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An interpretable machine learning
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mortality prediction during an ICU stay
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Abstract

Backround Accurate short-term mortality prediction is essential for optimizing ICU
management and improving patient outcomes. Many existing models rely on static data
and do not reflect the dynamic progression of critical illness. This study aimed to develop
and validate an interpretable machine learning algorithm that enables dynamic 48-hour
mortality prediction throughout the ICU stay.
Methods We conducted a retrospective cohort study using electronic health records of
9,786 ICU patients treated between 2018 and 2022 at a German university hospital. A
machine learning model was developed to predict 48-hour mortality, updated every
24 hours during the ICU stay. We trained and evaluated a Light Gradient-Boosting Machine
using nested cross-validation and assessed performance via area under the receiver
operating characteristic curve. External validation was performed on the MIMIC-IV
database. Feature importance was analyzed using SHAP values.
Results Here, we show that the Light Gradient-Boosting Machine algorithm (LGBM-48h)
achieves AUROCs of 0.909 (95% CI: 0.901–0.917) in the training and 0.886 (95% CI:
0.878–0.895) in the testing dataset. External validation using the MIMIC-IV database yields
an AUROC of 0.859 (95% CI: 0.849–0.870). The model enables effective risk stratification
across the ICU stay and reflects individual changes in patient status over time. Time-varying
SHAP values improve interpretability by highlighting associated features.
Conclusions LGBM-48h provides a dynamic and interpretable framework for short-term
ICUmortality prediction. The model may support clinical decision-making and prioritization
of care, but requires further validation in real-time and prospective settings.

Intensive careunits (ICUs) are specializeddepartments that offer thehighest
level of care for critically ill patients. Given the substantial investments
required to establish andmaintain ICU beds, their capacities are inherently
limited. ICU overcrowding and resource strain have been identified as
significant contributors to poor patient outcomes1–3. The recent COVID-19
pandemic has again highlighted the critical impact of ICU overcrowding
and the resultant capacity constraints on patient care, emphasizing the
necessity for efficient resource allocation in ICUs4–6.

The accurate prediction of ICU outcomesmay aid in clinical decision-
making and the effective allocation of resources. A low predicted mortality
can serve as the basis for a decision to discharge, while a high predicted

mortality may require further monitoring and care. Various scoring sys-
tems, such as the Sequential Organ Failure Assessment (SOFA) score, the
Simplified Acute Physiology Score II (SAPS-II), the Acute Physiology and
Chronic Health Evaluation (APACHE) score, the Logistic Organ Dys-
function Score (LODS), and the Oxford Acute Severity of Illness Score
(OASIS), have been developed and are used clinically to predict
mortality7–11. However, most of these traditional scores are static, con-
sidering only values at admission without capturing the dynamic changes
throughout an ICUpatient’s stay.Additionally, ICUsgenerate vast, complex
datasets that conventional scoring systems do not fully encapsulate, with
data often changing abruptly and requiring interpretative support.

A full list of affiliations appears at the end of the paper. e-mail: Simone.Britsch@umm.de

Plain Language Summary

In this study, we developed a computer
algorithm to help doctors predict whether a
patient in the intensive care unit (ICU)may die
within the next 48 hours. This can support
timely treatment decisions and improve
patient care. We used medical records from
nearly 10,000 ICU patients to train the
algorithm and tested it on data from another
hospital. The algorithm updates its prediction
every day using new patient information. We
found that the tool was able to reliably identify
high-risk patients and adapt to changes in
their condition. It also shows which clinical
values most influence the risk. This kind of
technology could help ICU teams better plan
treatments and use resources, especially in
very busy hospital environments.
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The advent of electronic health records (EHRs), comprehensive
monitoring, and real-time data availability, combined with advanced data
analytics, has facilitated the development of novel machine-learning-based
algorithms12,13. Machine learning models for ICU prediction range from
tree-based methods such as LightGBM to deep learning architectures, such
as long short-term memory (LSTM) networks. While LSTM networks are
capable ofmodeling temporal dependencies, theyareoften less interpretable
and require higher computational resources. In contrast, gradient boosting
tree algorithms offer strong predictive performance with lower complexity
and greater transparency, which are important prerequisites for real-world
clinical implementation14. Several dynamic, longitudinal models have been
created to predict long-term and in-hospital mortality using both short-
term (1 hour and below) and long-term (24 h) data sampling15,16. While
these algorithms have shown excellent performance, some only apply to
parts of the ICU stay13, do not provide transparency regarding which fea-
tures contribute to the model’s outcomes16–18, and thus, their real-time
clinical utility is limited. Recently, an ensemble-based machine learning
(ML) algorithm that employs a minimal set of common clinical variables
from EHRs and can be applied hourly has bridged this gap by predicting
24 h mortality longitudinally throughout an ICU stay19. Although this
algorithm has demonstrated excellent predictive performance in external,
international datasets, a framework for effectively communicating outcome
predictions to clinicians to support their translation into practice is still
lacking.

In this study, we present a machine learning-based prediction model
that estimates the risk of ICUmortality within the next 48 h, updated daily
throughout the ICU stay. The algorithm shows consistently strong pre-
dictive performance across the entire ICU trajectory and in various diag-
nostic subgroups. It enables dynamic risk stratification and highlights
individual changes inpatient status.Our approachprovides a framework for
implementing interpretable, time-updatedmortality prediction in intensive
care, with potential for clinical translation.

Methods
Study design and ethics approval
This investigation is a retrospective, observational cohort study encom-
passing all patients aged 18 and above who received treatment in an ICU at
theUniversityMedicalCenterMannheim,Germany, between January 2018
and May 2022. The study adhered to the principles outlined in the
Declaration of Helsinki and received approval from the Medical Ethics
Commission II of the Faculty of Medicine Mannheim, University of Hei-
delberg, Germany (Institutional Review Board approval number 2023-
8990).Due to the study’s retrospective design, the requirement for informed
consent was waived.

Data collection and ICD codes
All patient data available during ICU stays were automatically recorded in a
patient data management system (PDMS). This dataset included vital
parameters, medications, laboratory results, treatments, and outcome
metrics. The data were provided by the Data Integration Center of the
Medical Center Mannheim, Germany as a relational database, and specific
data points were extracted using structured query language (Fig. 1).

