Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Updating risk and protective factors for dementia in older adults

Abstract

Promoting good cognitive functioning and preventing dementia in late life are priority actions for many countries with rapidly ageing populations. Although epidemiological research has established some modifiable factors that influence the risk of cognitive impairment (such as low education level, hearing impairment, smoking, obesity, physical inactivity or social isolation), a growing literature suggests further risk and protective factors that might affect cognitive functioning and dementia. In this Review, we examine the potential effects of these less well-established factors, and discuss promotion and prevention strategies at the population and individual levels that might reduce dementia risk in the long term. Reducing financial struggles, neighbourhood deprivation and workplace strain and promoting leisure activities, emotional wellbeing and healthy nutritional styles have emerged as factors that might help to prevent dementia and could be included among priority actions for healthy cognitive ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Less well-established dementia risk and protective factors with meta-analytic evidence.

Similar content being viewed by others

References

  1. Robillard, A. Clinical diagnosis of dementia. Alzheimers Dement. 3, 292–298 (2007).

    Article  PubMed  Google Scholar 

  2. Commenges, D., Letenneur, L., Joly, P., Alioum, A. & Dartigues, J. F. Modelling age-specific risk: application to dementia. Stat. Med. 17, 1973–1988 (1998).

    Article  PubMed  Google Scholar 

  3. Amieva, H. et al. Compensatory mechanisms in higher-educated subjects with Alzheimer’s disease: a study of 20 years of cognitive decline. Brain 137, 1167–1175 (2014).

    Article  PubMed  Google Scholar 

  4. Gonzales, M. M. et al. Biological aging processes underlying cognitive decline and neurodegenerative disease. J. Clin. Invest. 132, e158453 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pospich, S. & Raunser, S. The molecular basis of Alzheimer’s plaques. Science 358, 45–46 (2017).

    Article  PubMed  Google Scholar 

  6. Kaufman, A. S. & Horn, J. L. Age changes on tests of fluid and crystallized ability for women and men on the Kaufman Adolescent and Adult Intelligence Test (KAIT) at ages 17–94 years. Arch. Clin. Neuropsychol. 11, 97–121 (1996).

    PubMed  Google Scholar 

  7. Petersen, R. C. et al. Mild cognitive impairment: a concept in evolution. J. Intern. Med. 275, 214–228 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Butler, R. N. Population aging and health. BMJ 315, 1082–1084 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Anderson, N. D. & Craik, F. I. 50 years of cognitive aging theory. J. Gerontol. B 72, 1–6 (2017).

    Article  Google Scholar 

  10. Livingston, G. et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 404, 572–628 (2024).

    Article  PubMed  Google Scholar 

  11. Baumgart, M. et al. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement. 11, 718–726 (2015).

    Article  PubMed  Google Scholar 

  12. Deckers, K. et al. Target risk factors for dementia prevention: a systematic review and Delphi consensus study on the evidence from observational studies. Int. J. Geriatr. Psychiatry 30, 234–246 (2015).

    Article  PubMed  Google Scholar 

  13. Rosenau, C. et al. Umbrella review and Delphi study on modifiable factors for dementia risk reduction. Alzheimers Dement. 20, 2223–2239 (2024).

    Article  PubMed  Google Scholar 

  14. Xu, W., Tan, C. C., Zou, J. J., Cao, X. P. & Tan, L. Sleep problems and risk of all-cause cognitive decline or dementia: an updated systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 91, 236–244 (2020).

    Article  PubMed  Google Scholar 

  15. van den Brink, A. C., Brouwer-Brolsma, E. M., Berendsen, A. A. M. & van de Rest, O. The Mediterranean dietary approaches to stop hypertension (DASH), and Mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer’s disease — a review. Adv. Nutr. 10, 1040–1065 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sajeev, G. et al. Late-life cognitive activity and dementia: a systematic review and bias analysis. Epidemiology 27, 732–742 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Risk reduction of cognitive decline and dementia: WHO guidelines. World Health Organization https://www.who.int/publications/i/item/9789241550543 (2019).

  18. Martikainen, P., Bartley, M. & Lahelma, E. Psychosocial determinants of health in social epidemiology. Int. J. Epidemiol. 31, 1091–1093 (2002).

