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Obstructive sleep apnea severity varies by
season and environmental influences
such as ambient temperature
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Abstract

Background Obstructive sleep apnea (OSA) severity often varies considerably from night-
to-night, but whether environmental factors play a role is unclear. This study investigated
seasonal and temperature-related changes in OSA severity.
Methods Data were acquired from 70,052 participants with an average apnea-hypopnea
index (AHI) ≥ 5 events/hour who used an under-mattress sleep sensor at least 4 times/week
between January 2020 and September 2023. Fixed effect models were used to investigate
the association between AHI and day of the year, adjusting for geographical location,
variation in total sleep time, ambient temperature, and air pollution.
Results Participants are middle-aged (mean ± SD, 53 ± 13 years), predominantly male
(81%), overweight (BMI; 29 ± 6 kg/m2) and have an average of 492 ± 341 nights of data.
Mean AHI is 18.0 ± 14.0 events/h and within-subject coefficient of variation is ±51%. AHI is
~5% higher during summer/winter compared to spring/autumn in the northern hemisphere,
and 10–15%higher during summer compared to spring in the southern hemisphere. Higher
ambient temperature (25th vs. 75th percentiles; 6 vs. 18 degrees Celsius) is associated with
a 6.4% (95% CI; 6.3–6.5) increase in AHI. Results are consistent across 23 countries,
although the effect of temperature on AHI is larger in Europe vs. the United States or
Australia.
Conclusions Here we demonstrate a seasonal component to OSA severity, partially
explained by ambient temperature and seasonal variation in sleep duration. Our findings
highlight the need to report data collectionmonths in OSA clinical trials, and further study to
uncover the physiology behind seasonal variation in OSA severity are required.

Obstructive sleep apnea (OSA) is the most prevalent sleep-related breathing
disorder, estimated to affect 1 billion adults globally1,2. OSA severity is
typically quantified using the apnea-hypopnoea index (AHI), a count of the
number of partial (hypopnoea) or total (apnea) upper airway collapses per
hour of sleep. Untreated OSA is associated with a range of adverse health
outcomes, road safety events, reduced quality of life, and all-cause
mortality3,4.

There is considerable night-to-night variability in OSA severity
which leads to diagnostic misclassification in 20–50% of patients2,5–7.

High night-to-night variability is an important predictor of poor health
outcomes2,5,8,9 and therefore understanding the factors that contribute to
this variability is important. Existing studies suggest a potential seasonal
component to OSA severity, although results are conflicting. A cross-
sectional analysis of 7000 polysomnographic studies of people suspected
of a sleep disorder suggested that the AHI is highest during winter10.
However, a longitudinal cohort study of 100 participants over ~1 year
found that the respiratory disturbance index (derived from pacemakers)
is 10% higher during summer versus winter11.
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Plain language summary

Obstructive sleep apnea (OSA) severity often
varies considerably from night-to-night, yet
whether there is a seasonal component to
OSA severity is unclear. This study used data
from 70,052 people who tracked their sleep
and OSA severity for up to 3.5 years using an
FDA-cleared under-the-mattress sensor. We
examined whether the severity of OSA chan-
ges with the seasons. We found that OSA
severity varies across the year and is partly
explained by changes in sleep duration and
environmental factors like ambient tempera-
ture. These findings highlight the importance
of considering the time of year when con-
ducting OSA studies or evaluating treat-
ments. Future research is needed to better
understand the physiological mechanisms
behind these seasonal changes in OSA
severity.
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Some studies have focused on environmental factors thatmay partially
explain potential seasonal variation in OSA severity, such as ambient
temperature and air pollution12–15. However, these have also produced
conflicting results which may be explained by differences in the measure-
ment of sleep and environmental variables. A major limitation is that most
prior studies are cross-sectional and use single-night estimates of AHI and
therefore neglects to account for the substantial night-to-night variability in
AHI2,5,6.Only one large studyusedmulti-nightAHImeasurements, butwith
an unvalidated device12. Furthermore, sleep duration and timing varies by
season16,17, which could partly explain seasonal variation in AHI through
sleep regularity18 or circadian effects19.

In this study, we use multi-night, longitudinal measurements of OSA
severity using a validated under-mattress sensor in ~70,000 people with
OSA, collected over ~3.5 years across multiple geographical locations to
estimate seasonal variations in OSA severity, adjusting for key confounders
including environmental factors, sleep duration and timing variability. We
show that AHI is ~5% higher during summer/winter compared to spring/
autumn in the northern hemisphere, and 10–15% higher during summer
compared to spring in the southern hemisphere. Ambient temperature and
variation in sleep duration partially explained these results. Results are
consistent across 23 countries.

