Abstract
Human navigation relies on multiple levels of spatial knowledge, including place knowledge, route knowledge (sequences of places) and map-like survey knowledge, which encodes straight-line spatial relationships among places. Survey knowledge is often referred to as a cognitive map, a concept proposed nearly 80 years ago. In this Review, I examine the situations in which humans seem to navigate using cognitive maps, focusing on the role of environmental variables and cognitive processes. I begin by reviewing studies in vista environments, where clear straight-line spatial relations facilitate the formation of a cognitive map. Then I review research on large-scale environments, highlighting reliance on path integration and the influence of path complexity. Throughout, I differentiate between cognitive maps focused solely on place location and those that incorporate place orientation. Whereas straight-line pointing based on verbally instructed orientation requires only a cognitive map of place location, pointing from view-based orientations might require cognitive maps that encode place orientation. Future research should investigate the conditions that foster each type of cognitive map, as well as those under which cognitive maps do not form.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$59.00 per year
only $4.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Siegel, A. W. & White, S. H. The development of spatial representations of large-scale environments. Adv. Child. Dev. Behav. 10, 9–55 (1975).
McNamara, T. P. & Qi, Y. in Learning and Memory: A Comprehensive Reference 2nd edn (ed. Byrne, J. H.) 337–355 (Academic, 2017); updated as Reference Module in Neuroscience and Biobehavioral Psychology https://www.sciencedirect.com/science/article/abs/pii/B9780443157547000225 (2024). A comprehensive review of research on human spatial memory and navigation.
Jeffery, K. J., Cheng, K., Newcombe, N. S., Bingman, V. P. & Menzel, R. Unpacking the navigation toolbox: insights from comparative cognition. Proc. Biol. Sci. 291, 20231304 (2024).
Trullier, O., Wiener, S. I., Berthoz, A. & Meyer, J.-A. Biologically based artificial navigation systems: review and prospects. Prog. Neurobiol. 51, 483–544 (1997).
Warren, W. H. Non-Euclidean navigation. J. Exp. Biol. 222, jeb187971 (2019). A review of evidence supporting the cognitive graph hypothesis and against the metric cognitive map hypothesis.
Ekstrom, A. D. & Hill, P. F. Spatial navigation and memory: a review of the similarities and differences relevant to brain models and age. Neuron 111, 1037–1049 (2023).
Thorndyke, P. W. & Hayes-Roth, B. Differences in spatial knowledge acquired from maps and navigation. Cogn. Psychol. 14, 560–589 (1982).
Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189 (1948). The article that proposed the concept of cognitive maps.
Epstein, R. A., Patai, E. Z., Julian, J. B. & Spiers, H. J. The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20, 1504–1513 (2017).
Peer, M., Brunec, I. K., Newcombe, N. S. & Epstein, R. A. Structuring knowledge with cognitive maps and cognitive graphs. Trends Cogn. Sci. 25, 37–54 (2021).
Fernandez-Velasco, P. & Spiers, H. J. Wayfinding across ocean and tundra: what traditional cultures teach us about navigation. Trends Cogn. Sci. 28, 56–71 (2024).
Tversky, B. Distortions in memory for maps. Cogn. Psychol. 13, 407–433 (1981).
Stevens, A. & Coupe, P. Distortions in judged spatial relations. Cogn. Psychol. 10, 422–437 (1978).
McNamara, T. P. Mental representations of spatial relations. Cogn. Psychol. 18, 87–121 (1986).
McNamara, T. P. & Diwadkar, V. A. Symmetry and asymmetry of human spatial memory. Cogn. Psychol. 34, 160–190 (1997).
Tversky, B. Cognitive maps, cognitive collages, and spatial mental models. In European Conference on Spatial Information Theory (eds. Frank, A. U. & Campari, I.) 14–24 (Springer, 1993). A review of studies published in the 1970s–1980s that question the concept of cognitive maps.
Zetzsche, C., Wolter, J., Galbraith, C. & Schill, K. Representation of space: image-like or sensorimotor? Spat. Vis. 22, 409–424 (2009).
Kuipers, B. in Spatial Orientation: Theory, Research, and Application (eds Pick, H. L. & Acredolo, L. P.) 345–359 (Springer, 1983).