    Article  PubMed  Google Scholar 

  19. Marden, J. R., Tchetgen Tchetgen, E. J., Kawachi, I. & Glymour, M. M. Contribution of socioeconomic status at 3 life-course periods to late-life memory function and decline: early and late predictors of dementia risk. Am. J. Epidemiol. 186, 805–814 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koster, A. et al. Socioeconomic differences in cognitive decline and the role of biomedical factors. Ann. Epidemiol. 15, 564–571 (2005).

    Article  PubMed  Google Scholar 

  21. Glei, D. A., Lee, C. & Weinstein, M. Income, wealth, and Black–white disparities in cognition. Soc. Sci. Med. 310, 115298 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Samuel, L. J. et al. Socioeconomic disparities in six-year incident dementia in a nationally representative cohort of U.S. older adults: an examination of financial resources. BMC Geriatr. 20, 156 (2020).

    Article  Google Scholar 

  23. Deckers, K. et al. Modifiable risk factors explain socioeconomic inequalities in dementia risk: evidence from a population-based prospective cohort study. J. Alzheimers Dis. 71, 549–557 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Trani, J. F., Moodley, J., Maw, M. T. T. & Babulal, G. M. Association of multidimensional poverty with dementia in adults aged 50 years or older in South Africa. JAMA Netw. Open. 5, e224160 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Trani, J. F., Zhu, Y., Park, S. & Babulal, G. M. Is multidimensional poverty associated to dementia risk? The case of older adults in Pakistan. Innov. Aging 8, igae007 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pan, L., Gao, B., Zhu, J. & Guo, J. Negative wealth shock and cognitive decline and dementia in middle-aged and older US adults. JAMA Netw. Open. 6, e2349258 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hofbauer, L. M. & Rodriguez, F. S. Association of social deprivation with cognitive status and decline in older adults. Int. J. Geriatr. Psychiatry 36, 1085–1094 (2021).

    Article  PubMed  Google Scholar 

  28. Hofbauer, L. M. & Rodriguez, F. S. The role of social deprivation and depression in dementia risk: findings from the longitudinal survey of health, ageing and retirement in Europe. Epidemiol. Psychiatr. Sci. 32, e10 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hofbauer, L. M. & Rodriguez, F. S. The mediating role of lifestyle activities in the association between social deprivation and cognition in older adulthood: results from the Health and Retirement (HRS) study. J. Aging Health https://doi.org/10.1177/08982643241273988 (2024).

  30. Rohr, S. et al. Socioeconomic inequalities in cognitive functioning only to a small extent attributable to modifiable health and lifestyle factors in individuals without dementia. J. Alzheimers Dis. 90, 1523–1534 (2022).

    Article  PubMed  Google Scholar 

  31. Beydoun, M. A. et al. Pathways explaining racial/ethnic and socio-economic disparities in incident all-cause dementia among older U.S. adults across income groups. Transl. Psychiatry 12, 478 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, A. Y. et al. Socioeconomic status and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 39 prospective studies. J. Prev. Alzheimers Dis. 10, 83–94 (2023).

    Article  PubMed  Google Scholar 

  33. Besser, L. M., McDonald, N. C., Song, Y., Kukull, W. A. & Rodriguez, D. A. Neighborhood environment and cognition in older adults: a systematic review. Am. J. Prev. Med. 53, 241–251 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Song, Y., Liu, Y., Bai, X. & Yu, H. Effects of neighborhood built environment on cognitive function in older adults: a systematic review. BMC Geriatr. 24, 194 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhao, Y. L. et al. Environmental factors and risks of cognitive impairment and dementia: a systematic review and meta-analysis. Ageing Res. Rev. 72, 101504 (2021).

    Article  PubMed  Google Scholar 

  36. Lai, K. Y., Kumari, S., Webster, C., Gallacher, J. E. J. & Sarkar, C. Neighbourhood residential density, urbanicity and incident dementia and Alzheimer’s disease: a 12-year prospective cohort study from the UK Biobank. Env. Res. 226, 115627 (2023).

    Article  Google Scholar 

  37. Borck, R. & Schrauth, P. Population density and urban air quality. Reg. Sci. Urban. Econ. 86, 103596 (2021).

    Article  Google Scholar 

  38. Chen, X., Lee, C. & Huang, H. Neighborhood built environment associated with cognition and dementia risk among older adults: a systematic literature review. Soc. Sci. Med. 292, 114560 (2022).