The German modification of the International Classification of
Diseases codes, 10th revision (ICD-10)20 representing working diagnoses
at hospital admission were assigned by the treating physician. ICD-10
codes indicating diagnoses at the end of the hospital stay were deter-
mined after a comprehensive review of post-discharge information and
were obtained from the Department of Medical Controlling at the
Medical Center Mannheim, Germany. “Admission diagnosis” refers to
the diagnosis assigned on hospital admission, whereas “final diagnosis”
(also “main diagnosis”) refers to the primary diagnosis assigned after
review of all data as described above. A summary of available data and
ICD-10 codes is provided in Table 1 and Supplementary Table 1. An
overview of all inclusion and exclusion criteria applied for patient
selection is provided in Supplementary Table 10.

Variable inclusion and definitions
From the available data, a panel of clinical experts identified variables for
study inclusion along with their corresponding valid ranges. Variable
selection was guided by the availability of data throughout the ICU stay, the
association of variables with outcomes in the ICU setting, and the repre-
sentation of all relevant organ systems in critically ill patients. The selected
variables were categorized as either static (i.e., those that do not change
during the ICU stay, such as age, source of admission, body mass index
(BMI), and sex) or dynamic (i.e., those that change during the ICU stay,
including vital parameters and lab values). All available variables, defined
valid ranges and the percentage of measurements outside of the valid range
thatwere excluded (i.e., outliers) arepresented inSupplementaryTable 2.To
define time intervals for analysis, we divided each ICU stay (referred to as
patient stay) into blocks of 24 h (referred to as stay day) starting on the time
of ICU admission (Fig. 1).

Medications were represented as continuous variables, defined by the
total dose of a substance administered within a single stay day. Ventilator
therapy was quantified by the total duration of ventilation since the last
initiation. Fluid therapy was recorded both as the fluid balance for each stay
day and for the entire patient stay. Renal replacement therapy was encoded
as a Boolean variable, indicating either the presence or absence of renal
replacement therapy within one stay day.

For each of the measured continuous variables, aggregate variables
based on the number of available measurements for each stay day were
calculated. For variables with a median number of measurements per stay
day smaller than ten, the median, minimum, arithmetic mean, and max-
imum values were calculated. For variables with ten ormoremeasurements
per stay day, additionally, the first quartile, the third quartile, and the
standard deviation were calculated. In case the number of valid measure-
ments for a variable was zero (or below two for standard deviation), the
aggregated variablewas consideredmissing.All available static anddynamic
categorical and continuous aggregate variables were selected as features for
subsequent ML algorithm development, resulting in a total of 131 features
(Supplementary Table 3).

Missing data and imputations
Apatient’s staywas excluded if over 30%of the featuresweremissing during
the initial 24-hour period. Likewise, a stay day was excluded if more than
30% of the features were missing. Incomplete stay days, defined as those
with a duration of less than 24 h, were also excluded.

To impute missing features, patient stays were categorized into nine
main ICD-10 disease groups based on admission diagnosis (Supplementary
Table 1). Missing features within the first 24 h of an ICU stay were imputed
using the aggregated feature variables from the corresponding ICD-10
disease group. For all following stay days, we utilized themost recent feature
from earlier stay days within the same ICU stay (Fig. 1).

Feature processing and difference features
Unordered categorical features were converted into dummy features.
Ordinal variables were encoded as ordered factors for the LightGBM
(LGBM, Light Gradient-Boosting Machine) and Random Forest algo-
rithms, and as integers for other methods. A shifted logarithm transfor-
mation, (f xð Þ ¼ lnðxþ 1Þ), was applied to features that were highly skewed
towards zero values (Supplementary Table 3).

For each feature, a missingness indicator was included (total of 34
features). Additionally, a separate dataset was created, containing indica-
tions of the difference from the previous day’s feature (if available) for each
feature that was not constant. This dataset excluded the first day of the
patient's stay.Thefinal outcomeof theMLalgorithmson the test datasetwas
generated using two models: one trained on a training dataset without
difference features (consisting of 131 features) and the other trained on a
trainingdataset that includeddifference features (consistingof 248 features).
The first model was used to predict the initial 24 h period, while the second
model was utilized to predict the remaining days of the stay. Themodelwas
designed to generate predictions once every 24 h, with a 48 h mortality
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prediction horizon. This decision reflects a pragmatic compromise between
clinical applicability and data availability. In routine ICU practice, many
input variables, particularly laboratory parameters, are recorded at most
once per day. More frequent prediction intervals (e.g., every 6 or 12 hours)
would result in increased data sparsity and may require imputation,
potentially reducing model robustness. Furthermore, a 48 h prediction
window allows sufficient time for clinical teams to initiate interventions,
while the 24 h update cycle aligns with daily clinical workflows and reduces
alert burden on healthcare staff.

Calculation of the SOFA and the SAPS II/TISS-10 score
To benchmark the performance of ourmachine learning algorithms against
established standards, we calculated the SOFA score and SAPS II/TISS-
10 score. The SAPS II/TISS-10 scoreswere automatically recorded daily and
documented in the electronicpatientfile of thePDMS.Whenmultiple SAPS

II/TISS-10 values existed for a stay day, the mean was used for aggregation.
Among the 73,440 ICU stay days, 30.3% of SAPS II/TISS-10 values were
missing, and these missing values were not imputed.

Conversely, the SOFA score was calculated retrospectively, with
missing values handled according to the procedure outlined above, based on
Vincent et al. 19969. Comparisons involving SAPS II/TISS-10 were con-
ducted on the subset of data where values were available. An overview of all
variables used, including those for the ML algorithms, is shown in Sup-
plementary Table 4.

Outcome definitions
The primary outcome of our study was defined as 48 h mortality. For each
patient stay, a stay day was labeled “deceased” if the ICU stay ended within
48 h after that day and resulted in thepatient’s death.Otherwise, the stayday
was labeled “survived” (Fig. 1).
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Fig. 1 | Development of a machine learning algorithm to predict 48-hour mor-
tality across ICU care. a Data preparation: ICU patient data recorded in a patient
data management system (PDMS) were exported from the Data Integration Center
of the UniversityMedical CenterMannheim, Germany. Data was excluded based on
exclusion criteria. Variables included vital parameters, medications, laboratory
results, treatments, and outcome metrics and were aggregated based on 24 h time
intervals starting at admission. All available static and dynamic categorical and
continuous aggregate variables were selected as features and underwent feature
processing. Missing values were imputed using previous 24 h time intervals where
available or median values from corresponding ICD-10 based disease groups. A
separate dataset was created that contained change features indicating day-over day

change. bMachine learning: the final dataset was split into a training and test sets.
Applying five different linear and tree-based machine learning algorithms, models
were trained to predict 48 h ICU mortality at the end of each 24 h time interval.
cModel evaluation: for the selected LGBM-48 algorithm, performance was assessed
using area under the receiver operating characteristics curve. Selection of cutoffs was
performed to identify andmap low-, intermediate and high-risk categories based on
predicted 48 h mortality risk across the ICU stay. Lastly, sensitivity analyses were
performed for different stay days across the ICU stay, different disease groups and
endpoints.
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Additional sensitivity analyses were conducted using a 24 and 72 h
mortality end point that followed the same definition as the 48 h mortality.
ICUmortality was determined using ICU stay data, with a “deceased” label
applied if the patient died at the conclusion of the ICU stay. Hospital
mortality was labeled “deceased” if the patient died at the end of the hospital
stay. ICU mortality and hospital mortality were trained and tested using
only the first day of each patient stay. For the development of the machine
learning algorithms for the prediction of ICU and hospital mortality, the
same variables were used as for 48 h mortality.