Meilinger, T. in Spatial Cognition VI (eds Freksa, N. S. et al.) Vol. 5248 Lecture Notes in Computer Science 344–360 (Springer, 2008).
Poucet, B. Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. Psychol. Rev. 100, 163 (1993).
Chrastil, E. R. & Warren, W. H. Active and passive spatial learning in human navigation: acquisition of graph knowledge. J. Exp. Psychol. Learn. Mem. Cogn. 41, 1162–1178 (2015). This study demonstrated that labelled cognitive graphs support the identification of shorter novel routes.
Chrastil, E. R. & Warren, W. H. From cognitive maps to cognitive graphs. PLoS ONE 9, e112544 (2014).
Ericson, J. D. & Warren, W. H. Probing the invariant structure of spatial knowledge: support for the cognitive graph hypothesis. Cognition 200, 104276 (2020).
Baumann, T. & Mallot, H. A. Metric information in cognitive maps: Euclidean embedding of non-Euclidean environments. PLoS Comput. Biol. 19, e1011748 (2023).
Brunec, I. K., Nantais, M. M., Sutton, J. E., Epstein, R. A. & Newcombe, N. S. Exploration patterns shape cognitive map learning. Cognition 233, 105360 (2023).
Yesiltepe, D. et al. Entropy and a sub-group of geometric measures of paths predict the navigability of an environment. Cognition 236, 105443 (2023).
Peer, M., Nadar, C. & Epstein, R. The format of the cognitive map depends on the structure of the environment. J. Exp. Psychol. Gen. 153, 224 (2024). This study examined how the type of environment (open versus closed) influences the format of cognitive maps.
Gallistel, C. The Organization of Learning (MIT Press, 1990).
Gallistel, C. R. & Matzel, L. D. The neuroscience of learning: beyond the hebbian synapse. Annu. Rev. Psychol. 64, 169–200 (2013).
Loomis, J. M., Klatzky, R. L., Golledge, R. G. & Philbeck, J. W. Human navigation by path integration. In Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes (ed. Golledge, R. G.) 125–151 (Johns Hopkins Univ. Press, 1999). A review of human path integration in navigation.
Mou, W. & Wang, L. Piloting and path integration within and across boundaries. J. Exp. Psychol. Learn. Mem. Cogn. 41, 220–234 (2015).
Chen, X., McNamara, T. P., Kelly, J. W. & Wolbers, T. Cue combination in human spatial navigation. Cogn. Psychol. 95, 105–144 (2017).
Nardini, M., Jones, P., Bedford, R. & Braddick, O. Development of cue integration in human navigation. Curr. Biol. 18, 689–693 (2008).
Zhao, M. & Warren, W. H. How you get there from here: interaction of visual landmarks and path integration in human navigation. Psychol. Sci. 26, 915–924 (2015).
Newman, P. M., Qi, Y., Mou, W. & McNamara, T. P. Statistically optimal cue integration during human spatial navigation. Psychon. Bull. Rev. 30, 1621–1642 (2023).
Gallistel, C. R. & Cramer, A. E. Computations on metric maps in mammals: getting oriented and choosing a multi-destination route. J. Exp. Biol. 199, 211–217 (1996).
Collett, T. S. & Collett, M. Path integration in insects. Curr. Opin. Neurobiol. 10, 757–762 (2000).
Etienne, A. S. & Jeffery, K. J. Path integration in mammals. Hippocampus 14, 180–192 (2004).
Loomis, J. M. et al. Nonvisual navigation by blind and sighted: assessment of path integration ability. J. Exp. Psychol. Gen. 122, 73–91 (1993).
McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M. B. Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7, 663–678 (2006).
Mittelstaedt, M. L. & Mittelstaedt, H. Homing by path integration in a mammal. Naturwissenschaften 67, 566–567 (1980).
Anastasiou, C., Baumann, O. & Yamamoto, N. Does path integration contribute to human navigation in large-scale space? Psychon. Bull. Rev. 30, 822–842 (2023).
Madhav, M. S. et al. Control and recalibration of path integration in place cells using optic flow. Nat. Neurosci. 27, 1599–1608 (2024).
Ellmore, T. M. & McNaughton, B. L. Human path integration by optic flow. Spat. Cogn. Comput. 4, 255–272 (2004).