    Article  PubMed  Google Scholar 

  39. Kind, A. J. et al. Neighborhood socioeconomic disadvantage and 30-day rehospitalization: a retrospective cohort study. Ann. Intern. Med. 161, 765–774 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Baranyi, G. et al. Neighbourhood deprivation across eight decades and late-life cognitive function in the Lothian Birth Cohort 1936: a life-course study. Age Ageing 52, afad056 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zuelsdorff, M. et al. The area deprivation index: a novel tool for harmonizable risk assessment in Alzheimer’s disease research. Alzheimers Dement. 6, e12039 (2020).

    Google Scholar 

  42. Dintica, C. S., Bahorik, A., Xia, F., Kind, A. & Yaffe, K. Dementia risk and disadvantaged neighborhoods. JAMA Neurol. 80, 903–909 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Powell, W. R. et al. Association of neighborhood-level disadvantage with alzheimer disease neuropathology. JAMA Netw. Open. 3, e207559 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wu, Y. T. et al. Community environment, cognitive impairment and dementia in later life: results from the Cognitive Function and Ageing Study. Age Ageing 44, 1005–1011 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Astell-Burt, T., Navakatikyan, M. A. & Feng, X. Why might urban tree canopy reduce dementia risk? A causal mediation analysis of 109,688 adults with 11 years of hospital and mortality records. Health Place. 82, 103028 (2023).

    Article  PubMed  Google Scholar 

  46. Zagnoli, F. et al. Is greenness associated with dementia? A systematic review and dose–response meta-analysis. Curr. Environ. Health Rep. 9, 574–590 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Slawsky, E. D. et al. Neighborhood greenspace exposure as a protective factor in dementia risk among U.S. adults 75 years or older: a cohort study. Env. Health 21, 14 (2022).

    Article  Google Scholar 

  48. Huang, L. Y. et al. Association of occupational factors and dementia or cognitive impairment: a systematic review and meta-analysis. J. Alzheimers Dis. 78, 217–227 (2020).

    Article  PubMed  Google Scholar 

  49. Hayden, K. M. et al. Occupational exposure to pesticides increases the risk of incident AD: the Cache County study. Neurology 74, 1524–1530 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Then, F. S. et al. Systematic review of the effect of the psychosocial working environment on cognition and dementia. Occup. Env. Med. 71, 358–365 (2014).

    Article  Google Scholar 

  51. Then, F. S. et al. Which types of mental work demands may be associated with reduced risk of dementia? Alzheimers Dement. 13, 431–440 (2017).

    Article  PubMed  Google Scholar 

  52. Edwin, T. H. et al. Trajectories of occupational cognitive demands and risk of mild cognitive impairment and dementia in later life: the HUNT4 70+ study. Neurology 102, e209353 (2024).

    Article  PubMed  Google Scholar 

  53. Kivimaki, M. et al. Cognitive stimulation in the workplace, plasma proteins, and risk of dementia: three analyses of population cohort studies. BMJ 374, n1804 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nilsen, C. et al. Job strain and trajectories of cognitive change before and after retirement. J. Gerontol. B 76, 1313–1322 (2021).

    Article  Google Scholar 

  55. Agbenyikey, W. et al. Job strain and cognitive decline: a prospective study of the framingham offspring cohort. Int. J. Occup. Env. Med. 6, 79–94 (2015).

    Article  Google Scholar 

  56. Sindi, S. et al. Midlife work-related stress increases dementia risk in later life: the CAIDE 30-year study. J. Gerontol. B 72, 1044–1053 (2017).

    Google Scholar 

  57. Crowe, M., Andel, R., Pedersen, N. L. & Gatz, M. Do work-related stress and reactivity to stress predict dementia more than 30 years later? Alzheimer Dis. Assoc. Disord. 21, 205–209 (2007).

    Article  PubMed  Google Scholar 

  58. Ling, Y. et al. The association of night shift work with the risk of all-cause dementia and Alzheimer’s disease: a longitudinal study of 245,570 UK Biobank participants. J. Neurol. 270, 3499–3510 (2023).

    Article  PubMed  Google Scholar 

  59. Bokenberger, K. et al. Shift work and risk of incident dementia: a study of two population-based cohorts. Eur. J. Epidemiol. 33, 977–987 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bannert, M. Managing cognitive load — recent trends in cognitive load theory. Learn. Instr. 12, 139–146 (2002).

