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Molecular profiles of the great obstetrical
syndromes reveal common features and
dynamic changes in early pregnancy
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Abstract

Background The great obstetrical syndromes (GOS) encompass a spectrum of pregnancy-
related complications that are the major determinants of maternal and neonatal mortality.
Although shared placental pathology underlies these complications, knowledge of the
molecular commonalities before clinical presentation remains incomplete.
Methods In this case-control study nestedwithin the prospectiveShanghai BirthCohort, we
investigated the molecular characteristics underlying GOS conditions in the pre-
symptomatic phase using serum samples from 203 nulliparaswho subsequently developed
GOS and 181 controls. A multi-omics approach combining protein, metabolite, and gene
analysis was employed.
Results Here we show a shared molecular background of the spectrum of all tested GOS
conditions at the co-expression module, molecule, pathway, multi-omics network and
genome levels. In early pregnancy, one protein module mainly involved in the immune
system and platelet function shows significant associations across the spectrum of tested
GOS conditions. Different conditions share several hub proteins and enriched pathways in
the innate immune system and platelet activation, signaling and aggregation. Common
molecular changes could be observed before 14weeks of gestation. Different groups of hub
proteins demonstrate the potential to differentiate between normal and complicated
pregnancies before and after 14 weeks of gestation.
ConclusionsWehighlight the sharedmolecular signatures among different GOSconditions
in the pre-symptomatic phase, suggesting the potential of a common screening and
intervention strategy. Our results further support the notion that the prevention of GOS
should start at 14 weeks of gestation or earlier, when themolecular signature changes have
already emerged.

The great obstetrical syndromes (GOS) encompass a spectrum of
pregnancy-related complications associated with defective deep pla-
centation, including hypertensive pregnancies, preterm birth, and
fetal growth restriction (FGR)1–3. Globally, these conditions remain
the leading causes of maternal and perinatal morbidity and mortality,

and the early prediction and prevention of GOS is still a significant
challenge in obstetrics4–6.

Potential successmight be obscured by the failure to note the common
placental origin and the high degree of interconnectivity in different GOS
conditions. Historically, these conditions have been regarded as distinct
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Plain Language Summary

The great obstetrical syndromes (GOS)
include several serious pregnancy
complications, such as preeclampsia or
preterm birth. These complications often
share similar underlying problems in the
placenta;however,wedonot fullyunderstand
thecommonbiological signs that precede the
appearance of symptoms. Here we studied
theblood samples from203womenwho later
developed GOS and 181 healthy
pregnancies. We analyzed proteins,
metabolites andgenes to findearly clues. The
results show that these complications share
common biological changes in the blood.
These shared signs are already present even
before 14 weeks of pregnancy. These
findings suggest that researchers and
doctorsmight onedaydevelop a single blood
test to identify women at risk of several
pregnancy complications in early pregnancy.
This could enable earlier preventative care,
potentially improving outcomes for mothers
and babies.
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entities, and a substantial amount of effort has been devoted to predicting
and preventing each complication. However, focusing solely on a single
condition may overlook the potential commonalities in pathogenesis.
Shared etiologies in the placenta amongdifferentGOS conditions have been
acknowledged, and the co-occurrence of these complications is common1–3.
A high proportion of fetuses from pregnancies complicated by preterm
preeclampsia (PE) are small for gestational age (SGA) or FGR; similarly,
early-onset FGR and preterm SGA often occur alongside PE7–9. The evi-
dence that being born preterm or SGA was associated with a higher risk of
hypertensive disorders of pregnancy (HDP) further supports a possible
overlap in theunderlyingbiologyof theseGOSconditions10.Whenadopting
the screening tests thatwere constructedusingPEas the outcomeof interest,
women identified as high risk of developing PE are also at increased risk of
gestational hypertension (GH), preterm birth, SGA and FGR11–13. These
findings suggest that overlapping molecular pathways underlie these con-
ditions before clinical presentation, whichmaybe key to the early prediction
and prevention of GOS.

Although each GOS condition has been attributed to various patho-
logical mechanisms, our understanding of the molecular commonalities in
early pregnancy remains incomplete. The abnormality in the two well-
known circulating angiogenic/antiangiogenic proteins, placental growth
factor (PlGF) and soluble fms-like tyrosine kinase 1 (sFlt-1), has been
observed in multiple GOS conditions. However, longitudinal analysis
revealed that differences in the PlGF/sFlt-1 profiles did not emerge until the
end of, or even after, early pregnancy. Identifying early biomarkers remains
an unmet need, and high-throughput omics technologies could help unveil
new biological insights. To our knowledge, multi-omics profiles across
different GOS phenotypes using serum samples have not been explored,
particularly in early pregnancy.

In the present study, we systematically searched for maternal serum
biomarkers that may reflect the common pathophysiological processes of
GOS in early pregnancy using a multi-omics approach that combines
protein,metabolite, andgene analysis (Fig. 1).We sought to: (1) characterize
the molecular changes prior to the onset of different GOS conditions [GH,
PE, preterm prelabor rupture of membranes (PPROM), spontaneous pre-
term labor (sPT), SGA and FGR] and identify shared disease mechanisms
from a molecular perspective; (2) describe the temporal patterns in mole-
cular signatures and examine the timing at which deviations from norma-
tive expression patterns appeared in the pre-symptomatic phase. Taken
together, this study demonstrates the shared molecular changes among

different GOS conditions in early pregnancy and provides valuable insights
into the possibility of a common screening tool and broad-spectrum pro-
phylactics for GOS.