Etienne, A. S. et al. Navigation through vector addition. Nature 396, 161–164 (1998).
Maurer, R. & Séguinot, V. What is modelling for? A critical review of the models of path integration. J. Theor. Biol. 175, 457–475 (1995).
Cheung, A. & Vickerstaff, R. Sensory and update errors which can affect path integration. J. Theor. Biol. 372, 217–221 (2015).
Souman, J. L., Frissen, I., Sreenivasa, M. N. & Ernst, M. O. Walking straight into circles. Curr. Biol. 19, 1538–1542 (2009).
Kelly, J. W., McNamara, T. P., Bodenheimer, B., Carr, T. H. & Rieser, J. J. The shape of human navigation: how environmental geometry is used in maintenance of spatial orientation. Cognition 109, 281–286 (2008). This study showed that participants might lose their orientations after walking a complex path.
Muehl, K. A. & Sholl, M. J. The acquisition of vector knowledge and its relation to self-rated direction sense. J. Exp. Psychol. Learn. Mem. Cogn. 30, 129–141 (2004).
Qi, Y. & Mou, W. Sources of systematic errors in human path integration. J. Exp. Psychol. Hum. Percept. Perform. 49, 197–225 (2023).
Fujita, N., Klatzky, R. L., Loomis, J. M. & Golledge, R. G. The encoding‐error model of pathway completion without vision. Geogr. Anal. 25, 295–314 (1993).
Chrastil, E. R. & Warren, W. H. Executing the homebound path is a major source of error in homing by path integration. J. Exp. Psychol. Hum. Percept. Perform. 47, 13–35 (2021).
Harootonian, S. K., Wilson, R. C., Hejtmanek, L., Ziskin, E. M. & Ekstrom, A. D. Path integration in large-scale space and with novel geometries: comparing vector addition and encoding-error models. PLoS Comput. Biol. 16, e1007489 (2020).
Yamamoto, N., Melendez, J. A. & Menzies, D. T. Homing by path integration when a locomotion trajectory crosses itself. Perception 43, 1049–1060 (2014).
Gallistel, C. R. Navigation: whence our sense of direction? Curr. Biol. 27, R108–R110 (2017).
Qi, Y. & Mou, W. Relative cue precision and prior knowledge contribute to the preference of proximal and distal landmarks in human orientation. Cognition 247, 105772 (2024).
Spetch, M. L. et al. Use of landmark configuration in pigeons and humans. II. Generality across search tasks. J. Comp. Psychol. 111, 14–24 (1997).
Sutton, J. E. Multiple-landmark piloting in pigeons (Columba livia): landmark configuration as a discriminative cue. J. Comp. Psychol. 116, 391–403 (2002).
Doeller, C. F. & Burgess, N. Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proc. Natl Acad. Sci. USA 105, 5909–5914 (2008).
Mou, W. & Zhou, R. Defining a boundary in goal localization: infinite number of points or extended surfaces. J. Exp. Psychol. Learn. Mem. Cogn. 39, 1115–1127 (2013).
Wang, L., Mou, W. & Dixon, P. Cue interaction between buildings and street configurations during reorientation in familiar and unfamiliar outdoor environments. J. Exp. Psychol. Learn. Mem. Cogn. 44, 631–644 (2018).
Zhou, R. & Mou, W. Superior cognitive mapping through single landmark-related learning than through boundary-related learning. J. Exp. Psychol. Learn. Mem. Cogn. 42, 1316–1323 (2016).
Zhou, R. & Mou, W. The effects of cue placement on the relative dominance of boundaries and landmark arrays in goal localization. Q. J. Exp. Psychol. 72, 2614–2631 (2019).
Cheng, K. & Newcombe, N. S. Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychon. Bull. Rev. 12, 1–23 (2005).
Doeller, C. F., King, J. A. & Burgess, N. Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc. Natl Acad. Sci. USA 105, 5915–5920 (2008).
Mou, W. & Zhang, L. Dissociating position and heading estimations: rotated visual orientation cues perceived after walking reset headings but not positions. Cognition 133, 553–571 (2014). This study showed that a rotated distal wall could override heading estimates from path integration without affecting position estimates.
Zhang, L. & Mou, W. Piloting systems reset path integration systems during position estimation. J. Exp. Psychol. Learn. Mem. Cogn. 43, 472–491 (2017).