Methods
Participants
This study is a retrospective analysis of data from 125,295 participants who
bought, setup and registered to use an FDA-approved under-mattress sleep
sensor for personal use (Withings Sleep Analyzer; WSA) between January
2020 and September 2023. Participants were included if they used their
devices regularly, defined as ≥4 recordings per week and ≥28 valid AHI
measurements per year (i.e., ≥5 hours sleep, see below), similar to previous
studies2,20,21. Only participants with a yearly average AHI ≥ 5 events/h were
included in this analysis. Participants were geo-localised to the closest, lar-
gest city in each time-zone within a country (in countries with multiple
time-zones present) or the largest city if there was only a single time-zone
within a country. More precise location was not available due to ethical
considerations around privacy. All participants provided written consent
through theWithings app for their deidentified data to be used for research
purposes when signing up for aWithings account. The study was approved
by the Flinders University Human Research Ethics Committee (Project
number: 4291).

Objective sleep monitoring
The Withings Sleep Analyser (WSA) is a non-wearable sleep monitoring
device placed under themattress that estimates theAHI and sleep stages. This
is achieved via automated proprietary algorithms from a built-inmicrophone
and ballistographic assessment of movement, heart rate, and respiratory
motion from a pressure sensor22. To ensure consistent measurements across
days, the WSA monitors pressure inside the inflated air bladder and peri-
odically re-calibrate itself to ensure consistent pressure. The WSA-estimated
AHI has good agreement with in-laboratory polysomnography-derived AHI
to classify moderate-to-severe OSA (88% sensitivity and 88% specificity to
detect ≥15 events/h sleep)2,22. The estimatedAHI hasminimal bias against in-
laboratory polysomnography derived AHI when the AHI is considered as a
continuous variable. Validation studies were conducted with the AASM2012
criteria including ahypopnea definitionwith a reduction offlowabove 30%of
baseline and a 3% desaturation or an arousal23. The AHI cannot be reliably
calculated for nights with a sleep duration of less than 5h22.

Ourmain outcome of interest was change in AHI (referred to as “AHI
change” throughout this manuscript) between a given night and yearly
average, expressed as a percentage of the yearly AHI for each participant
using the following equation:

cAHId;y;p ¼ 100 � AHId;y;p � AHIy;p
AHIy;p

ð1Þ

Where cAHId;y;p represents the change in AHI, in %, for a day d, a year y,
and participant p andAHIy;p represents the averagedAHI for a given year y
and participant p. Similarly, we expressed change in total sleep time and
sleep onset time in secondary analyses.We also used clinically definedOSA
severity categories in secondary analyses (mild: 5-15; moderate: 15–30 and
severe: >30 events/h).

Seasonal and atmospheric variable assessments
We extracted atmospheric measurement from the fifth generation of Eur-
opean Reanalysis (ERA5) dataset24 including hourly air temperature, mea-
sured at 2m from the ground for eachmain city (500 km2 around the main
location) between 2020 and 2023. ERA5 is a climate model previously
shown to provide a satisfactory proxy to station-based data series and used
to assess the effect of ambient temperature on health25. Mean 24 h tem-
peratures were calculated for each location. We also extracted hourly dew
point temperature, total cloud cover, wind speed and surface pressure for
each location,whichwere subsequently averagedover a24 hperiod.Relative
humidity was calculated usingMetPy based on an existing formula26. These
atmospheric variables were time-matched to each of the nightly sleep
observations for each participant. We extracted measurements of fine
particulate matter density with aerodynamic diameter of less <2.5 µm
concentration from the European Centre for Medium-Range Weather
Forecasts Atmospheric Composition Reanalysis 4model as ameasure of air
pollution27. This model has shown good agreement against station-based
measurements28.