Methods
Study population
This case-control studywas nestedwithin the Shanghai BirthCohort (SBC),
which prospectively enrolled pregnant women from six participating hos-
pitals in Shanghai, China, from2013 to 2016.Details of the cohort have been
described previously14. Briefly, women were recruited during their first
prenatal care visit in early pregnancy. Maternal characteristics, pregnancy
history and medical history were recorded through questionnaires. Fasting
blood sampleswere obtainedduringprenatal care booking at 7–19weeksof
gestational age and stored at−80°C for subsequent analysis. Information on
obstetrical disorders in the current pregnancy was extracted from medical
records. The study was approved by the research ethics committees of
Xinhua Hospital in Shanghai (ref # M2013010). All participants signed
informed consent.

Nulliparous participants with singleton pregnancies and available
serum samples during early pregnancy (before 20 weeks of gestation) were
included in our study. Participants with serum samples that had not been
thawed previously were included. Pregnancies that subsequently developed
GH, PE, PPROM, sPT, SGA, and/or FGR formed the GOS group. Women
with uncomplicated pregnancies and no previous medical history formed
the control group. GH was defined as newly onset hypertension (systolic
blood pressure ≥ 140mmHg and/or diastolic blood pressure ≥ 90mmHg
≥2 occasions) after 20 weeks of gestation15. PE was defined as GH plus
proteinuria (≥300mg/day or ≥1+ on urine dipstick analysis)15. Preterm
birth was defined as a delivery occurring between 21 and 36 completed
weeks’ gestation, and we further divided spontaneous preterm birth into
PPROM and sPT16. SGA and FGR were defined as birthweights below the
10th and 3rd percentiles, respectively, based on an adjustable global reference
for fetal-weight percentiles17.

Untargeted proteomics
Serumsampleswere centrifuged, and the supernatantswere collected.High-
abundance proteins in serum were depleted using PierceTM Top 14 Abun-
dant Protein Depletion Spin Columns (Thermo Fisher Scientific). Protein
concentration was determined by BCA assay. Samples were reduced and
alkylated prior to digestion with trypsin. The tryptic peptides were analyzed

Fig. 1 | Graphical overview of study design and the concept. GOS great obstetrical syndromes.
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with an EASY-nLC 1200 ultra-performance liquid chromatography system
(Thermo Fisher Scientific) coupled to an Orbitrap Exploris™ 480 mass
spectrometer (ThermoFisher Scientific). Buffers A andBwere composed of
2%and 90%acetonitrile, containing 0.1% formic acid, respectively. Peptides
were separated over a 73min gradient at a 500 nL/min flow rate. The
separated peptides were injected into a nanospray ionization source and
then analyzed by tandem mass spectrometry (MS/MS) in data-dependent
acquisitionmode. Them/z range ofMS1was 400-1200, with a resolution of
60,000. The top 15 precursors were selected for the MS/MS experiment,
performed with a resolution of 30,000 (at 100m/z) and high-energy colli-
siondissociationat anormalized collision energy of 27%.The resultantmass
spectrometric data were processed in Proteome Discoverer (Version
2.4.1.15, Thermo Fisher Scientific) against the human UniProt database
(July 2021; 78120 sequences) concatenated with the reverse decoy database.
Precursor and product ion mass tolerance were set to 10 ppm and 0.02 Da,
respectively. The enzyme was set to trypsin with up to 2 missing cleavages.
Protein and peptide identifications were filtered at a false discovery rate
(FDR) < 1%. A total of 1930 proteins were identified in the serum samples.

Untargeted metabolomics
Serum samples (100 μL each) were treated with 400 μL of methanol con-
taining internal standards and thencentrifuged to collect the supernatant for
freeze-drying. The freeze-dried sample was redissolved with 50 μL acet-
onitrile/MilliQ water (1/3) for liquid chromatography-mass spectrometry
(LC-MS) analysis. To monitor the robustness of metabolomics analysis,
quality control (QC) samples were generated by mixing equal amounts of
each sample and analyzed after every ten sample runs. LC-MS analysis was
performed using a Vanquish UHPLC system coupled to a Q Exactive™
Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific). An
ACQUITYUPLCC8 column and anACQUITYUPLCHSST3 columnT3
(Waters)were used for chromatographic separation in positive and ion scan
modes, respectively. MS conditions were set as follows: Sheath gas flow rate
was 45 arb, aux gasflow ratewas 10 arb, spray voltagewas 3.5 kV for positive
ion scanmode and 3.0 kV for negative ion scanmode, capillary temperature
was320 °C, aux gasheater temperature 350 °C, and resolutionwas14e4.The
scan rangewas 70-1,050m/z. The identification ofmetaboliteswas based on
the exact mass, MS/MS fragments, and retention time. We also referred to
an in-house database, OSI-SMMS18. To improve the coverage of metabolite
annotation, previous work from You et al.19 was referred to, and the Mass
Bank of North America (MONA) database was used20. Peak areas of
identified metabolites were extracted using TraceFinder™ software (version
3.2.512.0). A total of 471 metabolites were identified in the serum samples.