Etienne, A. S., Maurer, R. & Séguinot, V. Path integration in mammals and its interaction with visual landmarks. J. Exp. Biol. 199, 201–209 (1996).
Wehner, R., Michel, B. & Antonsen, P. Visual navigation in insects: coupling of egocentric and geocentric information. J. Exp. Biol. 199, 129–140 (1996).
Etienne, A. S., Maurer, R., Boulens, V., Levy, A. & Rowe, T. Resetting the path integrator: a basic condition for route-based navigation. J. Exp. Biol. 207, 1491–1508 (2004).
Wang, R. F. & Brockmole, J. R. Human navigation in nested environments. J. Exp. Psychol. Learn. Mem. Cogn. 29, 398–404 (2003). This article showed that people might not be able to encode global orientations between two environments inside and outside a building.
Montello, D. R. Scale and multiple psychologies of space. In Spatial Information Theory: a Theoretical Basis for GIS (Eur. Conf. Proc. COSIT'93) (eds Frank, A. U. & Campari, I.) 312–321 (Springer, 1993).
Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F. & Epstein, R. A. Variations in cognitive maps: understanding individual differences in navigation. J. Exp. Psychol. Learn. Mem. Cogn. 40, 669–682 (2014).
Jacobs, L. F. & Schenk, F. Unpacking the cognitive map: the parallel map theory of hippocampal function. Psychol. Rev. 110, 285–315 (2003).
Knierim, J. J., Neunuebel, J. P. & Deshmukh, S. S. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames. Phil. Trans. R. Soc. Lond. B 369, 20130369 (2014).
Lei, X., Mou, W. & Zhang, L. Developing global spatial representations through across-boundary navigation. J. Exp. Psychol. Learn. Mem. Cogn. 46, 1–23 (2020).
Wang, R. F. Building a cognitive map by assembling multiple path integration systems. Psychon. Bull. Rev. 23, 692–702 (2016).
Mueller, M. & Wehner, R. Path integration provides a scaffold for landmark learning in desert ants. Curr. Biol. 20, 1368–1371 (2010).
Holmes, C. A., Newcombe, N. S. & Shipley, T. F. Move to learn: integrating spatial information from multiple viewpoints. Cognition 178, 7–25 (2018).
Han, X. & Becker, S. One spatial map or many? Spatial coding of connected environments. J. Exp. Psychol. Learn. Mem. Cogn. 40, 511–531 (2014).
Richardson, A. E., Montello, D. R. & Hegarty, M. Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Mem. Cogn. 27, 741–750 (1999).
Zhang, H., Zherdeva, K. & Ekstrom, A. D. Different “routes” to a cognitive map: dissociable forms of spatial knowledge derived from route and cartographic map learning. Mem. Cogn. 42, 1106–1117 (2014).
Starrett, M. J., Huffman, D. J. & Ekstrom, A. D. Combining egoformative and alloformative cues in a novel tabletop navigation task. Psychol. Res. 87, 1644–1664 (2023).
Greenauer, N. & Waller, D. Micro- and macroreference frames: specifying the relations between spatial categories in memory. J. Exp. Psychol. Learn. Mem. Cogn. 36, 938–957 (2010).
Mou, W. & McNamara, T. P. Intrinsic frames of reference in spatial memory. J. Exp. Psychol. Learn. Mem. Cogn. 28, 162–170 (2002).
Roskos-Ewoldsen, B., McNamara, T. P., Shelton, A. L. & Carr, W. Mental representations of large and small spatial layouts are orientation dependent. J. Exp. Psychol. Learn. Mem. Cogn. 24, 215 (1998).
Shelton, A. L. & McNamara, T. P. Multiple views of spatial memory. Psychon. Bull. Rev. 4, 102–106 (1997).
Shelton, A. L. & McNamara, T. P. Systems of spatial reference in human memory. Cogn. Psychol. 43, 274–310 (2001).
Shelton, A. L. & McNamara, T. P. Spatial memory and perspective taking. Mem. Cogn. 32, 416–426 (2004).
Yamamoto, N. & Shelton, A. L. Visual and proprioceptive representations in spatial memory. Mem. Cogn. 33, 140–150 (2005).