Statistics and Reproducibility
We used non-linear fixed effect models with subject/year strata intercepts
to account for potential year-to-year variation in AHI within individuals.
For continuous outcomes we used the gaussian family with identity link
function for the regression models. In some sensitivity analyses with a
binary outcome, we used binomial family with logit link function. We
modelled seasonal effects using natural splines of time (Julian day 1–365;
with 8 degrees of freedom [df]) and further controlled for an indicator of
day of the week in our baseline model. Since the day of the year is a
construct variable that may encompass multiple different exposures
variables including behavior (e.g., sleep, physical activity) and/or weather
changes (e.g., temperature, cloud cover), we ran a fully adjusted model to
investigate if seasonal effect persisted after adjustment for the following
potential confounders: total cloud cover (4 df), relative humidity (4 df), air
pollution (4 df), wind speed (4 df), surface pressure (4 df), yearly sleep
duration irregularity (4 df), and yearly sleep timing irregularity (4 df). This
analysis approach was first undertaken in different latitude categories
(−90 to−30⁰, 30 to 0⁰, 0 to 30⁰ and30 to 90⁰) and then in countrieswith at
least 200 users. Secondary analyses examined specific subgroups of
interest including age (10 y bins), sex, habitual sleep duration categories
( < 6, 6 to 7, 7 to 8, 8 to 9 and 9+ hours) andOSA severity categories (mild,
moderate and severe). Estimatedmarginalmeans and 95%CI are reported
in all figures.

To further explore the potential associations between environmental
variables and percentage AHI change, we constructed two additional
models per variable of interest. These predictors included: 24 h average
temperature, total cloud cover, relative humidity, wind speed, air pollution,
surface pressure, sleep duration irregularity, and sleep timing irregularity.
The first model for each predictor was adjusted for the day of the year and
the day of the week, and the second model was adjusted for additional
potential confounders. We compared exposure-response curves between
the minimally adjusted models and the fully adjusted models to assess
collinearity between variables. Each exposure of interest had different
potential confounders in the fully adjusted model (see supplementary
Table 1 for a detailed list). The effects were summarized using estimated
marginal means, comparing AHI change at the 75th percentiles vs. 25th
percentile of the exposure variable. In case of U- or J-shape association, we
compared the estimated marginal means at the 95th vs. 50th percentiles, and
the 5th vs. 50th percentiles. The models were implemented in the R
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programming language29 (version 4.3.3), using the dlnm30 and gnm
packages31. Model specifications can be found in the supplementary code
section of the supplementary material.

Sensitivity and supplementary analyses
To further validate our findings, we conducted several sensitivity and sup-
plementary analyses. Firstly, we reproduced the analysis only in data after
September 2022, a period where COVID19 was less likely to confound the
observed results. Secondly, we reproduced the main analysis by varying the
degree of freedom for the seasonal splines to 4, 6 and 8.We also reproduced
the main analysis using absolute values of AHI as an outcome within each
OSA severity category. Finally, we reproduced the main analysis by esti-
mating the probability of OSA status (moderate to severe: AHI ≥ 15; severe
OSA: AHI ≥ 30) across the year.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Participants characteristics
There were 70,052 participants with at least mild OSA available for the final
analyses (see flowchart in Supplementary Fig. 1). The demographics of the
final sample are shown inTable 1.The geographical locations of participants
are shown in Fig. 1, and a total of 23 countries with ≥200 participants were
included. There were 66,686 participants (95.2%) in the 30 to 90⁰ latitudes,
1070 (1.5%) in the 0 to 30⁰ latitudes, 556 (0.8%) in the −30 to 0⁰ latitudes,
and 1740 participants (2.5%) in the−90 to−30⁰ latitudes. On average, 492
( ± 341) nightly recordings were available per participant, with a total of
~34 million nightly recordings. The average overall coefficient of variation
forAHI (SD/mean)was~51%,~69% formildOSA, 52%formoderateOSA,
and 37% in the severe OSA group.

Seasonal variation in OSA severity
We observed seasonal variation in AHI. The AHI was ~5% higher during
summer and winter in the northern hemisphere compared to spring/
autumn, and 10-15% higher during summer in the southern hemisphere
(Fig. 2a) compared to autumn. However, the pattern of seasonal effects on
AHI change was variable even within the same latitude categories. For
example, spring and summer in Japan were associated with a 10% increase
in AHI, relative to autumn and winter whereas a higher AHI in the United
States for this same period was not detected. Similarly, in some European
countries such as France, there was no evidence of exacerbation of OSA
during spring or autumn, but summer (July/August) and winter

(December/Jan) was associated with a 5% increase in AHI compared to
November or March. In Australia, the pattern was also different compared
to Europe, but similar to Brazil, whereby AHI was lowest from February to
April, but steadily increased and reached its maximum (+ 10 to 15%)
during the summer months (December and January). Seasonal variation in
AHI was greater in men than women (Fig. 3a). Seasonal variation was also
higher in mild vs. moderate and severe OSA (Fig. 3b), and in participants
<60 vs.≥60 years old (Fig. 3d). Seasonal variation was higher in participants
with a habitual sleep duration below 8 h vs. participants who slept on
average more than 8 h (Fig. 3d).