Model development and calibration
Model development was conducted using R Statistical Software (v4.2.3)21

and the tidymodels framework package (v1.0.0)22. Anoverviewof themodel
development process is provided in Fig. 1.

First, the data were divided into equal-sized training and test datasets,
stratified by ICD-10 diagnosis groups. All stay days for a given patient stay
were assigned entirely to either the training dataset or the test dataset,
including the difference features (Supplementary Table 5). Next, for both
training datasets, different linear and tree-based algorithms were applied
with the goal of developing the algorithm with the best predictive perfor-
mance. Linear methods included lasso and elastic net23. Lasso is a form of
logistic regression that incorporates a linear regularization term, which
helps to prevent collinearity and effectively select features. Conversely,
elastic net combines the Lasso with ridge regression, integrating a quadratic
regularization term. Three tree-based algorithms were used (LightGBM24,
XGBoost25, and random forests26). All these methods are ensemble-based.
Random forests consist of a forest ensemble of decision trees, while
LightGBM and XGBoost leverage gradient boosting to generate boosted
decision trees.

All analyses of the training datasetwere performed using tenfold cross-
validation. This approach ensured sufficient representation of smaller
diagnostic subgroups and avoided data sparsity in clinically relevant cate-
gories. While fully nested cross-validation would provide a more rigorous
estimate,weopted for this simpler andmore transparent strategy, consistent
with clinical ML practice27. For hyperparameter tuning, a grid search was
utilized for the Lasso method, which involves only one hyperparameter.
Bayesian optimizationwas employed for the other algorithms (Tidy Tuning
Tools in Kuhn M (2024)28). All algorithms were optimized for the Brier
score without any over-sampling or under-sampling to ensure proper
calibration29.

Lastly, the calibration of the models was evaluated using a calibration
curve, as described by Wilks (1990)30. The curve included 95% confidence
bands. The need for recalibration was determined by whether the con-
fidence band overlapped with the plot’s diagonal line, representing the
theoretical optimal calibration.

Assessment of feature importance
To visualize the impact of the most influential features on one single pre-
diction, we employed SHAP values31, derived from Shapley values in game
theory, treating each feature as a player and the prediction as the payout
shared fairly among them. To identify the characteristics responsible for a
patient’s health deterioration, we analyzed the differences in SHAP scores to
determine where changes inmortality risk originated. For clarity, the SHAP
values of features representing aggregations of a single measured variable

Table 1 | Baseline characteristics of all included patients and
stratified by training and test dataset

All Training
dataset

Test
dataset

n = 9786 n = 4892 n = 4894

Demographics and medical history

Age (years), median (IQR) 66 (55–77) 67 (55–76) 66 (56–77)

Sex, No. (%)

Female 3879 (39.6) 1941 (39.7) 1938 (39.6)

Male 5907 (60.4) 2951 (60.3) 2956 (60.4)

BMI (kg/m2), median (IQR) 26.1
(23.5–29.4)

26.1
(23.5–29.4)

26.1
(23.5–29.4)

Diabetes, No. (%) 3300 (33.7) 1657 (33.9) 1643 (33.6)

Hypercholesterolemia,
No. (%)

936 (9.6) 483 (9.9) 453 (9.3)

Arterial hypertension, No. (%) 3595 (36.7) 1819 (37.2) 1776 (36.3)

Chronic kidney disease (any
stage), No. (%)

2700 (27.6) 1347 (27.5) 1353 (27.6)

Renal replacement therapy,
No. (%)

1454 (14.9) 694 (14.2) 760 (15.5)

NIV/IMV, No. (%) 4680 (47.8) 2368 (48.4) 2322 (47.4)

Main diagnosis1, No. (%)

Diseases of the digestive
system

835 (8.5) 414 (8.5) 421 (8.6)

Diseases of the nervous
system

250 (2.6) 129 (2.6) 121 (2.5)

Injury, poisoning and certain
other consequences of
external causes

1065 (10.9) 529 (10.8) 536 (11.0)

Certain infectious and
parasitic diseases

365 (3.7) 173 (3.5) 192 (3.9)

Diseases of the circulatory
system

3315 (33.9) 1669 (34.1) 1646 (33.6)

Neoplasms 1630 (16.7) 834 (17.0) 796 (16.3)

Diseases of the respiratory
system

1235 (12.6) 607 (12.4) 628 (12.8)

Diseases of the genitourinary
system

270 (2.8) 122 (2.5) 148 (3.0)

Other 821 (8.4) 414 (8.5) 406 (8.3)

Admission category, No. (%)

Medical 4420 (45.2) 2217 (45.3) 2203 (45.0)

Scheduled surgery 784 (8.0) 385 (7.9) 399 (8.2)

Unscheduled surgery 3362 (34.4) 1669 (34.1) 1693 (34.6)

Other 1220 (12.5) 621 (12.7) 599 (12.2)

Admission source, No. (%)

Emergency Room 3031 (31.0) 1546 (31.6) 1485 (30.3)

Other ICU 2247 (23.0) 1123 (23.0) 1124 (23.0)

Hospital ward 3152 (32.2) 1556 (31.8) 1596 (32.6)

External hospital 887 (9.1) 431 (8.8) 456 (9.3)

Other 469 (4.8) 236 (4.8) 233 (4.8)

Length of ICU stay

1 day, No. (%) 3032 (31.0) 1500 (30.7) 1509 (30.8)

2 days, No. (%) 1589 (16.2) 797 (16.3) 792 (16.2)

≥ 3 days, No. (%) 5165 (52.8) 2595 (53.0) 2570 (52.5)

Length of ICU stay (days),
median (IQR)

3.3 (1.8–8.0) 3.3 (1.8–8.0) 3.2 (1.8–8.0)

Mortality, No. (%)

ICU mortality 1528 (15.6) 740 (15.1) 788 (16.1)

Table 1 (continued) | Baseline characteristics of all included
patients and stratified by training and test dataset

All Training
dataset

Test
dataset

n = 9786 n = 4892 n = 4894

In-hospital mortality 2684 (27.4) 1338 (27.4) 1346 (27.5)

BMI body mass index. ICU intensive care unit. IQR interquartile range. IMV invasive mechanical
ventilation. NIV noninvasive ventilation.
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were summed. Adding and subtracting SHAP values yielded consistent
results due to their linear nature.

