

Fig. 3 | Feature importance for the top 20 features
of eachmodel.Top 20most informative features for
the True vs. Artifact (a) and Germline vs. Somatic
(b) models as calculated by the sum of the absolute
SHAP values using the training data. The trend of
feature value influence on the model predictions is
indicated in red and blue, with the color based on
correlation between each feature and the corre-
sponding SHAP values. In a, a positive SHAP value
is associatedwith TrueVariant prediction and inb, a
positive SHAP value is associated with Somatic
prediction. (SHAP: SHapleyAdditive exPlanations).
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of each feature (Fig. 3a). High VAF and high gnomAD allele frequency
generally increased the True Variant prediction. We observed that a large
median fragment length of reads supporting the alternative allele
(MFRL_ALT), consistent with findings in DNA from a previous study that
showed longer fragment length tended to yield high error rates43, and high
strand odds ratio, which is a quality metric used to identify potentially
false-positive variants, both tended to increase the Artifact prediction.
For the Germline vs. Somatic model, a high gnomAD allele frequency
(INFO/AF_raw) increased the Germline prediction (Fig. 3b). Another
important set of features is ClinPred Pred: D (deleterious) and ClinPred
Pred: T (tolerated), which are based on the output of the ClinPred model,
aiming to predict the impact of nonsynonymous variants using an
ensemble of existing pathogenicity classifiers. These features indicate
whether the variant is deleterious (e.g., has a damaging effect on the
protein), or tolerated (e.g., likely has a minimal impact on protein
function). A deleterious outcome increases the Somatic prediction, and a
tolerated outcome increases the Germline prediction. We see a similar
trend in the 30-way mammal PhyloP score, where higher values increase
the somatic prediction. PhyloP scores quantify the conservation rate at a
particular region, and positive scores indicate higher conservation rates.
Both features suggest that variants occurring at more conserved loci are
more likely to be somatic variants.

We also explored why the germline vs. somatic model was miscalling
some somatic variants as germline by evaluating themost impactful features
(calculated by SHAP) for germline prediction of somatic variants. Themost
frequently impactful features are QD and gnomAD allele frequency.When
the QD is lower, the model tends to predict a variant as somatic, reflecting
the tendency in our training data for somatic variants to exhibit lower
quality than germline variants. Additionally, the presence of a non-zero
allele frequency in gnomAD drives the model toward a germline classifi-
cation, which aligns with the expectation that germline variants are more
commonly found in healthy population databases.

Comparison of variant calls from RNA-Seq or DNA-Seq
The 44NCH sampleswere used to compare variant calls between RNA-Seq
and DNA-Seq (ES) (Supplementary Fig. 1). We included all variants called,
rather than filtering by gnomADAF < .001 as done for model training and

benchmarking (see “Methods”), to compare the total breadth of variants.
About half (47.2%) of the variants called in theDNA-Seq data are also called
by VarRNA analysis of the RNA-seq data (Fig. 4a). When accounting for
expression level, only 38,227 of the 540,243 (7.1%) germline variants called
from theDNA-Seq data had at least ten-fold coverage in the RNA-Seq data,
and only 6187 of these variants (1.1%) had at least ten reads covering the
alternative allele.Hence, 98.9%of the germline variants called only from the
DNA-Seqdatahave an insufficientRNAexpression level topermit callingof
the variant allele from RNA-Seq data (i.e., if the gene containing the variant
observed in theDNA is not expressed, then it will not be possible to call that
variant from RNA-Seq data). Similarly, for somatic variants, 96.9% of
variants called only from Mutect2 analysis of the tumor DNA-Seq data
lacked sufficient RNA-seq data coverage of the variant allele to permit
variant detection. These results highlight that many DNA variants are not
expressed, and as such, variant calling using RNA-Seq can focus down-
stream interpretation on genes that are being expressed in the tumor at the
time of biopsy or surgical resection.

When we evaluated RNA-Seq variants called by VarRNA, most
(97.5%) were also present in DNA-Seq data. Of the subset of variants only
called in RNA-Seq (12,486; 2.5% of RNA variants), most (99.1%) were in
exonic regions; 0.9% were in intergenic, 5’ or 3’ untranslated regions, or at
splice sites (Fig. 4b). We reviewed the ES BAM coverage in a subset of 36 of
these patients (10,436 variants in exonic regions) to determine what evi-
dence existed for the variant in theDNAdata.Of these 10,436 variants, 4869
(46.7%) had insufficient coverage to identify variants, as defined by a depth
of fewer than 10 reads over the combined reference and variant alleles. 1295
variants (12.4%) were identified in the DNA BAM with a coverage depth
over the variant allele greater than ten reads and a VAF greater than 0.1, yet
were filtered out of the results, likely due to low quality. 296 variants (2.8%)
showed evidence of a variant in the DNA with a VAF greater than 0.1 but
with a coverage depth of fewer than ten reads over the variant allele. Finally,
3976 variants (38.1%) had sufficient coverage in the DNA, but with no
evidence of a variant (Fig. 4c). Therefore, we estimate that 62% of these
variants uniquely identified by VarRNA in the RNA-Seq data are likely real
variants that were missed by DNA-Seq. They either had no DNA-Seq
coverage (i.e., regions not covered by the ES hybrid capture probe reagent)
or there was evidence of the variant in the DNA but of insufficient depth to