The exposure-response curve between the day of the year and the
AHI change was similar to the main analysis when data was restricted to
before or after September 2022 (Supplementary Fig. 2). The exposure-
response curve was also similar when more restrictive degrees of freedom
for the seasonal spline were used (Supplementary Fig. 3). The seasonal
changes in absolute AHI were consistent in shape between different OSA
categories (Supplementary Fig. 4) compared to the main analysis. The
absolute changes were, however, greater in moderate to severe OSA and
severe OSA vs mild OSA (Supplementary Fig. 4). While the changes in
absolute AHI at the population may appear small ( < 2 events/hour), the
odds of presenting with moderate to severe OSA (peak to through dif-
ferences, see Supplementary Fig. 5) or severe OSA was increased by mean
[95%CI]; 15.3 [14.7, 16.0] % and 18.7 [17.9, 19.6] % seasonally,
respectively.

Environmental factors explaining seasonal variation in OSA
severity
There was an association betweenmultiple environmental and sleep factors
with AHI change (see Fig. 4). There were minimal correlations between
environmental and sleep variables (Supplementary Fig. 6). Therewas a non-
linear association between AHI change and temperature, such that higher
temperatures (25th vs. 75th percentiles; 6 vs. 18⁰C) were associated with a
6.4% (95%CI; 6.3–6.5%) increase inAHI. Similarly, therewas an association
between surface pressure and AHI change, where lower atmospheric
pressure was associated with higher AHI.We did not find an association of
either outdoor air pollution or outdoor relative humidity with AHI (Fig. 2c,
d). Dayswith higherwind speedswere also associatedwith higherAHI (75th

vs. 25th; 1.7 [1.6, 1.8]%).
Variation in total sleep timewas associated with a higher AHI, where a

132-minute increase (50th vs. 95th) in sleep duration compared to the yearly
averagewas associatedwith a 5.8% (5.7 to5.9%) increase inAHI. Short sleep
duration compared to the yearly average (5th vs. 50th; 94minutes reduction)
was also associated with a modest increased AHI (0.9 [0.8, 1.0] % increase).
Variation in sleep timing (time in bed) was associated with AHI (50 vs 95th:

Table 1 | Population sample demographics

Tertiles of OSA variability (AHI SD, events/h)

Overall T1
2.5 to 6.3

T2
6.3 to 9.8

T3
≥9.8

n 70,052 23,351 23,350 23,351

Age (years) 53 (13) 49 (12) 54 (13) 56 (13)

Sex n (%) Men 57,007 (81.4) 17,863 (76.5) 18,945 (81.1) 20,199 (86.5)

Women 13,045 (18.6) 5488 (23.5) 4405 (18.9) 3152 (13.5)

BMI (kg/m²) 28.8 (5.7) 27.2 (5.1) 28.6 (5.3) 30.8 (6.1)

Mean number of nights per person 492 (341) 428 (321) 518 (345) 531 (348)

Mean AHI (events/h) 18.0 (14.0) 8.3 (2.7) 14.5 (7.2) 31.0 (16.1)

SD AHI (events/h) 9.1 (4.8) 5.0 (0.8) 7.8 (1.0) 14.5 (4.6)

Mean sleep duration (h) 7.3 (0.9) 7.5 (0.8) 7.4 (0.9) 7.1 (1.1)

SD sleep duration (min) 74.7 (42.7) 69.7 (35.0) 73.5 (44.9) 80.9 (46.5)

AHI Apnea-hypopnoea-hypopnea index, BMI body mass index.
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−6 vs. 112min; 1.6% [1.5–1.7%]) (Fig. 4). The associations were similar in
unadjusted vs. fully adjusted models suggesting that multi-collinearity
between environmental variables was not an issue. Earlier time in bed
compared to the yearly average was associated with AHI change in the
unadjusted models but not in the fully adjusted models (see supplementary
Supplementary Fig. 7). Indeed, once adjusting for variation in total sleep
time, the association between earlier than normal time-in-bed with AHI
change disappear (Supplementary Fig. 7 red vs black curve). This suggests
that there was multi-collinearity between variations in sleep timing and
variation in sleep duration, similar to a previous study20.