Genotyping and SNP imputation
DNA was isolated from maternal blood using the TGuide Large Volume
BloodGenomicDNAExtractionKit (TIANGEN). Sampleswere genotyped
using the Illumina Global Screening Array v.3.0+multi-disease bead chips
(GSAMD-24v3-0-EA) and Infinium chemistry. Each sample was inter-
rogated on the arrays against 730,059 SNPs. We performed QC using
PLINK2 and conducted pre-imputation QC on both a “per-individual”
basis and a “per-marker” basis. Consequently, 373,632 single-nucleotide
polymorphisms (SNPs) from 6910 samples were available for subsequent
imputation. Hidden Markov model-based phasing was performed using
SHAPEIT v.421, and imputation was conducted using IMPUTE522, with the
1000Genomes ProjectPhase 3 as a reference panel. Post-imputation quality
control included removing SNPs with an imputation info score <0.6, a
missing call rate > 0.05, or an MAF < 0.01, leading to 8,039,891 SNPs
remaining for subsequent analyses. Of 6910 samples, 313 women with
proteomic information were available for the following genetic analysis.

Statistics and reproducibility
Co-expression network analysis of proteome and metabolome
datasets. Proteins and metabolites with more than 80% missing values
in the control or case groups were removed from the final analyses.
Missing values were imputed with the minimal values in the proteomics

and metabolomics datasets separately. All features were then Log2
transformed and quantile normalized prior to the following analysis.

Protein and metabolite co-expression modules were identified using
weighted gene co-expression network analysis (WGCNA) with the R
package “WGCNA”23. Soft-thresholding powers were chosen based on the
criterionof approximate scale-free topology24.Weusedpowersof 5 and9 for
proteomics andmetabolomics, respectively, as thesewere the lowest powers
to achieve a scale-free R2

fit of 0.85. Signed networks were created by con-
structing a topological overlap matrix, and hierarchical clustering dendro-
grams of proteins or metabolites were produced using the topological
overlap-based dissimilarity. Modules were identified in the dendrogram
using Dynamic Tree Cut25, and the minimum number of analytes per
module was set to 15 for proteins and 10 for metabolites. The module
eigenprotein and eigenmetabolite, the first singular vector of the module
expression matrix, were calculated to represent the module’s protein/
metabolite expression profiles. For each protein or metabolite, module
membership (MM) was calculated by correlating its expression profile with
the eigenprotein or eigenmetabolite to indicate how closely an analyte was
associated with a given module.

Associations of protein/metabolite modules with GOS conditions
and the identification of hub molecules. The associations between
modules and GOS conditions (GH, PE, PPROM, sPT, SGA, and FGR),
the composite outcome GOS, as well as maternal risk factors (maternal
age and pre-pregnancy BMI) were assessed by correlating the module
eigenprotein/eigenmetabolite with each trait. Hub proteins or metabo-
lites in the modules related to GOS conditions were identified using two
approaches: 1) For modules that were also associated with maternal risk
factors, we extracted the analytes with high MM (MM > median, the p-
value for MM < 0.05) and tested whether the level of these analytes was
explained by GOS conditions, maternal age and/or BMI. We fitted a
linearmodel for each analyte and used a nested F-test approach to classify
analytes that were differentially expressed in two ormore contrasts (GOS
conditions, maternal age, and/or pre-pregnancy BMI) with R package
“limma”26,27. Analytes that were explained by GOS conditions only or by
bothGOS conditions andmaternal age/pre-pregnancy BMIwere defined
as the hub analytes; 2) For modules not related to maternal risk factors,
we extracted analytes with high MM and calculated the protein or
metabolite significance, which represented the relationship between an
analyte and a GOS condition. Analytes with high MM and a p-value for
protein/metabolite significance of less than 0.05 were considered hub
analytes. The hub proteins related to the composite GOS outcome in the
GOS core module (turquoise protein module) were also identified using
the second approach, as the turquoise protein module was not associated
with maternal risk factors. Given the exploratory nature of our study, we
did not adjust formultiple testing in themodule-trait correlation analysis
or the selection of hub proteins and metabolites. Pathway and biological
process enrichment of proteins was performed usingWebGestalt (WEB-
based Gene SeT AnaLysis Toolkit) with annotation by Kyoto Encyclo-
pedia of Genes and Genomes (KEGG), Reactome and Gene Ontology28.
Database genome protein coding was selected as the reference set. The
sub-classes of metabolites were annotated based on the Human Meta-
bolome Database (HMDB)29. The FDR significant or top 10 categories
were selected.

Exploration of key protein-metabolite subnetworks in GOS condi-
tions. Expressionmatrices of hub proteins andmetabolites for each GOS
condition were integrated with Data Integration Analysis for Biomarker
discovery using Latent cOmponents (DIABLO)30. DIABLO extends
generalized canonical correlation analysis, which maximizes the covar-
iance between linear combinations of variables (proteins andmetabolites
in the present study), to a supervised framework30. We used DIABLO in
the R package “mixOmics”31 to obtain a subnetwork of key proteins and
metabolites for each condition. In addition to the blocks of hub proteins
and hub metabolites, maternal characteristics (maternal age, pre-
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pregnancy BMI, and blood pressure during early pregnancy) were also
involved as a separate block for DIABLO analysis. Cross-validation (10 ×
10-fold) was used to determine the optimal number of components and
the number of features to retain per component. To determine the
optimal number of components for the DIABLO model, a M-fold cross-
validation approach was employed, and the perf() function was executed
with 10-fold cross-validation repeated 10 times.We tuned the number of
features using the tune.block.splsda() function and the number of fea-
tures to be kept was determined with 10-fold cross-validation repeated 10
times. Selected key proteins and metabolites were visualized using the
circos plot function, and the correlation cut-off was set at ≥ 0.7 or ≤−0.7.