    Article  Google Scholar 

  61. Matsumura, T. et al. Hobby engagement and risk of disabling dementia. J. Epidemiol. 33, 456–463 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wu, Z. et al. Lifestyle enrichment in later life and its association with dementia risk. JAMA Netw. Open. 6, e2323690 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fancourt, D., Steptoe, A. & Cadar, D. Cultural engagement and cognitive reserve: museum attendance and dementia incidence over a 10-year period. Br. J. Psychiatry 213, 661–663 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sugita, A., Ling, L., Tsuji, T., Kondo, K. & Kawachi, I. Cultural engagement and incidence of cognitive impairment: a 6-year longitudinal follow-up of the Japan Gerontological Evaluation Study (JAGES). J. Epidemiol. 31, 545–553 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Arafa, A. et al. Playing a musical instrument and the risk of dementia among older adults: a systematic review and meta-analysis of prospective cohort studies. BMC Neurol. 22, 395 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Walsh, S., Causer, R. & Brayne, C. Does playing a musical instrument reduce the incidence of cognitive impairment and dementia? A systematic review and meta-analysis. Aging Ment. Health 25, 593–601 (2021).

    Article  PubMed  Google Scholar 

  67. Balbag, M. A., Pedersen, N. L. & Gatz, M. Playing a musical instrument as a protective factor against dementia and cognitive impairment: a population‐based twin study. Int. J. Alzheimers Dis. 2014, 836748 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Arafa, A., Eshak, E. S., Shirai, K., Iso, H. & Kondo, K. Engaging in musical activities and the risk of dementia in older adults: a longitudinal study from the Japan gerontological evaluation study. Geriatr. Gerontol. Int. 21, 451–457 (2021).

    Article  PubMed  Google Scholar 

  69. Claudino, P. A. et al. Consumption of ultra-processed foods and risk for Alzheimer’s disease: a systematic review. Front. Nutr. 10, 1288749 (2023).

    Article  PubMed  Google Scholar 

  70. Henney, A. E. et al. High intake of ultra-processed food is associated with dementia in adults: a systematic review and meta-analysis of observational studies. J. Neurol. 271, 198–210 (2024).

    Article  PubMed  Google Scholar 

  71. Zhang, H., Hardie, L., Bawajeeh, A. O. & Cade, J. Meat consumption, cognitive function and disorders: a systematic review with narrative synthesis and meta-analysis. Nutrients 12, 1528 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang, H. et al. Meat consumption and risk of incident dementia: cohort study of 493,888 UK Biobank participants. Am. J. Clin. Nutr. 114, 175–184 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Aljahdali, A. A., Rossato, S. L. & Baylin, A. Ultra-processed foods consumption among a USA representative sample of middle-older adults: a cross-sectional analysis. Br. J. Nutr. 131, 1461–1472 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhou, Y. et al. Fruit and vegetable consumption and cognitive disorders in older adults: a meta-analysis of observational studies. Front. Nutr. 9, 871061 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jiang, X. et al. Increased consumption of fruit and vegetables is related to a reduced risk of cognitive impairment and dementia: meta-analysis. Front. Aging Neurosci. 9, 18 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kimura, Y. et al. Long-term association of vegetable and fruit intake with risk of dementia in Japanese older adults: the Hisayama study. BMC Geriatr. 22, 257 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pase, M. P. et al. Sugar- and artificially sweetened beverages and the risks of incident stroke and dementia: a prospective cohort study. Stroke 48, 1139–1146 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Miao, H., Chen, K., Yan, X. & Chen, F. Sugar in beverage and the risk of incident dementia, Alzheimer’s disease and stroke: a prospective cohort study. J. Prev. Alzheimers Dis. 8, 188–193 (2021).

    Article  PubMed  Google Scholar 

  79. Li, F. et al. Tea, coffee, and caffeine intake and risk of dementia and Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. Food Funct. 15, 8330–8344 (2024).

    Article  PubMed  Google Scholar 

  80. David, S. R., Hussain, R. D. Z., Zulkipli, I. N. & Rajabalaya, R. Drinking coffee may reduce chances of developing Alzheimer’s disease: systematic literature review and meta-analysis. Int. J. Food Stud. 11, 386–401 (2022).

    Article  Google Scholar 

  81. Pohanka, M. Role of caffeine in the age-related neurodegenerative diseases: a review. Mini Rev. Med. Chem. 22, 2726–2735 (2022).