Country by country models
The effect of environmental and sleep factors on AHI was consistent across
most countries (see Table 2 for summary statistics and Supplementary
Supplementary Fig. C1 to C12 for the exposure-response curves for the top
12 countries with the most users). High temperatures (75th vs. 25th) were
associated with a 6–14% increase inAHI in Europe (except for Austria), but
only a~2% increase inAustralia and theUS. Longer than usual TST (95th vs.
50th) was also consistently associated with a 3–11% increase in AHI in all
countries.However, shorter thanusualTST (5th vs. 50th)wasnot consistently
associated withAHI (see Supplementary Table 2) in all countries. The effect

Fig. 1 | Geographical locations of the participants. Worldwide distribution of study participants; legend indicates the number per country.

Fig. 2 | Seasonal variation in the apnea-hypopnoea index. a Variation in apnea-
hypopnea index (AHI) for different latitude categories across seasons, using the 21st

of June as the reference (summer and winter solstice in the northern and southern
hemisphere, respectively). b–g Seasonal variation in AHI for different countries.

Country by country number of users and nights is available in Table 2. Number of
users per latitude categories, accounting for participants that have moved locations
between year, are as follow: 90° to 30°, N = 67,526; 30° to 0°, N = 1,640; −30° to 0°,
N = 1038; −30° to −90°, N = 1640. Source data are available with this paper.
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of variation in surface pressure ( < 10–30 hPa) on AHI was <4% in most
countries. Once accounting for environmental and sleep factors, the sea-
sonal effect in AHI persisted, such that AHI was 10 to 20% greater on peak
vs. troughmonths (Table 2 and see Supplementary Figs. SC1 to SC12 for the
seasonal shape). In most countries, once models were adjusted for envir-
onmental variables, the seasonal component ofAHI onlywas evidenced as a
winter peak.

Discussion
This large global study investigated seasonal patterns in OSA severity and
found that the AHI was higher (8 to 19%) during winter and summer
compared to spring and autumn in the northern hemisphere. The summer
peak is likely to be partly explained by increased ambient temperatures,
which were associated with a 2 to 15% increase in AHI severity consistently
across the 23 studied countries.We also found that sleeping longer than the
yearly average was associated with a further 3 to 10% increase in AHI
severity, whichmay partially account for the peak inwinter. Together, these
findings have important implications for the diagnosis and long-term
management of OSA and global sleep health implications.

There are several factors that may influence night-to-night variability in
OSA severity. These factors include body/head position during sleep, circa-
dian effects, sleep stage distributions and timing, changes in non-anatomical
OSA endotypes, nasal resistance, and behavioural and lifestyle factors such as
nutrition, physical activity, social activities, alcohol, caffeine use, tobacco
intake, and medication use5,32,33. Some factors, such as weight gain, and
physical activity and alcohol consumption, vary across seasons22,34,35, which
may further explain some of the observed seasonal variation in OSA severity.
Indeed, adiposity is higher, and physical activity is lower during winter vs.

summer/spring22,34, which is consistent with the corresponding increasedAHI
in the current study. Depressive symptoms, anxiety and insomnia symptoms
may also be higher during winter months36, which could lead to lighter sleep
and thus, elevated OSA severity during winter37. Other potential explanations
for increased AHI during winter may be increased nasal resistance due to
respiratory illnesses such as the flux or COVID-19.

During winter, people tend to sleep ~20min longer which may be
explained by extended wake-up time (25min later compared to summer)
rather than earlier bedtime38.Hence, sleep opportunity ismostly extended in
the earlymorning, a periodwhereREMsleep ismore likely to occur39 and to
increase the AHI37. Extended sleep durations may also increase the pro-
portion of light sleep,which could also increase theAHI37. Thismay explain,
at least in part, increased OSA severity due to increased sleep duration
compared to the yearly average observed in this study; however robust
nightly analyses with sleep staging are required to confirm this hypothesis.
Sleep was shorter during summer months; hence, extended REM sleep
periods are unlikely to explain the summer peak in OSA severity. Some
studies suggest higher temperatures reduce sleep duration and cause poorer
self-reported sleep quality40–43, hence, AHImay be higher on hot nights due
to lighter sleep. This is consistentwith our observations thatAHIwas higher
with increased temperatures.