Exploration of genetic variants associated with the GOS core
module using genetic studies and molecular interaction network.
Genome-wide associationswith the eigenprotein of theGOS coremodule
(turquoise protein module) were analyzed in PLINK2 using linear
regression models assuming an additive genetic model, with adjustment
for the residual population structure (the top two principal components
from principal component analyses). The genome-wide significance
threshold was set at 5.0 ×10-8 and suggestive significance at 5.0 ×10-6.
Associations of known GOS variants with the eigenprotein of the GOS
core module were analyzed using linear regression. A proxy in high
linkage disequilibrium was used for the variant not available in our
dataset. Previously reported variants associated with GOS conditions at
P < 1.0 ×10-5 in published genome-wide association and meta-analysis
studies were included (Supplementary Data 1)32–43. For hub proteins in
the GOS core module and significant genes identified in genome-wide
studies and association studies with known variants, we used
NetworkAnalyst44 to construct a minimum interaction network, which
only consisted of the seed nodes (significant genes and hub proteins) and
the nodes that were necessary to connect the seed nodes. The literature-
curated IMEx Interactome was used as the protein-protein interaction
database45.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Characteristics of the study population
Characteristics of nulliparouswomen in the control andGOSgroups, aswell
as in eachGOSconditiongroup, are shown inSupplementaryData2.A total
of 203 pregnancies that subsequently developedGH (n = 57), PE (n = 14 for
preterm PE, n = 51 for term PE), PPROM (n = 38), sPT (n = 43), SGA
(n = 24), and/or FGR (n = 16) were included in the GOS group. The GOS
conditions, except for SGA and FGR, were mutually exclusive. The control
group consisted of 181 healthy pregnantwomen.Women in theGOS group
had higher pre-pregnancy BMI and older age than the control participants.
The distribution of gestational ages at sampling in the control and GOS
groups is shown in Supplementary Fig. 1.

Associationsofprotein/metabolitemoduleswithGOSconditions
and the identification of the GOS core module
Using omics data in early pregnancy, WGCNA identified 11 protein
modules (Supplementary Fig. 2, Fig. 2a; see Supplementary Data 3 for table
format) and 15 metabolite modules (Supplementary Fig. 3, Fig. 2b; see
Supplementary Data 4 for table format). For proteomics, eight modules
were associated with at least one GOS condition (Fig. 2a). Notably, one
protein module (turquoise) was positively associated with GOS and all six
conditions (Fig. 2a, c, d), as well as more detailed GOS phenotypes (GH
without FGR,PEwithoutFGR,PPROMwithout FGR, pretermPEand term
PE) (Supplementary Fig. 4). Besides, this module was not correlated with
maternal risk factors (maternal age and pre-pregnancy BMI). Therefore, we
defined this module as a GOS core module in the following analyses.
Pathway analysiswas performed for all the proteins in theGOS coremodule

(Fig. 2e, Supplementary Data 5). The top 5 significantly enriched pathways
were immune system-related (Innate immune system, Neutrophil degra-
nulation, Immune system) and platelet-related pathways (Platelet degra-
nulation, Response to elevated platelet cytosolic Ca2+ ). Eighty-one hub
proteins related to the composite GOS outcome in the GOS core module
and their odds ratios (ORs) fordevelopingGOSweredisplayed inFig. 2f (see
Supplementary Data 6 for table format). The biological processes enriched
for these proteins are illustrated in the directed acyclic graph in Fig. 2g
(SupplementaryData 7), which primarily encompasses the immune system
process. The other seven GOS condition-related modules were associated
withmaternal age or pre-pregnancy BMI, and five were shared across more
than one condition (green, magenta, greenyellow, blue, red) (Fig. 2a).

Formetabolomics, ninemoduleswere associatedwith at least oneGOS
condition (Fig. 2b), among which three were also associated with maternal
risk factors.Nometabolitemodule showed significant associations across all
the GOS conditions. Although GH and PE shared four disease-related
metabolite modules, and PPROM and sPT shared two modules, there was
little overlap between hypertension-related and preterm birth-related
modules.

Hub proteins/metabolites for GOS conditions and their enriched
functions
According to the modules’ relationships with maternal risk factors
(maternal age and pre-pregnancy BMI), we used two strategies to identify
the hub proteins and metabolites (Methods and Supplementary Figs. 5–8).
Hub analytes common for ≥ 2 conditions are displayed in Fig. 3a, b (see
Supplementary Data 8, 9 for table format). We identified 4 common hub
proteins across all 6 conditions, and 20 and 21 proteinswere shared across 5
and 4 conditions, respectively (Fig. 3a). Pathway analysis revealed several
common pathways for GOS conditions (Fig. 3c, Supplementary Data 10).
Platelet degranulation, response to elevated platelet cytosolic Ca2+ , and
innate immune system were shared across all six conditions. Several path-
ways common to two to five conditions involved events within the immune
system, such as neutrophil degranulation, complement cascade, and com-
plement and coagulation cascades (Fig. 3c). Condition-specific hub proteins
and pathways were also identified (Supplementary Data 10, Supplementary
Table 1). For example, apolipoproteins (APOC3,APOE,APOA1), involved
in chylomicron assembly and remodeling, were unique hub proteins inGH.

Compared to proteomics, fewer overlapped hub metabolites were
found in GOS conditions (Fig. 3b, d, see Supplementary Data 9 and 11 for
table format, Supplementary Table 2). GH- and PE-related modules were
enriched in glycerophospholipids [glycerophosphocholines (GPChos) and
glycerophosphoethanolamines (GPEths)], followed by amino acids and
peptides. While hub metabolites for PPROM and sPT were mainly fatty
acids, followed by bile acids, alcohol and derivatives. SGA-related modules
were enriched in fatty acids, GPChos, amino acids, and peptides. GPChos
were found to be the main hub metabolites for FGR.