    Article  PubMed  Google Scholar 

  82. Zhang, R. C. & Madan, C. R. How does caffeine influence memory? Drug, experimental, and demographic factors. Neurosci. Biobehav. Rev. 131, 525–538 (2021).

    Article  PubMed  Google Scholar 

  83. Consedine, N. S. & Moskowitz, J. T. The role of discrete emotions in health outcomes: a critical review. Appl. Prev. Psychol. 12, 59–75 (2007).

    Article  Google Scholar 

  84. Brosschot, J. F., Gerin, W. & Thayer, J. F. The perseverative cognition hypothesis: a review of worry, prolonged stress-related physiological activation, and health. J. Psychosom. Res. 60, 113–124 (2006).

    Article  PubMed  Google Scholar 

  85. Hittner, E. F. et al. Positive affect is associated with less memory decline: evidence from a 9-year longitudinal study. Psychol. Sci. 31, 1386–1395 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhu, X. et al. Satisfaction with life and risk of dementia: findings from the Korean Longitudinal Study of Aging. J. Gerontol. B 77, 1831–1840 (2022).

    Article  Google Scholar 

  87. Murata, C., Takeda, T., Suzuki, K. & Kondo, K. Positive affect and incident dementia among the old. J. Epidemiol. 2, 118–124 (2016).

    Google Scholar 

  88. Bell, G., Singham, T., Saunders, R., John, A. & Stott, J. Positive psychological constructs and association with reduced risk of mild cognitive impairment and dementia in older adults: a systematic review and meta-analysis. Ageing Res. Rev. 77, 101594 (2022).

    Article  PubMed  Google Scholar 

  89. Sutin, D. A. R. et al. Sense of meaning and purpose in life and risk of incident dementia: new data and meta-analysis. Arch. Gerontol. Geriatr. 105, 104847 (2023).

    Article  PubMed  Google Scholar 

  90. Zhu, X. et al. The association between happiness and cognitive function in the UK Biobank. Curr. Psychol. 43, 1816–1825 (2024).

    Article  PubMed  Google Scholar 

  91. Berk, L., van Boxtel, M., Kohler, S. & van Os, J. Positive affect and cognitive decline: a 12-year follow-up of the Maastricht Aging Study. Int. J. Geriatr. Psychiatry 32, 1305–1311 (2017).

    Article  PubMed  Google Scholar 

  92. Zhang, X., Zong, B., Zhao, W. & Li, L. Effects of mind-body exercise on brain structure and function: a systematic review on MRI studies. Brain Sci. 11, 205 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lopes, S. et al. Meditation and cognitive outcomes: a longitudinal analysis using data from the Health and Retirement Study 2000–2016. Mindfulness 14, 1705–1717 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bhattacharyya, K. K., Gupta, D. D., Schwartz, S., Molinari, V. & Fauth, E. B. Protective roles of meditation practice and self-esteem on cognitive functions over time: findings from the Midlife in the United States study. Psychogeriatrics 24, 94–107 (2024).

    Article  PubMed  Google Scholar 

  95. Zhao, X., Liu, D. & Wang, J. Association of tai chi and square dance with cognitive function in Chinese older adults. Healthcare https://doi.org/10.3390/healthcare12181878 (2024).

  96. Man, D. W., Tsang, W. W. & Hui-Chan, C. W. Do older t’ai chi practitioners have better attention and memory function? J. Altern. Complement. Med. 16, 1259–1264 (2010).

    Article  PubMed  Google Scholar 

  97. Korthauer, L. E. et al. Negative affect is associated with higher risk of incident cognitive impairment in nondepressed postmenopausal women. J. Gerontol. A 73, 506–512 (2018).

    Article  Google Scholar 

  98. Håkansson, K., Soininen, H., Winblad, B. & Kivipelto, M. Feelings of hopelessness in midlife and cognitive health in later life: a prospective population-based cohort study. PLoS ONE 10, e0140261 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Marchant, N. L. et al. Repetitive negative thinking is associated with amyloid, tau, and cognitive decline. Alzheimers Dement. 16, 1054–1064 (2020).

    Article  PubMed  Google Scholar 

  100. Stuart, K. E. & Padgett, C. A systematic review of the association between psychological stress and dementia risk in humans. J. Alzheimers Dis. 78, 335–352 (2020).

    Article  PubMed  Google Scholar 

  101. Franks, K. H. et al. Association of self-reported psychological stress with cognitive decline: a systematic review. Neuropsychol. Rev. 33, 856–870 (2023).