Yamamoto, N. & Shelton, A. L. Integrating object locations in the memory representation of a spatial layout. Vis. Cogn. 16, 140–143 (2008).
Kelly, J. W. & McNamara, T. P. Spatial memories of virtual environments: how egocentric experience, intrinsic structure, and extrinsic structure interact. Psychon. Bull. Rev. 15, 322–327 (2008).
Kelly, J. W. & McNamara, T. P. Reference frames during the acquisition and development of spatial memories. Cognition 116, 409–420 (2010).
Levine, M., Jankovic, I. N. & Palij, M. Principles of spatial problem solving. J. Exp. Psychol. Gen. 111, 157 (1982).
Palij, M., Levine, M. & Kahan, T. The orientation of cognitive maps. Bull. Psychon. Soc. 22, 105–108 (1984).
McNamara, T. P. How are the locations of objects in the environment represented in memory? In Int. Conf. on Spatial Cognition III (Spatial Cognition 2002). Lecture Notes in Computer Science (eds Freksa, C. et al.) Vol. 2685, 174–191 (Springer, 2003).
Montello, D. R. & Pick, H. L. Integrating knowledge of vertically aligned large-scale spaces. Environ. Behav. 25, 457–484 (1993).
Foo, P., Warren, W. H., Duchon, A. & Tarr, M. J. Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. J. Exp. Psychol. Learn. Mem. Cogn. 31, 195–215 (2005).
Tsagris, M., Beneki, C. & Hassani, H. On the folded normal distribution. Mathematics 2, 12–28 (2014).
Huffman, D. J. & Ekstrom, A. D. Which way is the bookstore? A closer look at the judgments of relative directions task. Spat. Cogn. Comput. 19, 93–129 (2019).
Du, Y. K., McAvan, A. S., Zheng, J. & Ekstrom, A. D. Spatial memory distortions for the shapes of walked paths occur in violation of physically experienced geometry. PLoS ONE 18, e0281739 (2023).
Warren, W. H., Rothman, D. B., Schnapp, B. H. & Ericson, J. D. Wormholes in virtual space: from cognitive maps to cognitive graphs. Cognition 166, 152–163 (2017).
McNamara, T. P. in Handbook of Spatial Cognition (eds Waller, D. & Nadel L.), 173–190 (American Psychological Association, 2013).
McNamara, T. P. in Cognitive Psychology of Memory (ed. Wixted, J. T.) 337–355 (Academic/Elsevier, 2017).
Klatzky, R. L. in Spatial Cognition: an Interdisciplinary Approach to Representing and Processing Spatial Knowledge (eds Freksa, C. et al.) Lecture Notes in Computer Science Vol. 1404, 1–17 (Springer, 1998).
Mou, W., McNamara, T. P., Valiquette, C. M. & Rump, B. Allocentric and egocentric updating of spatial memories. J. Exp. Psychol. Learn. Mem. Cogn. 30, 142–157 (2004).
Nadel, L. in Handbook of Spatial Cognition (eds Waller, D. & Nadel L.) 155–171 (American Psychological Association, 2013). A summary of the features of cognitive maps from a neuroscience perspective.
O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978).
Chrastil, E. R. & Warren, W. H. Active and passive spatial learning in human navigation: acquisition of survey knowledge. J. Exp. Psychol. Learn. Mem. Cogn. 39, 1520–1537 (2013).
Frankenstein, J., Mohler, B. J., Bulthoff, H. H. & Meilinger, T. Is the map in our head oriented north? Psychol. Sci. 23, 120–125 (2012).
Ishikawa, T. & Montello, D. R. Spatial knowledge acquisition from direct experience in the environment: individual differences in the development of metric knowledge and the integration of separately learned places. Cogn. Psychol. 52, 93–129 (2006).
Marchette, S. A., Yerramsetti, A., Burns, T. J. & Shelton, A. L. Spatial memory in the real world: long-term representations of everyday environments. Mem. Cogn. 39, 1401–1408 (2011).
McNamara, T. P., Rump, B. & Werner, S. Egocentric and geocentric frames of reference in memory of large-scale space. Psychon. Bull. Rev. 10, 589–595 (2003).
Meilinger, T., Riecke, B. E. & Bulthoff, H. H. Local and global reference frames for environmental spaces. Q. J. Exp. Psychol. 67, 542–569 (2014).
Meilinger, T., Strickrodt, M. & Bülthoff, H. H. Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation. Cognition 155, 77–95 (2016).
Mou, W., McNamara, T. P. & Zhang, L. Global frames of reference organize configural knowledge of paths. Cognition 129, 180–193 (2013).
Starrett, M. J., Stokes, J. D., Huffman, D. J., Ferrer, E. & Ekstrom, A. D. Learning-dependent evolution of spatial representations in large-scale virtual environments. J. Exp. Psychol. Learn. Mem. Cogn. 45, 497–514 (2019).
Waller, D., Loomis, J. M. & Haun, D. B. M. Body-based senses enhance knowledge of directions in large-scale environments. Psychon. Bull. Rev. 11, 157–163 (2004).
Yerramsetti, A., Marchette, S. A. & Shelton, A. L. Accessibility versus accuracy in retrieving spatial memory: evidence for suboptimal assumed headings. J. Exp. Psychol. Learn. Mem. Cogn. 39, 1106–1114 (2013).
Strickrodt, M., Bulthoff, H. H. & Meilinger, T. Memory for navigable space is flexible and not restricted to exclusive local or global memory units. J. Exp. Psychol. Learn. Mem. Cogn. 45, 993–1013 (2019).
He, C., Boone, A. P. & Hegarty, M. Measuring configural spatial knowledge: individual differences in correlations between pointing and shortcutting. Psychon. Bull. Rev. 30, 1802–1813 (2023).
Taube, J. S., Valerio, S. & Yoder, R. M. Is navigation in virtual reality with FMRI really navigation. J. Cogn. Neurosci. 25, 1008–1019 (2013).
Mou, W. et al. Frames of reference in mobile augmented reality displays. J. Exp. Psychol. Appl. 10, 238–244 (2004).
Rieser, J. J., Pick, H. L., Ashmead, D. H. & Garing, A. E. Calibration of human locomotion and models of perceptual–motor organization. J. Exp. Psychol. Hum. Percept. Perform. 21, 480–497 (1995).
Tcheang, L., Bulthoff, H. H. & Burgess, N. Visual influence on path integration in darkness indicates a multimodal representation of large-scale space. Proc. Natl Acad. Sci. USA 108, 1152–1157 (2011).
Zisch, F. E. et al. Real and virtual environments have comparable spatial memory distortions after scale and geometric transformations. Spat. Cogn. Comput. 24, 115–143 (2024).
Chakraborty, S., Kane, A., Gagnon, H., McNamara, T. & Bodenheimer, B. Comparative effectiveness of an omnidirectional treadmill versus natural walking for navigating in virtual environments. In ACM Symp. on Applied Perception (SAP ’24) (eds McDonnell, R. et al.) 1–10 (Association for Computing Machinery, 2024).
Hejtmanek, L., Starrett, M., Ferrer, E. & Ekstrom, A. D. How much of what we learn in virtual reality transfers to real-world navigation? Multisens. Res. 33, 479–503 (2020).
Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S. & Golledge, R. G. Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychol. Sci. 9, 293–298 (1998).
Rieser, J. J. Access to knowledge of spatial structure at novel points of observation. J. Exp. Psychol. Learn. Mem. Cogn. 15, 1157–1165 (1989).
Ruddle, R. A. & Lessels, S. The benefits of using a walking interface to navigate virtual environments. ACM Trans. Comput. Hum. Interact. 16, 5 (2009).
Ruddle, R. A., Volkova, E. & Buelthoff, H. H. Walking improves your cognitive map in environments that are large-scale and large in extent. ACM Trans. Comput. Hum. Interaction 18, 10 (2011).
Ruddle, R. A., Volkova, E., Mohler, B. & Bulthoff, H. H. The effect of landmark and body-based sensory information on route knowledge. Mem. Cogn. 39, 686–699 (2011).
Shine, J. P., Valdes-Herrera, J. P., Hegarty, M. & Wolbers, T. The human retrosplenial cortex and thalamus code head direction in a global reference frame. J. Neurosci. 36, 6371–6381 (2016).
Kelly, J. W., Avraamides, M. N. & Loomis, J. M. Sensorimotor alignment effects in the learning environment and in novel environments. J. Exp. Psychol. Learn. Mem. Cogn. 33, 1092–1107 (2007).
Sholl, M. J. Cognitive maps as orienting schemata. J. Exp. Psychol. Learn. Mem. Cogn. 13, 615 (1987).
Sholl, M. J., Kenny, R. J. & DellaPorta, K. A. Allocentric-heading recall and its relation to self-reported sense-of-direction. J. Exp. Psychol. Learn. Mem. Cogn. 32, 516–533 (2006).
Burte, H. & Hegarty, M. Alignment effects and allocentric-headings within a relative heading task. In Proc. Int. Conf. on Spatial Cognition IX (Spatial Cognition 2014) (eds Freksa, C. et al.) Lecture Notes in Computer Science Vol. 8684, 46–61 (Springer, 2014).
Allison, C., Wood, A. P. & Redhead, E. S. Interaction of orientation cues within a nested virtual environment. J. Environ. Psychol. 95, 102259 (2024).
Marchette, S. A., Vass, L. K., Ryan, J. & Epstein, R. A. Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe. Nat. Neurosci. 17, 1598–1606 (2014). This article demonstrated that participants might struggle to encode the spatial relationships between the orientations of two rooms using path integration only.
Lei, X. & Mou, W. Updating self-location by self-motion and visual cues in familiar multiscale spaces. J. Exp. Psychol. Learn. Mem. Cogn. 47, 1439–1452 (2021).
Lei, X. & Mou, W. Developing global spatial memories by one-shot across-boundary navigation. J. Exp. Psychol. Learn. Mem. Cogn. 48, 798–812 (2022).
Lei, X. & Mou, W. Visual re-anchoring in misaligned local spaces impairs global path integration. J. Exp. Psychol. Learn. Mem. Cogn. 49, 728–742 (2023). This article showed that misleading visual cues can override otherwise accurate global orientation based on path integration across boundaries.
He, Q., McNamara, T. P., Bodenheimer, B. & Klippel, A. Acquisition and transfer of spatial knowledge during wayfinding. J. Exp. Psychol. Learn. Mem. Cogn. 45, 1364–1386 (2019).
Lei, X., Mou, W. & McNamara, T. P. The influence of environmental geometry and spatial symmetry on spatial updating during locomotion. J. Exp. Psychol. Learn. Mem. Cogn. 49, 714–727 (2023).
Chen, Y. & Mou, W. Path integration, rather than being suppressed, is used to update spatial views in familiar environments with constantly available landmarks. Cognition 242, 105662 (2024).
Zhao, M. & Warren, W. H. Environmental stability modulates the role of path integration in human navigation. Cognition 142, 96–109 (2015). This article demonstrated that path integration can be impaired by misleading visual landmarks.
Chen, Y. & Mou, W. Disrupted orientation after path integration by absence of anticipated prevalent spatial views. J. Exp. Psychol. Learn. Mem. Cogn. https://doi.org/10.1037/xlm0001439 (2025).
Zhang, L. & Mou, W. Selective resetting position and heading estimations while driving in a large-scale immersive virtual environment. Exp. Brain Res. 237, 335–350 (2019).
Zhang, L., Mou, W., Lei, X. & Du, Y. Cue combination used to update the navigator’s self-localization, not the home location. J. Exp. Psychol. Learn. Mem. Cogn. 46, 2314–2339 (2020). This article demonstrated that participants maintained their position estimates but lost their orientation estimates after spinning in place.
Khobkhun, F., Hollands, M. & Richards, J. The effect of different turn speeds on whole-body coordination in younger and older healthy adults. Sensors 21, 2827 (2021).
Coutrot, A. et al. Entropy of city street networks linked to future spatial navigation ability. Nature 604, 104–110 (2022).
Zhang, H., Mou, W., McNamara, T. P. & Wang, L. Connecting spatial memories of two nested spaces. J. Exp. Psychol. Learn. Mem. Cogn. 40, 191–202 (2014).
Acknowledgements
This work was partially supported by NSERC and Alberta Innovates.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Peer review
Peer review information
Nature Reviews Psychology thanks Arne Ekstrom, Edward Redhead and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mou, W. Representing place locations and orientations in cognitive maps. Nat Rev Psychol 4, 347–360 (2025). https://doi.org/10.1038/s44159-025-00442-0
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s44159-025-00442-0