Taken together, all available potential sourcesof variability investigated
in the current study (i.e., seasonal, environmental, temperature and sleep-
effects) remained modest and suggest that other factors must play a key
influential role in mediating night-to-night variability in OSA severity.
Ambient temperature and seasonal variation in sleep duration were the two
main factors influencing seasonal variation in AHI. Indeed, while present,
the influence of other factors such as high wind speed, surface pressure, air

Fig. 3 | Seasonal variation in the apnea-hypopnoea index for different sub-
groups. Subgroups included (a) sex; (b) obstructive sleep apnea (OSA) severity
categories based on standard apnea-hypopnoea index (AHI) cutoffs: 5 to 15 (mild), 15
to 30 (mod) and ≥ 30 events/h (sev); (c) habitual sleep duration categories; and (d) age
categories. Analysis performed for the 30 to 90⁰ latitude category only (representing
95.2% of the dataset). Seasonal effect is summarized using themean (95%CI) difference

between the peak and the trough of the seasonal variation in OSA severity, referred to
as ΔAHI. Number of participants included in the analysis: sex (Women: 12556, Men:
54970), OSA severity categories (see Supplementary Table 3), habitual sleep duration
(<6 h: 10899, 6–7 h:28787, 7–8 h: 34352, 8–9 h: 12529, > 9 h:2736) and age (18–30:
2304, 30–40:9832, 40–50:16846, 50–60:19751, 60–70:12617, 70–80:5203, 80+ :1423).
Source data are available with this paper.
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pollution, and variable sleep timing on AHI variability were small. None-
theless, a seasonal effect that accounts for ~20% of the variation in AHI is
meaningful. Somepharmacological trials inOSApatients only showmodest
reductions inOSA severity, such as a 10 to 20% reduction44. Similarly,meta-
analyses of OSA severity reduction in response to diet and exercise have
demonstrated ~20% reductions in AHI45. Thus, our results highlight the
importance of reporting data collection months in clinical trials and time-
matchingOSA severity assessment for intervention and control participants
in trials. Therefore, while the observed effect is unlikely to be clinically
meaningful at an individual level, at the population level it may lead to
misestimation of OSA severity which could have implications for clinical
trials. There may also be implications in term of safety, since the odds of
havingmoderate to severeOSAvariesby 15% seasonally, with a peak during
summer and winter compared to spring or autumn. Our findings also
further question the use of single-night sleep studies to diagnose OSA since
many factors (e.g., temperature, sleep schedules, seasons) vary over time and
have an impact on OSA severity, which may partially explain the high
misdiagnosis rates in OSA using single night studies5.

There are some limitations with our study which should be considered
when interpreting the findings. Clinical information regarding co-morbid
conditions, sleepiness, and treatment status were unavailable. Some beha-
vioural information such as alcohol intake and smoking status that could
have helped understand the mechanisms behind a seasonal pattern of OSA
were also unavailable. Information on participants socio-demographics was
also unavailable. Similarly, the lack of more precise geographical locations
than nearest major city may have limited our ability to detect some asso-
ciations with environmental variables. In addition, we had to rely on out-
door ambient temperature, andwe had no information on air conditioning/

heating usage. This may have confounded some of the associations at the
country level. For example, the association between high temperature and
AHIhad a lower effect size in theUnitedStates compared to other countries,
which is also one of the countries with the largest usage of air conditioning
worldwide46. The above limitations, and previous studies showing correla-
tionbetween air pollution and temperature47, or sleepduration and timing20,
may have reduced our ability to determine associations between environ-
mental and sleep -related variables and changes in AHI. Our population
sample is also biased towardsmen, and the participants were likely of higher
socio-economic status since they could afford to purchase an unsubsidised
sleep tracking device. Most participants also resided in highly developed
countries, so they may have also had access to more favourable sleeping
environments and heat stress-mitigation strategies such as air
conditioning46. This high socio-economic bias is common in the sleep
research literature48. Our results highlight the urgent need for global stra-
tegies to collect appropriate sleep and temperature data worldwide48. Our
results remained consistent once data were restricted to post September
2022, suggesting that the COVID-19 pandemic did not seem to influence
ourmain results. However, we did not have access to clinical symptoms and
potential COVID-19 infections and/or long COVID, which could have
influenced the overall seasonal variability of OSA severity. Our study also
has several strengths, including a longitudinal design with >1.5 years of
nightly recordings for most participants, a much wider geographical cov-
erage than any previous studies, and a dataset larger than prior work.
Furthermore, we reproduced our estimates acrossmultiple countries, which
supported consistency of key results.

The estimated AHI from the under- mattress sensor includes fewer
input variables in which to detect respiratory events compared to

Fig. 4 | Associations of different environmental and sleep-specific factors with
seasonal variation in the apnea-hypopnoea-index. Variation in the apnea-
hypopnoea-index (AHI) for unadjusted (blue) and fully adjusted models (black).
Notes that the associations are similar in unadjusted vs. fully adjusted models sug-
gesting that multi-collinearity between environmental variables is not an issue (a)
Day of the year (21st of June as reference), (b) 24 h average temperature, (c) density of
particulate matter with diameter of less than 2.5 um (d) relative humidity e) surface

pressure, (f) wind speed (g) difference between a given night’s total sleep time (TST)
with the yearly TST average (ΔTST) in minutes and (h) similar to (g) but for time in
bed (ΔTIB) – see Supplementary Fig. 7 for extra analyses on potential collinearity
withΔTST. All graphs represent estimatedmarginalmeans using the 50th percentiles
as the reference value (except for a), and the x-axis limits were set as the 1st percentile
and the 99th percentiles. Source data are available with this paper.
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conventional polysomnography. Accordingly, other physiological aspects
of OSA (e.g., hypoxia, posture) as well as event-specific characteristics
such as ventilatory burden, ventilatory drive, central vs obstructive events
cannot be measured. However, validation studies in over 150 participants
support the device performance characteristics with minimal bias versus
polysomnographyAHI2,49. The classification of OSA severity based on the
estimated AHI ability is also ~80% accurate (mild-to-severe OSA: 89%
sensitivity and 75% specificity; moderate-to-severe OSA: 88% sensitivity
and 88% specificity; severe OSA: 86% sensitivity and 91% specificity)22.
The device performance is similar to other wearables and nearable devices

in estimating OSA severity such as mandibular movement-based
sensors50, chest-patch type of sensors51, forehead devices52, finger-worn
oximetry devices53,54, other mattress sensors22,55, RADAR based
technologies56. Furthermore, OSA prevalence estimates using non-
contact multi-night data yield very similar findings to previously pub-
lished literature1,2. Similarly,misclassification rates andAHIvariability are
also comparable to data derived from multi-night in-laboratory poly-
somnography and other home sleep apnea tests2,6,7.Thus, these findings
provide support that the multi-night mean AHI estimates derived in the
current study provide comparable insight to gold-standard

Table 2 | Association between nightly AHI, expressed as a % of yearly AHI, and select seasonal, environmental and sleep
variables for different countries

Country N nights
(x1000)

N users Seasonal AHI change*
(peak vs. trough)

ΔTST
(95th vs. 50th)

T°C
(75th vs. 25th)

Pressure
(75th vs. 25th)

Netherlands 836 1631 20.7
(19.3, 22.1)

9.8
(9.4, 10.3)

14.7
(13.8, 15.6)

5.7
(5.4, 6.1)

Denmark 315 638 20.2
(17.5, 23.0)

9.6
(8.9, 10.3)

11.8
(9.9, 13.7)

3.7
(3.1, 4.2)

Ireland 136 273 19.1
(15.9, 22.4)

5.9
(4.8, 7.0)

6.3
(4.3, 8.2)

6.0
(5.2, 6.9)

United Kingdom 2425 4690 17.1
(16.3, 17.9)

7.0
(6.8, 7.3)

9.0
(8.5, 9.5)

3.5
(3.3, 3.7)

Hungary 134 267 14.0
(10.3, 17.7)

5.3
(4.2, 6.5)

8.9
(6.2, 11.6)

2.8
(2.2, 3.5)

Romania 95 241 13.9
(9.1, 18.8)

4.1
(2.6, 5.6)

10.3
(6.8, 13.8)

2.7
(1.9, 3.6)

Japan 908 1884 13.9
(12.2, 15.6)

5.4
(4.9, 5.8)

13.5
(12.0, 14.9)

2.9
(2.6, 3.2)

Norway 257 560 13.1
(10.1, 16.2)

14.6
(13.7, 15.4)

9.4
(7.4, 11.3)

3.2
(2.5, 3.8)

Germany 7489 13738 13.0
(12.6, 13.5)

9.0
(8.9, 9.2)

8.3
(8.0, 8.6)

3.4
(3.3, 3.5)

Italy 637 1251 13.0
(11.3, 14.7)

6.1
(5.6, 6.6)

7.3
(6.1, 8.5)

1.3
(1.0, 1.7)

Portugal 177 363 12.7
(9.9, 15.5)

7.2
(6.2, 8.2)

4.5
(2.8, 6.1)

1.1
(0.4, 1.8)

Australia 632 1879 12.7
(11.3, 14.0)

7.7
(7.2, 8.2)

2.0
(1.4, 2.7)

2.9
(2.4, 3.3)

Belgium 530 992 12.6
(10.9, 14.3)

8.5
(8.0, 9.1)

8.9
(7.8, 10.0)

2.9
(2.5, 3.3)

Poland 231 512 11.9
(9.1, 14.6)

6.1
(5.3, 7.0)

10.7
(8.8, 12.7)

3.6
(3.0, 4.2)

Sweden 533 1066 11.9
(9.6, 14.1)

11.5
(11.0, 12.1)

6.6
(5.0, 8.3)

4.4
(4.0, 4.8)

Czech Republic 122 264 11.3
(7.5, 15.2)

8.9
(7.6, 10.1)

3.4
(0.8, 6.0)

3.7
(2.7, 4.6)

Switzerland 1436 2740 10.6
(9.5, 11.7)

9.8
(9.4, 10.1)

9.3
(8.6, 10.0)

1.5
(1.3, 1.6)

Spain 425 999 10.3
(8.4, 12.1)

4.8
(4.1, 5.4)

5.8
(4.7, 7.0)

0.4
(−0.1, 0.9)

France 5324 10816 10.0
(9.4, 10.5)

5.9
(5.7, 6.1)

6.9
(6.5, 7.2)

3.2
(3.1, 3.3)

Finland 566 1162 9.9
(7.7, 12.2)

8.0
(7.4, 8.5)

8.8
(7.1, 10.4)

4.3
(3.8, 4.7)

Austria 457 836 9.0
(7.3, 10.8)

8.8
(8.2, 9.5)

0.4
(−0.8, 1.5)

0.2
(−0.2, 0.5)

United States 8726 18473 8.7
(8.3, 9.1)

3.3
(3.2, 3.4)

2.2
(1.9, 2.5)

2.2
(2.0, 2.5)

Canada 806 1700 7.5
(6.2, 8.8)

4.8
(4.3, 5.2)

3.8
(2.9, 4.7)

3.0
(2.3, 3.7)

*Seasonal effect is summarized using the mean (95%CI) difference between the peak and the trough of the seasonal variation in OSA severity. ΔTST variation in sleep duration from the yearly mean. T°C
temperature in degrees Celsius.
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polysomnographyAHIwhile being less cumbersomeand allowingnightly
data collection over ~1.5 years per individual.

Conclusions
Using data collected with an under-mattress sleep sensor over a 3.5-year
period, we observed a seasonal effect on OSA severity, with sleep duration
extension and ambient temperatures explaining some of these associations.
These findings highlight that decision-making based on brief recording
periods may not represent longer-term trends in OSA severity. They also
suggest the importance of time-matched controls in OSA treatment studies
and the need to report data collectionmonths inOSA clinical trials. Further
studies to determine the physiological mechanisms underpinning the sea-
sonal variation in OSA severity are required.

Data availability
The dataset associated with this study is stored in a proprietary repository
(Withings) and cannot be shared publicly due to concern for privacy,
ethical and legal reasons. The investigator team accessed the data through
an application process to Withings, designed to safeguard user con-
fidentiality, as outlined in the terms and conditions and privacy policy
documentation. Queries for data access can be directed to Withings
(contact-sup@withings.com) with a timeframe for response of four
weeks. Specific de-identified raw data that support the findings of this
study, including individual data, are available from the corresponding
author (bastien.lechat@flinders.edu.au) upon request subject to ethical
and data custodian (Withings) approval described above. The timeframe
for response to requests will be four weeks. ERA5 weather data and
climate model projections are freely available from the Copernicus data
store (https://cds.climate.copernicus.eu/)57. Source data to reproduce
Figs. 2 and 3 are available in the Supplemental Data 1 file. Exposure-
response curve and Source data to reproduce Fig. 4 is provided in the
Supplemental Data 2 file.

Code availability
No specific codewas developed as part of this study.Model specification for
the statistical analysis is presented in supplementary material.
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