    Article  PubMed  Google Scholar 

  102. Johansson, L. et al. Midlife psychological stress and risk of dementia: a 35-year longitudinal population study. Brain 133, 2217–2224 (2010).

    Article  PubMed  Google Scholar 

  103. Sundstrom, A., Ronnlund, M., Adolfsson, R. & Nilsson, L. G. Stressful life events are not associated with the development of dementia. Int. Psychogeriatr. 26, 147–154 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Luo, J., Beam, C. R. & Gatz, M. Is stress an overlooked risk factor for dementia? A systematic review from a lifespan developmental perspective. Prev. Sci. 24, 936–949 (2023).

    Article  PubMed  Google Scholar 

  105. International Classification of Diseases 11th revision (ICD-11). World Health Organization https://icd.who.int/en (2018).

  106. Diniz, B. S. et al. History of bipolar disorder and the risk of dementia: a systematic review and meta-analysis. Am. J. Geriatr. Psychiatry 25, 357–362 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kuring, J., Mathias, J. & Ward, L. Risk of dementia in persons who have previously experienced clinically-significant depression, anxiety, or PTSD: a systematic review and meta-analysis. J. Affect. Disord. 274, 247–261 (2020).

    Article  PubMed  Google Scholar 

  108. Stafford, J., Chung, W. T., Sommerlad, A., Kirkbride, J. B. & Howard, R. Psychiatric disorders and risk of subsequent dementia: systematic review and meta-analysis of longitudinal studies. Int. J. Geriatr. Psychiatry https://doi.org/10.1002/gps.5711 (2022).

  109. El Miniawi, S., Orgeta, V. & Stafford, J. Non-affective psychotic disorders and risk of dementia: a systematic review and meta-analysis. Psychol. Med. 52, 3323–3335 (2022).

    Article  Google Scholar 

  110. van der Linde, R. M., Dening, T., Matthews, F. E. & Brayne, C. Grouping of behavioural and psychological symptoms of dementia. Int. J. Geriatr. Psychiatry 29, 562–568 (2014).

    Article  PubMed  Google Scholar 

  111. Walsh, S. et al. Population-level interventions for the primary prevention of dementia: a complex evidence review. eClinicalMedicine 70, 102538 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Daniels, S. et al. Introducing nature at the work floor: a nature-based intervention to reduce stress and improve cognitive performance. Int. J. Hyg. Env. Health 240, 113884 (2022).

    Article  Google Scholar 

  113. Sia, A. et al. Nature-based activities improve the well-being of older adults. Sci. Rep. 10, 18178 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Çetinkaya, F., Asiret, G. D., Direk, F. & Özkanli, N. N. The effect of ceramic painting on the life satisfaction and cognitive status of older adults residing in a nursing home. Top. Geriatr. Rehabil. 35, 108–112 (2019).

    Article  Google Scholar 

  115. Noice, H. & Noice, T. An arts intervention for older adults living in subsidized retirement homes. Neuropsychol. Dev. Cogn. B 16, 56–79 (2009).

    Article  Google Scholar 

  116. Seinfeld, S., Figueroa, H., Ortiz-Gil, J. & Sanchez-Vives, M. V. Effects of music learning and piano practice on cognitive function, mood and quality of life in older adults. Front. Psychol. 4, 810 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bugos, J. A. & Wang, Y. Piano training enhances executive functions and psychosocial outcomes in aging: results of a randomized controlled trial. J. Gerontol. B 77, 1625–1636 (2022).

    Article  Google Scholar 

  118. Guo, H. et al. Systematic evaluation and meta-analysis of the effects of major dietary patterns on cognitive function in healthy adults. Nutr. Neurosci. 28, 1–17 (2025).

    Article  PubMed  Google Scholar 

  119. Khor, K. L., Kumarasuriar, V., Tan, K. W., Ooi, P. B. & Chia, Y. C. Effects of fruit and vegetable intake on memory and attention: a systematic review of randomized controlled trials. Syst. Rev. 13, 151 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Carrillo, J. A., Arcusa, R., Zafrilla, M. P. & Marhuenda, J. Effects of fruit and vegetable-based nutraceutical on cognitive function in a healthy population: placebo-controlled, double-blind, and randomized clinical trial. Antioxidants 10, 116 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chan, J. S. Y., Deng, K., Wu, J. & Yan, J. H. Effects of meditation and mind-body exercises on older adults’ cognitive performance: a meta-analysis. Gerontologist 59, e782–e790 (2019).