Fig. 4 | Comparison of variant calls between RNA-Seq and Exome
Sequencing (ES). a Venn diagram of the overlap of variants identified from ES
Germline (green), ES Somatic (blue), and RNA-Seq (red) data. Each number in (or
pointing to) theVenn diagram corresponds to the number of variants in that section.
The union of all the variants is listed as Total variants (1,044,472). The number in

parentheses next to each label is the number of variants in each group. bDistribution
of the variant locations called in the RNA-Seq butmissed in ES. cDistribution of the
variant calls missed in ES, based on ES coverage and variant evidence. (ES: Exome
Sequencing).
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call it. The remaining 38% of variants unique to the RNA-Seq data may
result from RNA editing or post-transcriptional modifications. These also
may be due to RNA strand scission or to sequencing artifacts, but the high
performance of the true vs. artifactmodel performance would argue against
the latter possibility.

Allele-specific expression in cancer-driving genes
We combined our VarRNA results and annotations from OncoKB, a
curated knowledgebase providing evidence-based information on somatic
mutations in patient tumors44, to further characterize variants in genes
found to be either oncogenes or tumor suppressors. For variants in cancer-
driving genes described byOncoKBand found in bothRNAandDNAdata,
1125 out of 16,626 variants show ASE of the variant allele, quantified as a
VAF in the RNA greater than 0.65 and aVAF in theDNA less than 0.55. Of
these variants, 361wereobserved to exhibit extremeabsenceof transcription
from the wildtype allele (0–10% VAF) and corresponding allele-specific
expression of the variant allele (90–100% VAF) Table 2a, b outlines four
such examples of allele-specific expression of pathogenic variants in known
cancer genes with clinical significance established by the AMP/ASCO/CAP
tiering system45 and oncogenicity classification by ClinGen/CGC/VICC27

that were identified by VarRNA.

Complex variants are classified by VarRNA
We utilized VarRNA to evaluate RNA-Seq data that was produced by an
outside commercial laboratory using tumor tissue obtained from an indi-
vidual with a high-grade glioma. Due to insufficient tumor cell content and
limited tissue obtained at the time of biopsy, only RNA-Seq was performed.
VarRNA classified two variants of clinical relevance, both of which were
supported by results from an outside academic institution that performed a
cell-free DNA assay on cerebrospinal fluid from the same patient. A mis-
sense somatic variant (NM_023110.3(FGFR1): c.1638C >A: p.N546K) was
classified in a recurrent hotspot in the kinase domain of the FGFR1
gene. Additionally, a somatic in-frame six base pair deletion
(NM_181523.3(PIK3R1):c.1362_1367del:p.F456_Q457del) was classified in

the PIK3R1 gene. Loss of function somatic variants such as that in PIK3R1
have been described in pediatric high-grade gliomas46,47. This in-frame
deletion occurs in a hotspot within the iSH2 domain that is expected to result
in loss of function48,49, and likely results in aberrant signaling through the
PI3K pathway to drive oncogenesis. These findings emphasize the ability of
VarRNA to classify complex variants, including small deletions, and high-
light how RNA-Seq may provide a valuable resource for variant identifica-
tion and classification in cases where DNA-Seq data are unavailable.

Discussion
Wehave developedVarRNA, a computationalmethod to classify SNVs and
indels identified from tumor RNA-Seq data, which encompasses 1) a
pipeline to align RNA-Seq reads and call variants and 2) amachine learning
model to predict variants as germline, somatic, or artifact. VarRNA retains
important variant information while reducing the burden of artifact var-
iants, exhibiting both high precision and recall identification of true genetic
variants from tumor RNA-Seq data. VarRNA can also predict whether the
variant identified is a germline or somatic variant. Our results demonstrate
that VarRNA can detect somatic variants that would have been missed by
performingDNA-Seq alone.Moreover, some variants detected byVarRNA
exhibited markedly different VAFs compared to those called in the corre-
sponding DNA exome data. This discrepancy was particularly striking in
cancer-relevant genes, where VarRNA analysis revealed that the expression
of the variant allele was significantly higher relative to the wild-type allele,
with potential clinical relevance.

Variants in MSH6 can result in defective mismatch repair, wherein
this activity is reduced, but not absent, when there is one normal copy of
the MSH6 gene. As such, one deleterious variant in each MSH6 allele is
required to cause a complete loss of function, resulting in a high tumor
mutational burden50. In patient IGMCH0061, VarRNA classified a
nonsynonymous somatic variant in the MutS_V functional domain of
MSH6. The MSH6 protein plays a role in detecting mismatches that arise
during DNA replication. Mutations in this domain compromise the
mismatch repair system’s ability to accurately identify and correct these

Table 2 | Somatic variants with ASE in cancer-driving genes detected by VarRNA

Subject Variant ID RNA VAF DNA VAF No. Reads Gene Functional
Domain

Diagnosis

a.

IGMCH0061 chr2: 47803662
G - A (G1139S)

0.942 0.441 172 MSH6 MutS_V Pleomorphic
xanthoastrocytoma

IGMCH0110 chr17: 7673806
C - T (V272M)

0.811 0.503 264 TP53 P53 Osteosarcoma

IGMCH0241 chr7: 140753336
A - T (V600E)

0.773 0.371 22 BRAF Pkinase_Tyr Pleomorphic
xanthoastrocytoma

IGMCH0074 chrX: 124037595
C - CT
(I122YfsTer7)

0.974 0.518 229 STAG2 Outside functional
domain

Ewing sarcoma

b.

Subject Variant ID AMP/ASCO/
CAP Tier

Evidence Type Oncogenicity
Classification

Onco Codes

IGMCH0061 chr2: 47803662
G - A (G1139S)

Tier II –
Level C

Diagnostic Likely Oncogenic OS2, OM1,
OP4, OP1

IGMCH0110 chr17: 7673806
C - T (V272M)

Tier I –
Level B

Diagnostic Oncogenic OS2, OM3,
OM1,
OP4, OP1

IGMCH0241 chr7: 140753336
A - T (V600E)

Tier I –
Level A

Therapeutic
Response

Oncogenic OS2, OS3,
OP4, OP1

IGMCH0074 chrX: 124037595
C - CT
(I122YfsTer7)

Tier I –
Level B

Diagnostic,
Prognostic

Oncogenic OVS1,
OS2, OP4

aGenetic variant profile. RNAVAF is the variant allele frequency in theRNA.DNAVAF is the variant allele frequency in theDNA.No.Reads is the total number ofRNA-Seq readscovering the variant position. b

Clinical interpretation. Evidence type accompanies the corresponding AMP/ASCO/CAP Tier. Onco Codes describe the criteria for evidence of the corresponding oncogenicity classification. (ASE: Allele-
Specific Expression)
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errors. The VAF of the MSH6 variant detected in the DNA-Seq is about
50%, indicating the second allele is wildtype. However, the VAF of this
variant in the RNA is close to 100%, suggesting that the wild-type protein
is not being produced. Indeed, the tumor mutational burden, or the total
number of mutations per megabase (Mb) of DNA in the tumor cells is
about 45 variants per Mb, indicative of an ultra-hypermutated genome.
Thus, the overexpressed variant MSH6 allele indicates predominant
expression of an altered and dysfunctional protein product, resulting in
significant disruption of DNA repair, which leads to a significant
mutational burden and contributes to cancer onset. If DNA-Seq data
alone were evaluated, the underlying reason for the high TMB, a highly
relevant clinical observation, may have been missed.

The STAG2 gene plays a significant role in several types of cancer,
including Ewing sarcoma, due to its encoded protein’s function in the
cohesin complex, which regulates chromosomal segregation during cell
division51,52. In patient IGMCH0074, a germline frameshift insertion in
STAG2 was called with about 50% VAF in the DNA but with nearly
exclusive homozygous expression of the variant allele in the RNA. This
mutation leads to a premature stop codon seven amino acids down-
stream of the mutation, which likely confers a loss of function for the
only expressed allele of STAG2 in this tumor. Recent studies have pro-
vided evidence that a loss of STAG2 function can lead to more aggressive
behavior in Ewing sarcoma, which requires corresponding therapeutic
adjustment due to poor prognosis53,54. Absent evidence of monoallelic
expression of this STAG2 variant, the opportunity to appreciate the
prognostic value of the mutation only from DNA-Seq may have been
missed.

The clinical implications of our findings regarding the MSH6 and
STAG2mutations reinforce the value of studying RNA from tumor mate-
rials to clinically inform cancer therapy. In both cases, understanding these
ASE mechanisms could lead to therapeutic approaches that are tailored to
the patient’s disease characteristics, possibly improving treatment out-
comes. These findings underscore the utility of RNA-Seq not only in
detecting variants that may be underrepresented or absent in DNA but also
in providing a more nuanced view of disease-specific expression dynamics
and potential impact on cancer pathogenesis, thereby influencing both
prognosis and therapeutic strategies.

Our model to distinguish true variants from artifacts has a high true
variant recall, correctly labeling 95.1% of true variants as true while
keeping the averaged F1 score high (92.7%). The F1 score harmonizes
recall and precision, ensuring that high performance is not achieved in
one metric at the expense of the other, making the F1 score a useful
measurement for overall model performance. Indeed, VarRNA retains
important variant information while reducing the burden of artifact
variants. Our Germline vs. Somatic model also performs well, correctly
labeling 89.4% of expressed germline variants and 66.6% of expressed
somatic variants. By utilizing the model’s probability scores, somatic
recall increased from 66.6 to 73.6%. Due to this increase in performance
metrics with minimal loss in correct predictions, we recommend filtering
germline vs. somatic results by model probability.

VarRNA outperformed two existing methods to reduce artifact calls
in RNA-Seq data or classify variants as germline or somatic in tumor
samples. Our True vs. Artifact model was validated against GATK var-
iant filtration for SNVs and indels. Overall, VarRNA outperforms GATK
variant filtration with a higher precision and F1-score, and a lower False
Positive rate. The GATK variant filtration criteria generally accept more
variants that are artifacts, which raises its recall but lowers its precision.
Our combined germline, somatic, or artifact results were compared to
those from RNAIndel, which provides the same labeling scheme but is
limited to only indels called from tumor RNA-Seq. We observed com-
parable performance to RNAIndel. Overall, VarRNA outperforms both
methods and provides more comprehensive results on tumor data than
either method on its own.

Our models are built with XGBoost, and the contribution of each
feature to the prediction is quantified using SHAP Tree Explainer. This

feature of VarRNA is unique amongst the RNA variant classification
methods and provides significant value for clinical interpretation of our
model predictions. For example, the population frequency of a given variant
proved to be highly informative in distinguishing between germline and
somatic variants. We found that somatic variants are less commonly found
in population databases like gnomAD because they occur in specific tissues
or tumors and are not inherited, whereas these databases primarily catalog
germline variants present in all cells.

We also observed that the most influential features in predicting
somatic variants tend to occur more frequently in conserved genomic loci
than do germline variants. Conserved regions have functional importance,
including crucial roles in cellular function and development, and therefore,
variants in these regions can have significant effects on cell biology that, in
cancers, lead to dysregulated cellular proliferation. By contrast, germline
variants in these same regions are often subject to evolutionary pressures
and may be less likely to be inherited due to their detrimental effects.
However, germline variants in cancer predisposition genes contribute to
cancer susceptibility, particularly in pediatric disease, and are as such,
important to identify55,56.

VarRNA was trained with pediatric cancer samples and applied to
both pediatric and adult cancer samples. We observed no substantial
decrease in True Variant vs. Artifact model performance between pediatric
and adult cancer data. For the germline vs. somatic model, performance
was highest in the NCH dataset, followed by the GBM and ZCC datasets.
This slight decline in performance is expected, as the NCH dataset likely
resembles the training data more closely. Additionally, the ZCC dataset
generally contains fewer mapped reads per sample, which may impact the
Germline vs. Somatic model’s performance (Supplementary Fig. 5b, d).
The ZCC labels were derived from GS, which could introduce differences
compared to the ES-derived labels used in the NCH and GBM datasets.
Additionally, most of the cancer samples used to train VarRNAwere from
central nervous system tumors. It is possible that the modelmay need to be
optimized for specific tumor types. This limitation could be overcome by
training a model optimized for the user’s specifications. VarRNA is
available as open source, with feature annotation and processing provided
with detailed code, allowing groups to train their own models efficiently.
Given that the germline vs. somatic model performance is reduced at lower
tumor purity levels, these results could be mitigated by training a model
with samples of the desired tumor purity level to gain higher performance
at detecting somatic vs. germline variants.

There exists a largeoverlapbetweenvariants called in theRNA-Seqand
DNA-Seq data, with about half of the variants called inDNA-Seq also being
found inRNA-Seq.However,most variants observed inDNA-Seq thatwere
not observed in RNA-Seq occurred in genes that lacked expression in the
tissue of study and, as such, had insufficient read coverage to identify the
variant from RNA-seq data. This highlights one disadvantage of variant
calling fromRNA-Seq, in that expression levels dictatewhether a variantwill
be covered by RNA-Seq reads and identified with variant calling tools.
Additionally, RNA is generally less stable than DNA due to chemical and
structural characteristics57. This results in some degradation during tissue
preservation and RNA extraction, which may lead to missed variant calls58.
Technical variability in library preparation can also introduce biases; for
example, some reverse transcriptases might fail to effectively reverse tran-
scribe regions having secondary structure59.

Conversely, some variants were detected exclusively in the RNA-Seq
data. Our evaluation of the RNA- and DNA-Seq data for these variants
revealed that most (about 62%) were likely missed in the DNA-Seq due to
regions that were not targeted by the ES reagent or had lower sequence
coverage from suboptimally performing capture probes. However, it is
possible that the somatic variants unique to the RNA-Seq data reflected
changes in the underlying biology of the tumor. For example, dysregu-
lation of genes in the tumor sample could result in higher gene expression,
leading to increased sequence coverage. This higher coverage enhances
the accuracy of variant calling in highly expressed genes. Moreover, unlike
DNA-Seq, RNA-Seq has the capability to detect ASE; some variants are
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identified in the RNA due to preferential expression, leading to higher
coverage, whereas the variant may have too low a frequency to be iden-
tified in the corresponding DNA. RNA-Seq can also identify post-
transcriptional modifications, such as RNA editing, which are not present
in DNA. It is also possible that a subset of these variants, only called in the
RNA, resulted from technical differences in library preparation and
sequencing protocols. While it cannot be ruled out that variants found in
the RNA with no evidence of the variant in the corresponding DNA may
represent sequencing artifacts, our true variant vs. artifact model per-
formed exceptionally well, making this possibility less likely.

The results in Table 2 highlight several clinically relevant variants with
high VAFs in RNA. This naturally raises the question of whether the
opposite logic might apply: can clinically relevant variants be identified by
their disproportionately low VAFs in RNA data? Initially, this may seem
counterintuitive, as variants with decreased presence in a cancer sample are
typically less likely to be oncogenic drivers. However, an intriguing possi-
bility arises: focusing on mutations with low RNA VAFs could implicate
variants under negative oncogenic selection. Although the overall level of
negative selection in cancers is low, with 99% of coding variants being
tolerated, there are notable exceptions. For example, essential genes like
POLR2A, which can exhibit ploidy 1 in tumors, demonstrate this
concept60,61. Identifying such mutations with low VAFs could provide
valuable insights and be leveraged in clinical applications.

Variant calling and classification with RNA-Seq, as we have
demonstrated through VarRNA, has the potential to revolutionize our
understanding of pediatric cancer biology, providing a crucial layer of
genetic information not captured from DNA alone. The additional
information from tumor-derived RNA greatly enhances the breadth and
depth of cancer genomics data interpretation. As a result, we can expand
the utility of RNA-Seq data beyond what has already been demonstrated,
such as detecting fusion genes and splicing variants, gene expression
profiling, cancer classification, and pathway analysis. By incorporating
variant calling into this already powerful toolset, VarRNA further
broadens the potential applications of RNA-Seq, increasing its impact in
both cancer research and clinical settings. This method represents a
groundbreaking approach that enhances our understanding of cancer
biology by seamlessly integrating expression data with variant identifi-
cation. It opens new avenues for further research in cancer biology and
clinical care, promising significant advancement in the field.

Data availability
NCH ES and RNA-Seq data used in this study are publicly available for
general research use and have been deposited in dbGaP, under study
accession phs001820.v3.p1. The GBM cohort data are deposited at NCBI’s
Sequence Read Archive and are accessible through BioProject ID
PRJNA999679 (ES data) and are deposited at NCBI’s Gene Expression
Omnibus and are accessible through Gene Expression Omnibus Series
accession number GSE238012 (RNAseq data). Additional data used for
model validation from the ZCC study were accessed from the European
Genome Archive, study accession EGAC00001001683. These data are
available for research upon request. Source data for main figures are pro-
vided with this manuscript as Supplementary Data 5. All other data are
available from the corresponding author on reasonable request.

Code availability
The models developed and the code used to process RNA-Seq data pre-
sented in thismanuscript are open-source and available for downloadunder
the BSD3-Clause license at https://github.com/nch-igm/VarRNA.The data
in this manuscript were processed using VarRNA v1.0.0, corresponding to
the 1.0.0 release. The code is also deposited at Zenodo, a DOI-minting
repository: https://doi.org/10.5281/zenodo.14699945.
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