Key protein-metabolite subnetworks in GOS conditions
To better understand the interplay between the different levels of biological
systems, we employed DIABLO to conduct feature selection among hub
molecules, in combination with maternal characteristics, to identify the key
molecular subnetworks in each condition (Supplementary Fig. 9). Each
condition had its specific protein-metabolite subnetworks and signatures.
For example, upregulated carnitine and apolipoproteins were recognized as
essential features of GH. The key subnetworks also underlined the negative
relationships between long-chain fatty acids and preterm birth. Important
relationships between immune and platelet function-related proteins and
GOS conditions were reinforced in the DIABLO models, such as FN1,
MME, GAA with GH, PE, SGA and FGR; MRC1 and C1QB with both
PPROM and SGA; and CCL16 with both PPROM and sPT.

Genetic variants associated with the GOS core module
To investigate the genomic signatures correlatedwith theGOScoremodule,
we first performed a genome-wide association study (GWAS). Althoughwe
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found no variants with genome-wide significance (P < 5.0 ×10-8), we iden-
tified 5 loci with suggestive significance P < 5.0 ×10-6 (ADAM12, FANK1,
ARHGAP44, GAB4 and LAPTM5) (Fig. 4a, Supplementary Fig. 10, Sup-
plementary Data 12). Next, we conducted a linear regression analysis using
known variants associated with hypertensive pregnancies and preterm

births (Supplementary Data 1). SNPs in TRPC6, TGFBR3, CHMP2B,
ZBTB38 and EEFSEC genes demonstrated associations with the eigenpro-
tein of the GOS core module (Supplementary Table 3). However, all these
associationswere at theP < 0.05 level; unfortunately, none survivedmultiple
testing corrections. Nonetheless, when we employed a knowledge-driven
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strategy based on known protein-protein interactions using Net-
workAnalyst to examine the links between hub proteins in the GOS
core module and genes identified in our GWAS as well as an asso-
ciation analysis with known variants, nine of the 10 genes and 67 of
the 81 hub proteins were interconnected in a functional network
(Fig. 4b). Among the nine genes, TGFBR3 ranked the highest with
regard to degree centrality and was directly connected to ENG pro-
tein, and LAPTM5 ranked the highest with regard to betweenness
centrality and was directly connected to LAMP1 protein (Fig. 4b,
Supplementary Data 13). Among the 67 hub proteins, proteins
involved in immune and platelet function ranked top in both degree
centrality and betweenness centrality (PKM, CAND1, VCL, ACTN1,
AHSG, NCF2, HSP90B1 and BTK) (Supplementary Data 13).

Dynamics of the common proteomic signatures during early
pregnancy
Before investigating the temporal progression of protein expression pat-
terns, we first explored the gestational time point at which the proteomic
profile might be different from subsequent weeks during early pregnancy.
We found that 16 and 14 weeks of gestation might be the time points for
healthy and complicated pregnancies, respectively (Supplementary Fig. 11).
For theGOS core proteinmodule, the eigenprotein values were significantly
associated with gestational age at sampling and increased as gestation
progressed in both the control (Pearson correlation coefficient = 0.18,
p-value = 0.02) and GOS (Pearson correlation coefficient = 0.28,
p-value = 4.5E-05) groups (Fig. 5a). Importantly, starting at the end of
13 weeks of gestation, women who subsequently developed GOS had a
significantly higher expression level of proteins in the core module than
healthy controls (nonoverlapping 95% confidence intervals of the mean
eigenprotein between GOS and control groups) (Fig. 5a).

According to the gestational age at sampling, we further divided the
participants into 3 groups (<14 weeks, 14-15 weeks and ≥ 16 weeks) to
identify potential biomarkers for GOS in different detection windows.
Among the 81 hub proteins in the GOS core module, 16 proteins’
expression levels significantly differed between the GOS and control
groups as early as the first trimester (Fig. 5b, see Supplementary Data 14
for table format). During the early second trimester, more proteins
demonstrated the potential to differentiate normal and complicated
pregnancies. We also found 5 proteins (CCL16, SAA2-SAA4, LAMA2,
LAMP1, SERPINF1) with increased levels in complicated pregnancies
not only before 14 weeks but also after 16 weeks of gestation (Fig. 5b).
Two immune-related proteins, ADGRE5 and TIMP1, ranked at the top
with regard to the P-values in the <14 weeks and ≥16 weeks groups,
respectively. These two proteins demonstrated increased levels in both
hypertensive pregnancies and preterm birth compared to the control
group before and after 14 weeks of gestation, respectively (nonoverlap-
ping 95% confidence intervals of the mean expression levels between
hypertensive pregnancies/preterm birth and control groups) (Fig. 5c, d).
In addition to the proteins in the core module, several immune- and
platelet-related signatures common in ≥4 conditions (FN1, MME, VWF)
also had significantly higher levels in complicated pregnancies
(Fig. 5e–g). But the differences could only be observed after 14 weeks of
gestation.

Discussion
This study used systemic information from genomics, proteomics, and
metabolomics to compare themolecular signatures of early pregnancy with
those of different GOS conditions. We revealed a shared molecular back-
ground underlying these conditions and the upstream genetic variants
associated with these molecular changes. We also unveiled the temporal
patterns of the common signatures of GOS. Our findings may have
important implications for disease pathogenesis, early prediction, and
prevention.