    Article  PubMed  Google Scholar 

  122. Seok, J. W., Kim, G. & Kim, J. U. Comparative efficacy of seven nonpharmacological interventions on global cognition in older adults with and without mild cognitive impairment: a network meta-analysis of randomized controlled trials. Sci. Rep. 14, 8402 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhu, K. et al. Immersive virtual reality-based cognitive intervention for the improvement of cognitive function, depression, and perceived stress in older adults with mild cognitive impairment and mild dementia: pilot pre-post study. JMIR Serious Games 10, e32117 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. AbdElsalam, R. M. M. & ElKholy, S. E. A. Pilot testing cognitive stimulation intervention on older adults’ cognitive function, cognitive self-efficacy, and sense of happiness. Geriatr. Nurs. 56, 191–203 (2024).

    Article  PubMed  Google Scholar 

  125. Kivipelto, M. et al. The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER): study design and progress. Alzheimers Dement. 9, 657–665 (2013).

    Article  PubMed  Google Scholar 

  126. Hafdi, M., Hoevenaar-Blom, M. P. & Richard, E. Multi-domain interventions for the prevention of dementia and cognitive decline. Cochrane Database Syst. Rev. 11, CD013572 (2021).

    PubMed  Google Scholar 

  127. Walhovd, K. B. et al. Education and income show heterogeneous relationships to lifespan brain and cognitive differences across European and U.S. cohorts. Cereb. Cortex 32, 839–854 (2022).

    Article  PubMed  Google Scholar 

  128. Rodriguez, F. S. et al. Do high mental demands at work protect cognitive health in old age via hippocampal volume? Results from a community sample. Front. Aging Neurosci. 12, 622321 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Last, N., Tufts, E. & Auger, L. E. The effects of meditation on grey matter atrophy and neurodegeneration: a systematic review. J. Alzheimers Dis. 56, 275–286 (2017).

    Article  PubMed  Google Scholar 

  130. Krause-Sorio, B. et al. Yoga prevents gray matter atrophy in women at risk for Alzheimer’s disease: a randomized controlled trial. J. Alzheimers Dis. 87, 569–581 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ibrahim, M. et al. Kundalini yoga intervention increases hippocampal volume in older adults: a pilot randomized controlled trial. Int. J. Yoga 15, 158–162 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Shen, X. et al. Resting-state connectivity and its association with cognitive performance, educational attainment, and household income in the UK biobank. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 878–886 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Sevinc, G. et al. Mindfulness training improves cognition and strengthens intrinsic connectivity between the hippocampus and posteromedial cortex in healthy older adults. Front. Aging Neurosci. 13, 702796 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Moisseinen, N. et al. Choir singing is associated with enhanced structural connectivity across the adult lifespan. Hum. Brain Mapp. 45, e26705 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Liebscher, M. et al. Short communication: lifetime musical activity and resting-state functional connectivity in cognitive networks. PLoS ONE 19, e0299939 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Tan, C. H. & Tan, J. J. X. Low neighborhood deprivation buffers against hippocampal neurodegeneration, white matter hyperintensities, and poorer cognition. Geroscience 45, 2027–2036 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Pan, K. et al. Association of psychosocial work stress with cognitive decline and brain structure differences. Innov. Aging 1, 432–433 (2017).

    Article  PubMed Central  Google Scholar 

  138. Song, Y. et al. Impact of sleep disturbance in shift workers on hippocampal volume and psychomotor speed. Sleep 47, zsae100 (2024).

    Article  PubMed  Google Scholar 

  139. Karim, H. T. et al. Aging faster: worry and rumination in late life are associated with greater brain age. Neurobiol. Aging 101, 13–21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rodriguez, F. S. et al. Association between psychosocial stress and brain aging: results of the population-based cohort study of health in pomerania (SHIP). J. Neuropsychiatry Clin. Neurosci. 36, 110–117 (2024).