Clinical threshold selection
To select clinical thresholds for predicted 48 h mortality risk, we calculated
the Youden’s index32 and the F1-score33 based on stay days. Maximum
Youden’s index (lower threshold) andF1-score (upper threshold)were used
to define three risk categories (low, intermediate, and high). Youden’s index
combines sensitivity and specificity into a single measure and gives equal
weight to false positive and false negative results, while the F1-score is
defined as the weighted mean of the positive predictive value (PPV) and
sensitivity. This combined approach of utilizing both methods prioritizes
specific aspects of decision-making across two critical transition zones (low-
to-intermediate and intermediate-to-high risk). For the transition from low
to intermediate risk, the focus is on maximizing overall classification effi-
ciency by balancing sensitivity and specificity, as represented by the Youden
Index. This method aims to identify as many at-risk patients as possible
while minimizing the number of false positives. In contrast, during the
transition from intermediate to high risk, the emphasis shifts to accurately
identifying high-risk patients by optimizing the trade-off between PPV and
sensitivity, which is captured by the F1-score. This approach ensures that
patients with a high predicted 48-hour mortality risk are flagged accurately
while reducing unnecessary alarms. This dual-threshold strategy facilitates
an effective and targeted approach to risk stratification.

Toplotmortality based on the duration spent in the high-risk category,
we established density curves using Kernel Density Estimation over the
relative number of days spent in the high-risk category. This analysis was
performed based on patient stays of patients who either survived or suc-
cumbed and spent at least one day in the high-risk category. Mortality
calculationwas adjusted by the corresponding total number of patient stays.

External validation using MIMIC-IV database
To assess generalizability, we externally validated the LGBM-48 h model
using the publicly availableMIMIC-IV database (version 3.1)34, comprising
ICU data from Beth Israel Deaconess Medical Center. Data were imported
via PostgreSQLandprocessedwith the sameRpipeline as the internal ICCA
dataset, with minimal adjustments for format compatibility. SinceMIMIC-
IV lacks admission diagnoses, we imputed missing values on ICU day 1
using the cohort median rather than diagnosis-stratified medians. The
pretrained LGBM-48 h model was applied without retraining to evaluate
out-of-the-box performance.

Statistical analysis and reproducibility
All statistical analysis was performed using R Statistical Software (v4.2.3)21.
For evaluatingmodel performance and conductingmodel comparisons, we
computed area under the receiver operating characteristic curves (AUR-
OCs). Confidence bands depicted in figure plots represent 95% confidence

intervals (CI) and were derived using 2000 bootstrap replicates. CIs for the
AUROCs were obtained using the DeLong method35. To assess the pre-
dictive performance of the SOFA and SAPS II/TISS-10 scores, we employed
standard logistic regression. To ensure reproducibility, we implemented a
code-based analysis pipeline and used fixed random seeds for model
training and evaluation. Although traditional experimental replicates were
not applicable, reproducibility was supported through stratified train–test
splitting, tenfold cross-validation, and external validation using an inde-
pendent cohort (MIMIC-IV).

Results
Patient population selection and characteristics
The complete dataset consisted of 16,268 patient stays, covering the period
from January 2018 to May 2022. (Fig. 2a). Among these, 6001 patient stays
(36.9%) were excluded because the patient stay was less than 24 h. An
additional 481 patient stays (3.0%) were excluded due to having more than
30% missing data within the first 24 h.

From initial 73,440 stay days, a total of 12,237 (16.7%) stay days were
excluded because they had more than 30%missing data (Fig. 2b). The final
cohort consisted of 9786 eligible patient stays and 61,203 stay days (Fig. 2a,
b). Both, the patient stay and stay day based datasets were split equally in a
training (n = 4892 and n = 31,032 respectively) and test (n = 4894 and
n = 30,171) dataset.

Baseline characteristics of all datasets are displayed in Table 1. The
median age at admission was 66 years (interquartile range 55–77), and
39.6% of patients were female. Overall ICU and in-hospital mortality were
15.6 and 27.4%, respectively. Across 61,203 ICU stay-days included in the
final cohort, 4.5% were labeled as deceased based on the 48 h mortality
definition, indicating amoderate class imbalance in theprimaryoutcome. In
comparison, overall ICU mortality across all patient stays was 15.6%, and
hospitalmortality reached 27.4%.Despite the imbalancednature of the 48 h
mortality outcome, model development was conducted without applying
over- or undersampling techniques. This approach was chosen to preserve
the true outcome distribution and ensure accurate probability calibration.
Model optimization relied on the Brier score, a strictly proper scoring rule
that is particularly suitable for evaluating probabilistic predictions in
imbalanced clinical datasets36–38.

Development of a dynamic machine-learning-based prediction
algorithm for near-term ICU mortality
Next, we developed a dynamic ML-based algorithm for near-term ICU
mortality prediction, designed to predict ICU mortality risk for the sub-
sequent 48 h at the end of each 24 h stay day. To this end, we compared five
established ML algorithms (two linear and three tree-based algorithms)
using data from the training dataset. Among the ML algorithms, the
LightGBM algorithm (LGBM-48 h) achieved the highest AUROC of 0.909
(95% CI: 0.901–0.917) in the training dataset with tenfold cross-validation,
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and a comparable albeit slightly lower AUROC of 0.886 (95% CI:
0.878–0.895) in the test dataset (Supplementary Table 6) with an excellent
calibration across the prediction range (Supplementary Fig. 1). Based on the
AUROC, the LGBM-48 h algorithm was selected for further evaluation.
Next, we compared the performance of the LGBM-48 h algorithm against
the current clinical standard of care for mortality prediction on admission.
In patients of whom all data was available to calculate SAPS II/TISS-10
(n = 7783 stays in the test dataset), the LGBM-48 h algorithm showed a
better AUROC of 0.886 (95% CI: 0.878–0.895) compared to SAPS II/TISS-
10 with 0.773 (95% CI: 0.757–0.789) and the SOFA Score with 0.719 (95%
CI: 0.701–0.736) (Fig. 3a).

Considering that the LGBM-48 h algorithm is intended to predict 48 h
mortality for eachdayof an ICUstay,we subsequently examinedwhether its
performance varied across the ICU stay. For this purpose, we assessed the
algorithm’s predictive performance over the first ten days of the ICU stay
(Fig. 3b). AUROC for individual stay days, along with their respective CIs,
did not differ significantly and indicated a stable predictive performance
along the ICU stay.

To identify the features that contribute to the LGBM-48 h algorithm, a
SHAP value analysis was performed. Supporting the dynamic prediction
nature of the LGBM-48 h algorithm, features that reflect circulation (mean

and minimum arterial blood pressure [MAP], norepinephrine dose), tissue
perfusion (mean and maximum lactate), vigilance (maximum and mean
RASS), inflammation (maximum CRP, minimum leukocytes) as well as
oxygenation and ventilation (mean O2 saturation, mean and maximum
paO2/FiO2) thus indicate dynamic changes in patient status were identified
as main contributors (Fig. 3c). Accordingly, only age (a static variable that
does not change during ICU stay) was featured on top amongst all
important features. Feature importance further changed with proximity to
mortality in patients who succumbed (Fig. 3d). In this patient cohort, mean
Richmond Agitation-Sedation Scale (RASS), lactate (both maximum and
mean values), norepinephrine treatment, age andMAP increased in feature
importance.

In summary, the LGBM-48h algorithm predicts 48 h ICU mortality
with an excellent clinical performance along the ICU stay. Features that
change dynamically during ICU stay contribute significantly to the LGBM-
48 h algorithm performance and the algorithm outperforms the current
clinical standard of care (SAPS II/TISS-10 and SOFA score).

Selection of alarm thresholds for clinical application
The translation of predictive probabilities into meaningful clinical insights
can be facilitated by the application of thresholds. Careful selection of
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thresholds is important to avoid alert fatigue and increased work burden
while ensuring that patients at heightened risk of mortality are accurately
identified. In this study, threshold selection aimed to identify stay days
associatedwith either a very low or a very highmortality risk. Stay dayswith
a very low risk might identify patients who benefit from a shorter ICU stay,
while those at intermediate or very high risk may require additional
evaluation.

To this end, we performed a threshold analysis with the predicted 48 h
ICUmortality risk generated by the LGBM-48 h algorithm for all stay days
in the test dataset using Youden’s index and the F1-score. To select
thresholds, we used the maximum respective score (Supplementary
Table 7). The threshold selected based on the maximum Youden’s index
corresponded to a predicted 48-hour mortality rate of 2.1% and led to a
sensitivity of 85.7%, a specificity of 73.7%, and a total alarm rate of 29.0%,
which corresponds to an average of 2.9 alarms per 24 h in a 10-bed ICU. In
comparison, threshold selection based on the maximum F1-score corre-
sponded to a predicted 48-hour mortality rate of 20.0% and resulted in a
sensitivity of 43.7%, a specificity of 97.4%, and a total alarm rate of 4.5%,
which translates to an average of 0.5 alarms per 24 h in a 10-bed ICU. Thus,
maximizing Youden’s index alone caused an unacceptably high alarm rate,
whereas prioritizing the F-score alone led to an inappropriately low sensi-
tivity for clinical practice. We therefore applied both derived cutoffs to
categorize stay days into three risk groups (low, intermediate and high risk)
based on predicted 48-hourmortality (Supplementary Table 8 and Fig. 4a).
With this approach, prediction of either intermediate or high risk demon-
strated a positive predictive value (PPV) of 13.7% and a negative predictive
value (NPV) of 99.1%. Predicting high risk yielded a PPV of 45.2%
and a NPV of 97.3% (Supplementary Table 8). Out of 30,171 stay days in
the test dataset, 21,407 (71.0%) were classified as low risk, 7409 (24.6%) as
intermediate risk and 1355 (4.5%) as high risk. To provide a more
intuitive understanding of alarm patterns and risk dynamics, we visualized
the average predicted mortality probability and corresponding alarm
levels over time for both ICU survivors and non-survivors (Supplementary
Fig. 2). Among non-survivors, a pronounced nonlinear increase in risk
was observed prior to death, accompanied by frequent transitions between
risk categories. In contrast, survivors showed relatively stable predicted
probabilities with predominantly low-risk alarms throughout their
ICU stay.

In summary, we derived thresholds that identify stay day categories
with low, intermediate, andhigh risk for 48 h ICUmortality. Particularly the
combined intermediate and high-risk stay day category yielded an excellent
NPV, while the high-risk category provided an acceptable PPV.

Change of predicted mortality risk longitudinally and identifica-
tion of associated features through changes in SHAP values
Patient statusmay change dynamically during an ICU stay andmay require
adaptation of mortality risk estimates. Conceptually, ICU patients may
either remain within their initial mortality risk category or experience
changes in their mortality risk over the course of their stay.

In our study, 68.4%of patients consistently remained in their 48 h ICU
mortality risk category (either low, intermediate or 48 h ICU highmortality
risk) determined on admission. These categories effectively differentiated
ICUmortality,with ICUmortality rates of 1.0% in the low-risk group, 32.6%
in the intermediate-risk group, and 88.8% in the high-risk group (Supple-
mentary Table 9). Conversely, 31.6% of patients experienced dynamic
changes in their 48 h mortality risk, with 24.7% of patients changing
between two and 6.9% between all three 48 h mortality risk categories.
Additionally, ICUmortality differed in patients that experienced changes in
48 h risk category assignment compared to patients that remained within
their 48-hour risk category determined on admission. Next, we assessed
whether cumulative time in the high-risk category associated with higher
ICUmortality.We observed that the fraction of stay days spent in the high-
risk category per patients stay correlatedwith actual ICUmortality (Fig. 4b).
This association was also evident for the low- and intermediate-risk groups,
with the GAM-derived mortality curves demonstrating a continuous

increase inmortality for longer time spent in the intermediate-risk category,
and a corresponding decrease for increasing exposure to the low-risk
category (Supplementary Fig.3).

Interpreting the mortality risk of individual patients during their ICU
stay relies heavily on the clinical context, particularly in recognizing changes
in patient status and identifying the underlying factors driving these
changes. Based on the predicted 48 h mortality, Fig. 4c depicts the long-
itudinal change of risk and risk categories in two patients who either sur-
vived their ICU stay or succumbed.

To identify features contributing to changes in a patient’s mortality
risk, we explored a method to visualize the variation in SHAP values across
different stay days of a patient's stay. SHAP values of features that were
aggregations of a single variable were combined. To compare SHAP values
of different days, the corresponding SHAP values were subtracted, and
because SHAP values are linear, adding and subtracting them produced
SHAP-like results. This method allowed for the identification of changes in
feature importance that contribute to the change of mortality risk as pre-
dicted by the LGBM-48h algorithm. As an example, SHAP values were
derived for the third-to-last (>48 h), second-to-last (24–48 h), and last day
(<24 h) in a selected patient who succumbed and was mapped as non-
survivor in Fig. 4c. We then calculated the differences in SHAP values
between the third-to-last and second-to-last days (Fig. 4d), as well as
between the second-to-last and last days before death (Fig. 4e). In this
patient’s case, changes in importance of respiratory features (PEEP, O2

saturation) preceded those in circulatory features (MAP, lactate) that con-
tributed to the change in 48 h mortality risk predicting and ultimately
indicated deterioration of the patient’s clinical status.

In summary,whilemost patients show stablemortality risk throughout
their ICUstay as assessedby theLGBM-48 halgorithm, anotablenumberof
patients experience dynamic changes in their mortality risk. Specifically,
actual mortality increases over the duration that patients remain in the
predicted high-risk category.

Predictive performance of the LGBM-48 h algorithm across dif-
ferent subgroups and endpoints
To provide a more detailed assessment of the LGBM-48 h algorithm,
additional sensitivity analyseswere conducted across various subgroups and
different endpoints. To evaluate the algorithm’s performance across dif-
ferent diseases, subgroups were defined based on admission diagnoses
categorized by ICD-10 codes. The LGBM-48h algorithm demonstrated
similar AUROC values for the ICD-10-based subgroups compared to the
overall study population (Fig. 5a), with the exception of the subgroups
“diseases of the genitourinary system” and “neoplasms” (where it performed
better) and “diseases of the respiratory system” (where it performed worse).
Similar results were observed when using ICD-10 codes representing the
final diagnosis instead of the admission diagnosis, with the exception of the
subgroup of “neoplasms” (where it performed better) and “diseases of the
respiratory system” (where it performed worse) (Fig. 5b).

To provide flexibility in predicting both shorter and longer mortality
time points, we evaluated the performance of the LGBM-48 h algorithm for
predicting 24 and 72 h mortality. Compared to the prediction of 48 h
mortality, the predictions for 24 and 72 h mortality exhibited marginally
different AUROC values, with a gradual decline in predictive performance
as the time window extended. Specifically, the AUROC was 0.905 (95% CI
0.895–0.916) for 24-hour mortality, 0.886 (95% CI 0.878–0.895) for 48 h
mortality, and 0.873 (95%CI 0.866–0.882) for 72-hour mortality in the test
dataset (Fig. 5c).

Finally, the LGBM-48 h algorithm was compared with other LGBM
models for predicting ICU and hospital mortality. For these comparisons,
only data from the first 24 h of ICU admission were utilized to develop the
machine learning models for ICU and hospital mortality, employing the
same variables as used in the LGBM-48h algorithm. The performance of the
machine learning models for predicting ICU and hospital mortality
demonstrated lower AUROC values than the LGBM-48h algorithm for
predicting48 hmortality (AUROCLGBM-48 h: 0.886, 95%CI0.878–0.895;
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Fig. 4 | Cut off selection to map 48 h mortality risk across the ICU stay and
identification of features associated with change. a Threshold plot showing
Youden’s index, F-score, alarm rate, sensitivity, and specificity to differentiate three
risk categories for predicted 48 h mortality. The lower threshold was selected based
on the maximum Youden’s index, while the upper threshold was selected based on
the maximum F-score. b Line plot illustrating ICU mortality based on fraction of
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weighted density curves that were calculated by Kernel Density Estimation for
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mortality risk calculated by the LGBM-48 algorithm for each day of the ICU stay of

two patients (survivor, dashed line; non-survivor, dotted line). Indicators d and e
refer to Figs. 4d and 4e that illustrate the change in SHAPvalues as 48 hmortality risk
increases in the patient that succumbed. Horizontal solid lines identify lower and
upper 48 h mortality risk thresholds that differentiate low, intermediate, and high
risk. d,e calculated differences in SHAP values between the third-to-second (d) and
second-to-last (e) 24 h interval before death for the non-surviving patient shown in
Fig. 4c. The differences of SHAP value compared to SHAP values alone identifies
shifts in feature importance affecting mortality risk predicted by the LGBM-48 h
algorithm.
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AUROC ICU mortality: 0.875, 95% CI 0.863–0.887; AUROC hospital
mortality: 0.838, 95% CI 0.826–0.850) (Fig. 5d).

Our results indicate that the LGBM-48 h algorithm demonstrates
consistent predictive performance across various underlying diseaseswithin
an ICU population. Adjusting the prediction time window to suit clinical
needs also yields satisfactory performance, albeit with a slight decrease
when thewindow is extended. Lastly, predicting commonendpoints suchas
ICU and in-hospital mortality shows lower, yet still acceptable,
predictive performance compared to predictions made within a defined
time window.

External validation in the MIMIC-IV cohort
To evaluate the generalizability of the LGBM-48 h model, we applied the
pretrained algorithm to the MIMIC-IV. A flow chart illustrating data
inclusion and exclusion based on patient stays and stay days is shown in
Supplementary Fig. 4. Detailed characteristics of the MIMIC-IV validation
cohort are presented in Supplementary Table 11.

Overall, LGBM-48h achieved an AUROC of 0.859 (95% CI:
0.849–0.870) in the MIMIC-IV dataset, indicating good discriminative

performance, albeit lower than in the derivation cohort (AUROC 0.889,
95% CI: 0.878–0.895, Supplementary Fig. 5).

To assess the applicability of previously established thresholds (You-
den’s index 0.021 to differentiate low from intermediate risk, F1-score 0.200
for distinguish between intermediate and high risk), we evaluated their
performance in theMIMIC-IVcohort.Among39,259 ICUstay-days, 76.4%
were classified as low risk, 20.3% as intermediate risk, and 3.3% as high risk,
closely resembling the distribution in the internal dataset (70.9, 24.6, and
4.5%, respectively; see Supplementary Table 8). Using these predefined
thresholds, the model yielded a sensitivity of 76.6%, specificity of 78.4%,
negative predictive value (NPV) of 99.1%, and positive predictive value
(PPV) of 10.0% for the low threshold, and a sensitivity of 34.6%, specificity
of 97.7%, NPV of 97.9% and PPV of 32.0% for the high threshold.

We then derived dataset-specific thresholds based on the maximum
Youden’s index (0.018) and F1-score (0.190), as shown in Supplementary
Table 12 and Supplementary Fig. 6. Compared to the thresholds derived
from University Medical Center Mannheim ICU dataset (Youden´s index
0.021 and F1-score 0.200), the cutoffs based on the MIMIC-IV cohort
showed subtle differences. At the lower threshold of 0.018, the model
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Fig. 5 | Sensitivity analysis. a Forest plot illustrating the predictive performance for
48 h ICU mortality of the LGBM-48h algorithm, stratified by ICD-10 diagnosis
group assigned on admission. Black filled circles represent AUROC values for each
admission diagnosis group based on ICD-10 categories. Error bars indicate 95%
confidence intervals derived using the DeLong method. Dotted line indicates area
under the receiver operating characteristic curve (AUROC) for the LGBM-48 h
algorithm, shaded blue area illustrate 95% confidence intervals (n = 30,171 stay days
in the test set). b Forest plot illustrating the predictive performance for 48-hour ICU
mortality of the LGBM-48 h algorithm, stratified by ICD-10 diagnosis group
assigned after review of all available patient data at the end of the respective ICU stay.

Black filled circles represent AUROC values for each final diagnosis group based on
ICD-10 categories. Error bars indicate 95% confidence intervals derived using the
DeLong method. Dotted line indicates area under the receiver operating char-
acteristic curve (AUROC) for the LGBM-48h algorithm, shaded blue area illustrate
95% confidence intervals (n = 30,171 stay days in the test set). c Receiver operating
characteristic curves comparing LGBM algorithms that predict 24 h ICU mortality
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72 h), respectively. d Receiver operating characteristic curves comparing LGBM
algorithms that predict 48 h ICUmortality (LGBM-48 h), overall ICUmortality and
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achieved a sensitivity of 79.6%, specificity of 75.9%,NPVof 99.2%, andPPV
of 9.4%.At the F1-based threshold of 0.190, sensitivitywas 35.9%, specificity
97.5%, NPV 98.0%, and PPV 31.4%. These findings support the general-
izability of the LGBM-48h algorithm across different ICU populations.

Discussion
ICU care is characterized by highmortality rates and constrained resources,
underscoring the need for accurate and adaptive mortality prediction that
can be effectively translated into clinical decision-making and resource
management. Given the dynamic nature of mortality risks, which may
fluctuate with daily changes in a patients’ condition, we developed the
LGBM-48h algorithm to evaluate 48-hour mortality risk throughout the
ICU stay.

The LGBM-48h algorithm developed in our study delivers excellent
predictive performance throughout the ICU stay, surpassing the SAPS II/
TISS-10 and SOFA scores. By establishing thresholds based on predicted
48 h mortality risk, we classified individual predictions into low, inter-
mediate, and high mortality risk categories. Beyond single-point predic-
tions, extended duration in the high-risk category was closely associated
with an increase in mortality risk. The analysis of longitudinal changes in
SHAP values helped identify factors driving fluctuations in mortality risk.
Finally, adjusting the prediction time window to suit clinical requirements
also resulted in satisfactory predictive performance, albeit with a slight
decline as the time window extended.

In this study, we deliberately chose to use LightGBM as a classical tree-
based machine learning algorithm due to its high performance, low com-
putational cost, and strong interpretability via SHAP values. These char-
acteristics are particularly useful in clinical contextswhere transparency and
computational efficiency are critical. Our intention was to first explore how
well established, traditional MLmethods perform in the setting of dynamic
ICU mortality prediction before transitioning to more complex deep
learning approaches such as LSTM networks or Transformer-based
models39. This stepwise approach allows for better benchmarking and
ensures clinical applicability at each development stage. To incorporate
temporal dynamics, we engineered difference features that quantify the
change inkey variables over time, enabling themodel topartially account for
trends and deterioration patterns without requiring sequential modeling.
Although ensemble methods can theoretically improve performance, our
best-performing models, including LightGBM, XGBoost, and Random
Forest, are already ensemble-based approaches built on decision trees.
Given their structural similarity, additional stackedensembling is unlikely to
yield substantial gains, while significantly increasing model complexity and
limiting clinical interpretability40. Future work could explore combining
structurally different models, such as deep learning or probabilistic
approaches, to assess whether heterogeneous ensembles offer practical
advantages.

Established methods for predicting mortality in the ICU depend on
patient data collected upon admission, using scoring systems such as the
SOFA score, SAPS-II, APACHE score, LODS, and OASIS to estimate ICU
mortality. With advancements in machine learning, new tools with sig-
nificantly improved predictive performance have been developed41,42. These
tools boast excellent AUROCs, reaching up to 0.977, whether applied to
specific patient subgroups or the broader ICU population12,42. Typically,
ICU prediction tools focus on endpoints like ICU or in-hospital mortality,
predicted at a single time point, usually upon admission or within the first
24 h. Despite advancements in methodology and performance, converting
mortality predictions into clinical decisions that could enhance outcomes
remains challenging.

In selecting variables for model development, we deliberately focused
on features that are routinely available in most ICU settings and easily
retrievable from standard electronic health records. This pragmatic
approach was intended to ensure that the algorithm can be implemented
across a wide range of clinical environments, without requiring access to
highly specialized diagnostics or infrastructure. While the model includes
more variables than traditional scores, such as SOFA, this trade-off enables

substantially higher predictive performance and dynamic risk assessment
throughout the ICU stay.

To address this issue, several studies have investigated dynamicmodels
that continuously update and refine predictions over time using data gen-
erated throughout the ICUstay15,19,43,44.However, someof thesemodels have
demonstrated varying predictive performance during the ICU stay15,19,43. In
our approach, we developed amodel that updates every 24 h, incorporating
both static anddynamic features, aswell as changes indynamic features over
time, to predict 48 h mortality. The overall predictive performance of our
model aligns with previous publications that predicted short-term ICU
mortality19,44.Moreover, the predictive performance of ourmodel remained
stable throughout the first 10 days of ICU stay and demonstrates applic-
ability throughout the ICU stay and across a multitude of underlying
diseases.

To address the uncertainty regarding the time-to-endpoint when
predicting overall ICU mortality, some published algorithms focus on
predicting short-term rather than overall ICU mortality19,44. The rationale
behind this approach is topromptly identify either patients at imminent risk
(enabling diagnostic or therapeutic interventions that could potentially alter
the patient’s trajectory) or those with a very low mortality risk (potentially
supporting triage or discharge decisions)19. To support this rationale, we
derived a risk category-based framework to generate clinically meaningful
insights and to facilitate translation into clinical practice. We demonstrate
that using individual 24 h intervals of a patient’s stay, 48-hour mortality
prediction achieves an excellent NPV of over 99% when applying a
threshold that distinguishes the low-risk from the intermediate and high-
risk category.A threshold that differentiateshigh risk from intermediate and
low risk is characterized byhigher specificity andmoderatePPV for 48-hour
mortality. In addition, these categories are associated with ICUmortality in
patients who remain in the determined categories on admission, while
changes in 48 h risk categories modify ICUmortality rates. In addition, the
relatively low positive predictive value (PPV) observed in ourmodel reflects
the inherent trade-off between sensitivity and specificity when predicting
rare events, such as 48 h ICU mortality. In this study, we intentionally
favoredhigh sensitivity tominimize the risk ofmissing critical deterioration,
accepting a lower PPVas a consequence.While this increases the number of
false positives, many of these flagged patients may still have been clinically
unstable and thus benefited from increased monitoring. Alarm fatigue is a
well-documented phenomenon in intensive care settings, where frequent
non-actionable alerts can desensitize staff, delay responses, and jeopardize
patient safety45. To mitigate this, our model supports customizable thresh-
olds, allowing hospitals to calibrate sensitivity and PPV based on clinical
context, institutional workflow, and risk tolerance. Moreover, the optimal
threshold should reflect the specific clinical goal whether early warning,
triage support, or case prioritization and ideally involves clinical judgment
alongside algorithmic predictions. Furthermore, future studies should
investigate the downstream effects of model-generated alerts on clinical
decisions and outcomes. In summary, this framework allows to monitor
48 h mortality risk across an ICU stay and to support treatment decisions
based on the risk category and trajectory of change in 48 h mortality risk.
Although we have not derived cutoffs for other time intervals, the overall
predictive performance suggests that our approach can also be applied to
shorter (i.e., 24 h) and longer (i.e., 72 h)mortality predictionperiods, though
with lower performance as the time window extends.

Previous studies have explored the concept of serial assessments to
predict the performance of established mortality prediction scores46,47.
For instance, trends in the SOFA score during the first 96 h were asso-
ciated with varying mortality rates: higher (increasing SOFA score),
comparatively lower (unchanged SOFA score), and lowest (decreasing
SOFA score)46. In line with these findings, we demonstrate that patients
with accumulating days in the high-risk category experienced an
increasing mortality risk. This data supports the idea that integrating
mortality predictions throughout the patient’s stay enhances predictive
performance, and monitoring mortality risk categories over time may
facilitate this approach.
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Interpretability, defined as the extent to which a user can understand
the reason behind a model’s decision, is crucial for clinical adoption. Pre-
vious research has used SHAP values to identify and interpret features
contributing to ICU mortality48. Additionally, SHAP values have been
tracked throughout the ICU stay to monitor feature importance as patients
approach a defined endpoint18. In this study, we extend this concept by
applying the SHAP method to highlight features driving longitudinal
changes in mortality risk. This level of interpretability could support clin-
icians in identifying the underlying cause determining a patient’s status,
which is vital for timely clinical decision-making to personalize care and
potentially alter outcomes.

The application of the pretrained LGBM-48hmodel to theMIMIC-IV
dataset provides robust evidence for its generalizability. Without retraining
or recalibration, the algorithm achieved high discriminatory performance.
This suggests that the model captures fundamental physiological dete-
rioration patterns that are resilient to variation in healthcare systems,
documentation standards, and patient populations.

Importantly, both predefined alarm thresholds and thresholds opti-
mized on the MIMIC-IV dataset resulted in comparable performance
metrics.Minordeviations innegative predictive valueandpositivepredictive
value were expected due to differences in outcome prevalence and mea-
surement frequency across cohorts49.

Thesefindings underscore that the LGBM-48hmodel is not overfit to a
single institution or data source and support its applicability in diverse
clinical settings. Nevertheless, local threshold adaptation may still enhance
clinical utility depending on context-specific prevalence and decision
thresholds.

While the LGBM-48h model demonstrated excellent discrimination
and calibration across multiple settings, it is important to emphasize that
predictive accuracy does not necessarily translate into clinical benefit. Risk
prediction is only the first step in a broader chain of clinical decision-
making. For a true improvement in patient outcomes, such as reduced ICU
mortality or improved resource allocation, further steps are required,
including seamless integration into clinicalworkflows, real-time availability,
and appropriate clinical response to predictions. Future prospective
implementation studies are needed to determine whether the use of
dynamic mortality risk predictions can directly influence treatment strate-
gies and improve outcomes in ICU settings.

Despite these promising results, several limitations of our study should
be acknowledged: First, the LGBM-48 h algorithmwas trained and tested at
a single hospital. Although the data was collected from patients across
multiple ICUs and disease groups, external datasets are needed to validate
our findings. Second, our study utilized a retrospective design. Prospective
implementation studies are necessary to demonstrate the feasibility and
clinical utility of our algorithm. Third, our stringent exclusion criteria led to
the omission ofmore than one-third of all patient stays and 16.7%of all stay
days. Additional data is required to assess the performance in a more
inclusive patient population. Lastly, variable selection was based on clinical
expertise and did not include interventions. Incorporating feature selection
methodologies and including interventions may further enhance the per-
formance of our model.

Finally, although our model shows strong predictive performance, the
impact on clinical outcomes such as reduced mortality or improved care
processes has not yet been demonstrated. The present study does not
evaluate how risk predictions influence clinical decisions or patient trajec-
tories. Therefore, future prospective implementation studies are required to
assess the real-worldutility and effectiveness of theLGBM-48 halgorithm in
improving ICU outcomes.

Conclusion
In conclusion, the LGBM-48h algorithm provides a dynamic, clinically
applicable framework for 48-hour ICU mortality risk prediction. By
establishing mortality risk-based categories and enhancing interpret-
ability through the provision of longitudinal changes in SHAP values, the
framework may help to identify changes in clinical status that affect

outcomes and support care decisions. Further real-time and external
validation are needed to establish the LGBM-48h algorithm as a tool for
supporting clinical decision-making and resource management in ICU
settings.

Data availability
The datasets generated and/or analyzed during the current study are not
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the corresponding author, subject to approval by the relevant institutional
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a data use agreement that prohibits re-identification and limits usage to the
approved scientific purpose. Source data for all main figures are provided as
Supplementary Data in Excel format.

Code availability
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made available upon reasonable request for academic, non-commercial use.
Requests should be directed to the corresponding author andwill be subject
to approval by the relevant institutional committees and in accordance with
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