A sharedmolecular backgroundofGOS conditions,whichmaybe part
of the “core” GOS pathology that precipitates the manifestation of symp-
toms, was identified at the module, molecule, pathway, multi-omics net-
work, and genome levels. At the co-expression module level, six protein
modules were found to be correlated with more than one GOS condition.
Importantly, we identified a core protein module that was positively asso-
ciated with all tested conditions and was not influenced by maternal age or
pre-pregnancy BMI. At the molecular level, we observed 45 hub proteins
shared across ≥4 conditions and identified 81 hub proteinsmainly involved
in the immune systemprocesses for the composite outcomeGOS. Pathway-
level analysis in the core protein module and for all hub proteins under the
tested GOS conditions highlighted the central role of immune and platelet
functions inGOS.At the network level, by combiningmetabolomic data, we
observed that although multi-omics models identified different protein-
metabolite subnetworks for the tested GOS conditions, they reinforced the
role of proteins related to immune and platelet functions.

We further examined the genomic information to investigate potential
upstream contributors to these common proteomic changes. Using both
data-driven and knowledge-driven strategies, we identified nine upstream
genetic variants associated with the core protein module. Although the
genetic findings are exploratory results with suggestive significance, they
may provide clues to the initialmolecular events inGOS. The top SNPswith
the smallest P-value in our GWAS are located in the region of theADAM12
gene, which encodes a disintegrin and metalloproteinase-12 and is linked
with two platelet function-related hub proteins in the GOS core module
(PLGandACTN1) in the interactionnetwork46.LAPTM5, the genewith the
highest degree of centrality in the molecular interaction network, encodes
lysosomal-associated protein transmembrane 5 and regulates multiple
pathways in immune cells47. TGFBR3, which is the gene with the highest
betweenness centrality, encodes the transforming growth factor-beta type
III receptor and is involved in immune response and associated with early-
onset preeclampsia48,49. TGF-β is a well-known cytokine regulating a variety
of cellular functions, and the binding of TGF-β to its receptor activates
various signaling pathways involved in trophoblast differentiation, invasion
and migration50. Together with the functions of the core protein module,
these genetic signatures inform us that the initial molecular events in GOS
mainly involve immune and platelet-related processes.

The finding that immune and platelet functions are crucial in GOS is
not unexpected, given previous studies9,51–53. Still, our comprehensive ana-
lysis ofmultiple GOS conditions underscored the commonalities in the pre-
symptomatic phase at a systemic level. In addition, our findings provide
molecular evidence for the co-occurrence and interrelatedness of GOS
conditions, adding weight to the concept that shared mechanisms underlie
these conditions. It has been suggested that GOS conditions are

Fig. 2 | Associations of GOS conditions and maternal characteristics with co-
expression modules and pathway enrichment and hub proteins for the GOS core
module. aHeat map for protein modules. bHeat map for metabolite modules. Each
row of the heat map corresponds to a module eigenprotein/eigenmetabolite. Cells
containing correlation coefficients and p-values represent the significant associa-
tions. Analysis was performed on data from n = 384 study participants. c Boxplot
for the eigenprotein values of the turquoise protein module in the control group
versus the GOS group. d Boxplot for the eigenprotein values of turquoise protein
module in the control group versus different GOS condition groups. The Kruskal-
Wallis p-value was annotated on the top of the plot. e Pathway analysis of proteins in

the GOS core module (turquoise protein module). f Hub proteins related to the
composite GOS outcome in the GOS core module (turquoise protein module) and
theirORs (95%CIs) for developingGOS. Logistic regressionwas used to estimate the
associations. g DAG of GO biological process enrichment results for the hub pro-
teins in the GOS coremodule. Boxes with blue color correspond to the top biological
processes that passed the FDR correction. GOS great obstetrical syndromes, GH
gestational hypertension, PE preeclampsia, PPROM preterm prelabor rupture of
membranes, sPT spontaneous preterm labor, SGA small for gestational age, FGR
fetal growth restriction, BMI bodymass index,ORodds ratio, CI confidence interval,
DAG directed acyclic graph, GO gene ontology, FDR false discovery rate.
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Fig. 3 | Hub proteins and metabolites for GH, PE, PPROM, sPT, SGA and FGR
and their enriched functions. List of hub proteins (a) and metabolites (b) common
for ≥2 conditions. The heatmap shows the protein/metabolite significance, which
represents the relationship between an analyte and aGOS condition. The annotation
of frequency on the right indicates the number of conditions a hub protein or
metabolite shares across. Point annotation of a pathway means that the protein is
involved in immune and platelet function. Analysis was performed on data from

n = 384 study participants. c UpSet plot of the top 10 enriched pathways of hub
proteins for GOS conditions. d Subclasses of hub metabolites for GOS conditions.
Subclasses that have only one metabolite were labeled as “others”. GOS great
obstetrical syndromes, GH gestational hypertension, PE preeclampsia, PPROM
pretermprelabor rupture ofmembranes, sPT spontaneous preterm labor, SGA small
for gestational age, FGR fetal growth restriction.
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underpinned by defective deep placentation, which is characterized by
incomplete conversion of spiral arteries and obstructive vascular lesions1,2.
We speculate that the shared molecular signatures identified in this study
may indicate the early development of placental bed pathology, where
immunoregulation and platelets are involved. Indeed, several important
genes and proteins identified in our single- and multi-omics analyses are
involved in placentation. For example, ADAM12 is highly expressed in the
human placenta and serves as a critical regulator of trophoblast migration
and invasion during early pregnancy46,54. In trophoblastic cell models and
placental villous explant cultures, the knockdown of ADAM12 dampened
trophoblast cell invasion, column outgrowth, and cell fusion46,55. CCL16 (C-C
Motif Chemokine Ligand 16), a GOS hub and immune-related protein, may

influence angiogenesis by interfering with endothelial cells56. Trophoblasts
acquire CCR1, the receptor of CCL16, in the initial step of invasion57, and it
has been observed that high umbilical artery CCL16 was associated with PE
and FGR, and CCR1 was also highly expressed in PE placentas56. Another
GOS hub protein, ENG (endoglin), plays an important role in angiogenesis
and may contribute to the risk of PE, FGR and preterm birth58–60. The
overexpression of endoglin has been observed in the ischemic placental
tissue, and the increased release of soluble endoglin into circulation may
impair the invasive ability of trophoblast cells61. PKM, an immune-related
protein that ranked top with regard to degree centrality in the interaction
network, has been reported to be involved in trophoblast cell invasion, and
increased expression of PKM has been found in PE and FGR placentas62,63.

Fig. 4 | Genetic variants associated with GOS core module. a Manhattan plot of
genome-wide significant SNPs associated with the eigenprotein of the turquoise pro-
tein module. The horizontal red line represents a P-value of 5 ×10-6. Analysis was
performed on data from n = 313 study participants with both proteomic and geno-
typing information. b Integration of the hub proteins in the GOS core module and the
genomic signatures identified through genome-wide association study and candidate

gene association study via protein-protein interaction network. Green nodes represent
the genomic signatures. Red, orange and yellow nodes represent GOS hub proteins,
with darker colors corresponding to higher betweenness centrality values and larger
nodes corresponding to higher degree centrality values. Grey nodes represent the nodes
necessary to connect the seed nodes (genomic signatures and GOS hub proteins) in a
minimum interaction network. GOS great obstetrical syndromes.
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More importantly, our findings support the use of a screening tool and
broad-spectrum prophylaxis to detect and prevent GOS in early pregnancy
and provide a resource for translatable prediction and intervention targets
for future studies. Previously, studies usually investigated the biomarkers of
a specific GOS condition and constructed a corresponding prediction
model. In this way, several screening tests should be applied in early

pregnancy to cover the entire spectrum of GOS conditions. Such a strategy
may not be a practical or economical option, considering the interrelated-
ness of different GOS conditions. Instead, one common prediction tool for
the global risk ofGOS in earlypregnancy combinedwithphenotype-specific
“rule in” or “rule out” tests in late pregnancy could be clinically valuable,
especially for asymptomatic women with few risk factors. The possibility of

Fig. 5 | Dynamic changes in the common pro-
teomic signatures during early pregnancy.
a Temporal changes in eigenprotein values across
early pregnancy in GOS and control groups. Lines
were smoothed by linear models and shaded areas
represent 95% CIs. The correlation coefficients
between eigenprotein values and gestational age at
sampling and the P values are shown in the top left
corner. b Heatmap of the P values on 81 hub pro-
teins in the GOS core module. Logistic regression
was used to estimate the associations, and gesta-
tional age at sampling was adjusted in the “<14w”
category due to the significant differences in gesta-
tional age at sampling between the GOS and control
groups. For “14-15w” and “≥16w” categories, the
differences in gestational age at sampling between
GOS and control groups were not significant. The
categories of “<14w”, “14-15w” and “≥16w” repre-
sent the sample collection windows before 14,
between 14 and 15, and after 16 weeks of gestation.
The mean expression levels (log2 transformed and
normalized values) of c ADGRE5, d TIMP1, e FN1,
fMME, and gVWF in the control, HDP (GH+ PE)
and PT (PPROM and sPT) groups before and after
14 weeks of gestation. Error bars correspond to the
95% CI. Analysis was performed on data from
n = 384 study participants. GOS great obstetrical
syndromes, HDP hypertensive disorders of preg-
nancy, PT preterm birth, CI confidence interval.
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common predictors has been evaluated in recent studies11,64. Boutin et al.
andMinopoli et al. utilized the FetalMedicine Foundation (FMF) screening
test to estimate the risk of a composite GOS outcome including PE/HDP,
SGA, fetal death, and preterm birth11,64. They found that this algorithm
possessed the ability to identify women at a high risk of GOS with a higher
positive predictive value, which may reduce the harms of a possible false
positive result, such as maternal anxiety and unnecessary monitoring or
aspirin exposure64. However, the FMF algorithm achieved only moderate
performance in early pregnancy, and we hypothesize that the addition of
other biomarkers may enhance its performance. In the future, we will
conduct further research to confirm the common molecular changes
identified in this study and to explore the potential of a single screening
model of GOS in early pregnancy.

Potential broad-spectrum prophylactics for various GOS conditions
have also been explored in previous studies, particularly drugs that could
impact immune- or platelet-related functions. Low-dose aspirin (LDA)
has long been proposed for the prevention of GOS conditions3,65. Several
meta-analyses of RCTs indicated that pregnant women may benefit from
reduced risk of preeclampsia, preterm birth, SGA, FGR, and perinatal
mortality with LDA initiated in early pregnancy66–69. Low-molecular-
weight heparin (LMWH), either alone or in combination with LDA, is
another potential intervention strategy that may be beneficial. In high-
risk women, meta-analyses have shown that LMWH use that started
before 16 weeks of gestation was associated with a substantial reduction
in the development of GH, PE, SGA, and perinatal death70,71. Notably, a
recent meta-analysis found that first-trimester initiated vaginal proges-
terone, which is known for its effect on reducing the risk of preterm birth,
may also decrease the risk of HDP and PE72. Other candidate drugs
targeting immune- or platelet-related pathways could also be future
options, such as statins and hydroxychloroquine3,73–76.

The optimal initiating timing for prophylaxis in early pregnancy
remains an essential issuewith controversy. For example, cut-off gestational
ages of 14, 16, and 20 weeks have all been applied in clinical trials for
LDA65–69. Here, from a molecular perspective, we suggest that initiating
prophylactics before 14 weeks of gestation may be an optimal window not
only for LDA but also for other potential drugs that modulate immune- or
platelet-related pathways. Our data indicate that proteomic changes have
already emerged as early as the first trimester in the sera from women who
subsequently develop GOS. As pregnancy progressed to 16 weeks, more
proteins demonstrated significant changes with larger deviation from nor-
mal expression patterns, whichmay imply an aggravating pathophysiology.
These molecular findings might partly explain why some recent clinical
trials initiating aspirin before 16 or 20 weeks observed a nonsignificant
reduction of pretermbirth or PE77,78. An earlier start of intervention, no later
than the first trimester, might nip the pathology in the bud.

Themajor strengths of ourwork include the following: 1)We leveraged
the systemic information in genome, proteome andmetabolome to derive a
comprehensive understanding of the pathogenesis of GOS at different
biological system levels. 2) We simultaneously described the molecular
profiles of multiple GOS conditions to avoid neglecting the commonalities
and heterogeneity of these closely related conditions. 3) The multi-omics
profiling was derived at a preclinical stage. It might serve as a source of
translatable targets for early prediction andprevention. 4)Weonly included
nulliparas in our work, so the confounding effects of previous pregnancy
history can be excluded. Additionally, without the indication of previous
pregnancy history, the screening for nulliparas at risk of GOS is still
challenging16,79. Our data can be applied to the development of prediction
and prevention strategies for these individuals.

This study also has several limitations. More detailed phenotypes were
not considered due to the limited sample size; hence, we were unable to
describe the molecular characteristics of early- and late-onset PE, early and
late pretermbirth, andSGA/FGRnot complicatedbyotherGOSconditions.
A small sample size also decreased the power to detect significant associa-
tions in genomic analysis. Caution is necessary when interpreting the sug-
gestive loci, and these exploratory results should be validated in a larger

dataset or ameta-analysis in future research. Additionally, the investigation
of the temporal progression of common proteomic changes was based on
data from cross-sectional grouping rather than a longitudinal follow-up.
Therefore, longitudinal studies using serial samples from the first into the
second trimester are needed to track and validate the dynamic protein
expression patterns suggested in the present study. Besides, information on
placental histopathology is not available in the SBC dataset. Therefore, the
findings in the present study do not provide direct evidence that the shared
molecular abnormalities are associated with placental abnormalities. Taken
together, our findingsmerit further investigation and the signatures need to
be validated in larger cohorts.

Our work has several implications for future research. First, the
exploratory results presented here, using untargeted omics analysis, parti-
cularly the common protein biomarkers, should be confirmed in inde-
pendent cohorts using different platforms with targeted approaches. After
verifying the common protein biomarkers, the construction and perfor-
mance evaluation of a single screening model for GOS in early pregnancy
can be conducted prospectively. Second, further mechanistic studies using
in vitro and in vivo models are warranted to investigate the role of immune
and platelet function-related proteins in placental maldevelopment and
establish the causal links. Thirdly, targeted intervention strategies, as well as
combined intervention approaches, could be investigated based on the
findings of our study. Using themolecular signatures presented here, future
research could be conducted to investigate the subsets of high-risk pregnant
women who may benefit from LDA, LMWH or other prophylactics.
Combining two or more prophylactics that target the immune- or platelet-
related pathways is also a direction for future research. Finally, integrating
other omics layers, such as cell-free DNA/RNA from maternal blood and
proteome of thefirst-trimester placental villi or decidua obtained via biopsy,
could enrich our understanding of the molecular changes occurring both
systemically and at the maternal-fetal interface in early pregnancy.

In summary, this study presents a multi-omics landscape of multiple
GOSconditions at the pre-symptomatic phase anddemonstrates the shared
proteomic changes among different GOS conditions. Together with the
upstreamgenetic variants, the commonmolecular signaturesmay reflect the
coreGOSpathology,where the immune andplatelet functions play a crucial
role. Furthermore, the molecular profile of the core early-stage GOS
pathologies provides useful clues to the possibility of a common screening
tool andbroad-spectrumprophylactics for a composite pregnancyoutcome,
aswell as thenecessityof early initiationofpreventionno later than14weeks
of gestation.

Data availability
The mass spectrometry proteomics data generated in this study have been
deposited in the ProteomeXchange Consortium via the PRIDE79 partner
repository with the dataset identifier PXD066032. Raw genotyping data are
not publicly available due to data privacy regulations on the use of such data.
GWAS summary statistics are available in Figshare with the identifier
https://doi.org/10.6084/m9.figshare.29482184.v180. Source data for
Figs. 2–5 are available as Supplementary Data 3–14. All other data that
support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
We used open-source R software for these analyses. R scripts use existing
code examples from publicly available R packages and have been described
in the “Methods” section.
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