    Article  PubMed  Google Scholar 

  141. Hunt, J. F. V. et al. Association of neighborhood context, cognitive decline, and cortical change in an unimpaired cohort. Neurology 96, e2500–e2512 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hamilton, C. A., Matthews, F. E., Erskine, D., Attems, J. & Thomas, A. J. Neurodegenerative brain changes are associated with area deprivation in the United Kingdom: findings from the Brains for Dementia Research study. Acta Neuropathol. Commun. 9, 198 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Barter, J. D. & Foster, T. C. Aging in the brain: new roles of epigenetics in cognitive decline. Neuroscientist 24, 516–525 (2018).

    Article  PubMed  Google Scholar 

  144. Xu, R. et al. Surrounding greenness and biological aging based on DNA methylation: a twin and family study in Australia. Env. Health Perspect. 129, 87007 (2021).

    Article  Google Scholar 

  145. Kim, K. et al. Inequalities in urban greenness and epigenetic aging: different associations by race and neighborhood socioeconomic status. Sci. Adv. 9, eadf8140 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Schmitz, C., Keller, E., Freuding, T., Silny, J. & Korr, H. 50-Hz magnetic field exposure influences DNA repair and mitochondrial DNA synthesis of distinct cell types in brain and kidney of adult mice. Acta Neuropathol. 107, 257–264 (2004).

    Article  PubMed  Google Scholar 

  147. Kim, E. J., Pellman, B. & Kim, J. J. Stress effects on the hippocampus: a critical review. Learn. Mem. 22, 411–416 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kuga, N. & Sasaki, T. Memory-related neurophysiological mechanisms in the hippocampus underlying stress susceptibility. Neurosci. Res. 211, 3–9 (2025).

    Article  PubMed  Google Scholar 

  149. Catale, C. et al. Exposure to different early-life stress experiences results in differentially altered DNA methylation in the brain and immune system. Neurobiol. Stress. 13, 100249 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Yadav, B. et al. Implications of organophosphate pesticides on brain cells and their contribution toward progression of Alzheimer’s disease. J. Biochem. Mol. Toxicol. 38, e23660 (2024).

    Article  PubMed  Google Scholar 

  151. Ng, T. K. S. et al. Mindfulness improves inflammatory biomarker levels in older adults with mild cognitive impairment: a randomized controlled trial. Transl. Psychiatry 10, 21 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Pascoe, M. C., Thompson, D. R. & Ski, C. F. Meditation and endocrine health and wellbeing. Trends Endocrinol. Metab. 31, 469–477 (2020).

    Article  PubMed  Google Scholar 

  153. Seeman, T. E. & Crimmins, E. Social environment effects on health and aging: integrating epidemiologic and demographic approaches and perspectives. Ann. NY Acad. Sci. 954, 88–117 (2001).

    Article  PubMed  Google Scholar 

  154. Nicosia, N. & Datar, A. Neighborhood environments and physical activity: a longitudinal study of adolescents in a natural experiment. Am. J. Prev. Med. 54, 671–678 (2018).

    Article  PubMed  Google Scholar 

  155. Walsh, S. et al. What would a population‐level approach to dementia risk reduction look like, and how would it work? Alzheimers Dement. 19, 3203–3209 (2023).

    Article  PubMed  Google Scholar 

  156. Horstkotter, D., Deckers, K. & Kohler, S. Primary prevention of dementia: an ethical review. J. Alzheimers Dis. 79, 467–476 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kendler, K. S., Myers, J. & Prescott, C. A. The etiology of phobias: an evaluation of the stress-diathesis model. Arch. Gen. Psychiatry 59, 242–248 (2002).

    Article  PubMed  Google Scholar 

  158. Wang, H. X., Wahlberg, M., Karp, A., Winblad, B. & Fratiglioni, L. Psychosocial stress at work is associated with increased dementia risk in late life. Alzheimers Dement. 8, 114–120 (2012).

    Article  PubMed  Google Scholar 

  159. Sutin, A. R., Stephan, Y. & Terracciano, A. Psychological well-being and risk of dementia. Int. J. Geriatr. Psychiatry 33, 743–747 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Nucci, D. et al. Association between Mediterranean diet and dementia and Alzheimer disease: a systematic review with meta-analysis. Aging Clin. Exp. Res. 36, 77 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.S.R. and L.M.H. researched data for the article. All authors contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Francisca S. Rodriguez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Ian M. McDonough and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, F.S., Hofbauer, L.M., Reppermund, S. et al. Updating risk and protective factors for dementia in older adults. Nat Rev Psychol 4, 322–335 (2025). https://doi.org/10.1038/s44159-025-00438-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44159-025-00438-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing