Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Representing place locations and orientations in cognitive maps

Abstract

Human navigation relies on multiple levels of spatial knowledge, including place knowledge, route knowledge (sequences of places) and map-like survey knowledge, which encodes straight-line spatial relationships among places. Survey knowledge is often referred to as a cognitive map, a concept proposed nearly 80 years ago. In this Review, I examine the situations in which humans seem to navigate using cognitive maps, focusing on the role of environmental variables and cognitive processes. I begin by reviewing studies in vista environments, where clear straight-line spatial relations facilitate the formation of a cognitive map. Then I review research on large-scale environments, highlighting reliance on path integration and the influence of path complexity. Throughout, I differentiate between cognitive maps focused solely on place location and those that incorporate place orientation. Whereas straight-line pointing based on verbally instructed orientation requires only a cognitive map of place location, pointing from view-based orientations might require cognitive maps that encode place orientation. Future research should investigate the conditions that foster each type of cognitive map, as well as those under which cognitive maps do not form.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of a city area.
Fig. 2: Orientations in cognitive maps.
Fig. 3: A generic vista environment.
Fig. 4: Pointing errors in judgements of relative direction in vista environments.
Fig. 5: A generic large-scale environment.
Fig. 6: Cognitive maps as an interaction between environment and navigation processes.

Similar content being viewed by others

References

  1. Siegel, A. W. & White, S. H. The development of spatial representations of large-scale environments. Adv. Child. Dev. Behav. 10, 9–55 (1975).

    Article  PubMed  Google Scholar 

  2. McNamara, T. P. & Qi, Y. in Learning and Memory: A Comprehensive Reference 2nd edn (ed. Byrne, J. H.) 337–355 (Academic, 2017); updated as Reference Module in Neuroscience and Biobehavioral Psychology https://www.sciencedirect.com/science/article/abs/pii/B9780443157547000225 (2024). A comprehensive review of research on human spatial memory and navigation.

  3. Jeffery, K. J., Cheng, K., Newcombe, N. S., Bingman, V. P. & Menzel, R. Unpacking the navigation toolbox: insights from comparative cognition. Proc. Biol. Sci. 291, 20231304 (2024).

    PubMed  PubMed Central  Google Scholar 

  4. Trullier, O., Wiener, S. I., Berthoz, A. & Meyer, J.-A. Biologically based artificial navigation systems: review and prospects. Prog. Neurobiol. 51, 483–544 (1997).

    Article  PubMed  Google Scholar 

  5. Warren, W. H. Non-Euclidean navigation. J. Exp. Biol. 222, jeb187971 (2019). A review of evidence supporting the cognitive graph hypothesis and against the metric cognitive map hypothesis.

    Article  PubMed  Google Scholar 

  6. Ekstrom, A. D. & Hill, P. F. Spatial navigation and memory: a review of the similarities and differences relevant to brain models and age. Neuron 111, 1037–1049 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thorndyke, P. W. & Hayes-Roth, B. Differences in spatial knowledge acquired from maps and navigation. Cogn. Psychol. 14, 560–589 (1982).

    Article  PubMed  Google Scholar 

  8. Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189 (1948). The article that proposed the concept of cognitive maps.

    Article  PubMed  Google Scholar 

  9. Epstein, R. A., Patai, E. Z., Julian, J. B. & Spiers, H. J. The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20, 1504–1513 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Peer, M., Brunec, I. K., Newcombe, N. S. & Epstein, R. A. Structuring knowledge with cognitive maps and cognitive graphs. Trends Cogn. Sci. 25, 37–54 (2021).

    Article  PubMed  Google Scholar 

  11. Fernandez-Velasco, P. & Spiers, H. J. Wayfinding across ocean and tundra: what traditional cultures teach us about navigation. Trends Cogn. Sci. 28, 56–71 (2024).

    Article  PubMed  Google Scholar 

  12. Tversky, B. Distortions in memory for maps. Cogn. Psychol. 13, 407–433 (1981).

    Article  Google Scholar 

  13. Stevens, A. & Coupe, P. Distortions in judged spatial relations. Cogn. Psychol. 10, 422–437 (1978).

    Article  PubMed  Google Scholar 

  14. McNamara, T. P. Mental representations of spatial relations. Cogn. Psychol. 18, 87–121 (1986).

    Article  PubMed  Google Scholar 

  15. McNamara, T. P. & Diwadkar, V. A. Symmetry and asymmetry of human spatial memory. Cogn. Psychol. 34, 160–190 (1997).

    Article  PubMed  Google Scholar 

  16. Tversky, B. Cognitive maps, cognitive collages, and spatial mental models. In European Conference on Spatial Information Theory (eds. Frank, A. U. & Campari, I.) 14–24 (Springer, 1993). A review of studies published in the 1970s–1980s that question the concept of cognitive maps.

  17. Zetzsche, C., Wolter, J., Galbraith, C. & Schill, K. Representation of space: image-like or sensorimotor? Spat. Vis. 22, 409–424 (2009).

    Article  PubMed  Google Scholar 

  18. Kuipers, B. in Spatial Orientation: Theory, Research, and Application (eds Pick, H. L. & Acredolo, L. P.) 345–359 (Springer, 1983).

  19. Meilinger, T. in Spatial Cognition VI (eds Freksa, N. S. et al.) Vol. 5248 Lecture Notes in Computer Science 344–360 (Springer, 2008).

  20. Poucet, B. Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. Psychol. Rev. 100, 163 (1993).

    Article  PubMed  Google Scholar 

  21. Chrastil, E. R. & Warren, W. H. Active and passive spatial learning in human navigation: acquisition of graph knowledge. J. Exp. Psychol. Learn. Mem. Cogn. 41, 1162–1178 (2015). This study demonstrated that labelled cognitive graphs support the identification of shorter novel routes.

    Article  PubMed  Google Scholar 

  22. Chrastil, E. R. & Warren, W. H. From cognitive maps to cognitive graphs. PLoS ONE 9, e112544 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ericson, J. D. & Warren, W. H. Probing the invariant structure of spatial knowledge: support for the cognitive graph hypothesis. Cognition 200, 104276 (2020).

    Article  PubMed  Google Scholar 

  24. Baumann, T. & Mallot, H. A. Metric information in cognitive maps: Euclidean embedding of non-Euclidean environments. PLoS Comput. Biol. 19, e1011748 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brunec, I. K., Nantais, M. M., Sutton, J. E., Epstein, R. A. & Newcombe, N. S. Exploration patterns shape cognitive map learning. Cognition 233, 105360 (2023).

    Article  PubMed  Google Scholar 

  26. Yesiltepe, D. et al. Entropy and a sub-group of geometric measures of paths predict the navigability of an environment. Cognition 236, 105443 (2023).

    Article  PubMed  Google Scholar 

  27. Peer, M., Nadar, C. & Epstein, R. The format of the cognitive map depends on the structure of the environment. J. Exp. Psychol. Gen. 153, 224 (2024). This study examined how the type of environment (open versus closed) influences the format of cognitive maps.

    Article  PubMed  Google Scholar 

  28. Gallistel, C. The Organization of Learning (MIT Press, 1990).

  29. Gallistel, C. R. & Matzel, L. D. The neuroscience of learning: beyond the hebbian synapse. Annu. Rev. Psychol. 64, 169–200 (2013).

    Article  PubMed  Google Scholar 

  30. Loomis, J. M., Klatzky, R. L., Golledge, R. G. & Philbeck, J. W. Human navigation by path integration. In Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes (ed. Golledge, R. G.) 125–151 (Johns Hopkins Univ. Press, 1999). A review of human path integration in navigation.

  31. Mou, W. & Wang, L. Piloting and path integration within and across boundaries. J. Exp. Psychol. Learn. Mem. Cogn. 41, 220–234 (2015).

    Article  PubMed  Google Scholar 

  32. Chen, X., McNamara, T. P., Kelly, J. W. & Wolbers, T. Cue combination in human spatial navigation. Cogn. Psychol. 95, 105–144 (2017).

    Article  PubMed  Google Scholar 

  33. Nardini, M., Jones, P., Bedford, R. & Braddick, O. Development of cue integration in human navigation. Curr. Biol. 18, 689–693 (2008).

    Article  PubMed  Google Scholar 

  34. Zhao, M. & Warren, W. H. How you get there from here: interaction of visual landmarks and path integration in human navigation. Psychol. Sci. 26, 915–924 (2015).

    Article  PubMed  Google Scholar 

  35. Newman, P. M., Qi, Y., Mou, W. & McNamara, T. P. Statistically optimal cue integration during human spatial navigation. Psychon. Bull. Rev. 30, 1621–1642 (2023).

    Article  PubMed  Google Scholar 

  36. Gallistel, C. R. & Cramer, A. E. Computations on metric maps in mammals: getting oriented and choosing a multi-destination route. J. Exp. Biol. 199, 211–217 (1996).

    Article  PubMed  Google Scholar 

  37. Collett, T. S. & Collett, M. Path integration in insects. Curr. Opin. Neurobiol. 10, 757–762 (2000).

    Article  PubMed  Google Scholar 

  38. Etienne, A. S. & Jeffery, K. J. Path integration in mammals. Hippocampus 14, 180–192 (2004).

    Article  PubMed  Google Scholar 

  39. Loomis, J. M. et al. Nonvisual navigation by blind and sighted: assessment of path integration ability. J. Exp. Psychol. Gen. 122, 73–91 (1993).

    Article  PubMed  Google Scholar 

  40. McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M. B. Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7, 663–678 (2006).

    Article  PubMed  Google Scholar 

  41. Mittelstaedt, M. L. & Mittelstaedt, H. Homing by path integration in a mammal. Naturwissenschaften 67, 566–567 (1980).

    Article  Google Scholar 

  42. Anastasiou, C., Baumann, O. & Yamamoto, N. Does path integration contribute to human navigation in large-scale space? Psychon. Bull. Rev. 30, 822–842 (2023).

    Article  PubMed  Google Scholar 

  43. Madhav, M. S. et al. Control and recalibration of path integration in place cells using optic flow. Nat. Neurosci. 27, 1599–1608 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ellmore, T. M. & McNaughton, B. L. Human path integration by optic flow. Spat. Cogn. Comput. 4, 255–272 (2004).

    Article  Google Scholar 

  45. Etienne, A. S. et al. Navigation through vector addition. Nature 396, 161–164 (1998).

    Article  PubMed  Google Scholar 

  46. Maurer, R. & Séguinot, V. What is modelling for? A critical review of the models of path integration. J. Theor. Biol. 175, 457–475 (1995).

    Article  Google Scholar 

  47. Cheung, A. & Vickerstaff, R. Sensory and update errors which can affect path integration. J. Theor. Biol. 372, 217–221 (2015).

    Article  PubMed  Google Scholar 

  48. Souman, J. L., Frissen, I., Sreenivasa, M. N. & Ernst, M. O. Walking straight into circles. Curr. Biol. 19, 1538–1542 (2009).

    Article  PubMed  Google Scholar 

  49. Kelly, J. W., McNamara, T. P., Bodenheimer, B., Carr, T. H. & Rieser, J. J. The shape of human navigation: how environmental geometry is used in maintenance of spatial orientation. Cognition 109, 281–286 (2008). This study showed that participants might lose their orientations after walking a complex path.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Muehl, K. A. & Sholl, M. J. The acquisition of vector knowledge and its relation to self-rated direction sense. J. Exp. Psychol. Learn. Mem. Cogn. 30, 129–141 (2004).

    Article  PubMed  Google Scholar 

  51. Qi, Y. & Mou, W. Sources of systematic errors in human path integration. J. Exp. Psychol. Hum. Percept. Perform. 49, 197–225 (2023).

    Article  PubMed  Google Scholar 

  52. Fujita, N., Klatzky, R. L., Loomis, J. M. & Golledge, R. G. The encoding‐error model of pathway completion without vision. Geogr. Anal. 25, 295–314 (1993).

    Article  Google Scholar 

  53. Chrastil, E. R. & Warren, W. H. Executing the homebound path is a major source of error in homing by path integration. J. Exp. Psychol. Hum. Percept. Perform. 47, 13–35 (2021).

    Article  PubMed  Google Scholar 

  54. Harootonian, S. K., Wilson, R. C., Hejtmanek, L., Ziskin, E. M. & Ekstrom, A. D. Path integration in large-scale space and with novel geometries: comparing vector addition and encoding-error models. PLoS Comput. Biol. 16, e1007489 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yamamoto, N., Melendez, J. A. & Menzies, D. T. Homing by path integration when a locomotion trajectory crosses itself. Perception 43, 1049–1060 (2014).

    Article  PubMed  Google Scholar 

  56. Gallistel, C. R. Navigation: whence our sense of direction? Curr. Biol. 27, R108–R110 (2017).

    Article  PubMed  Google Scholar 

  57. Qi, Y. & Mou, W. Relative cue precision and prior knowledge contribute to the preference of proximal and distal landmarks in human orientation. Cognition 247, 105772 (2024).

    Article  PubMed  Google Scholar 

  58. Spetch, M. L. et al. Use of landmark configuration in pigeons and humans. II. Generality across search tasks. J. Comp. Psychol. 111, 14–24 (1997).

    Article  Google Scholar 

  59. Sutton, J. E. Multiple-landmark piloting in pigeons (Columba livia): landmark configuration as a discriminative cue. J. Comp. Psychol. 116, 391–403 (2002).

    Article  PubMed  Google Scholar 

  60. Doeller, C. F. & Burgess, N. Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proc. Natl Acad. Sci. USA 105, 5909–5914 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mou, W. & Zhou, R. Defining a boundary in goal localization: infinite number of points or extended surfaces. J. Exp. Psychol. Learn. Mem. Cogn. 39, 1115–1127 (2013).

    Article  PubMed  Google Scholar 

  62. Wang, L., Mou, W. & Dixon, P. Cue interaction between buildings and street configurations during reorientation in familiar and unfamiliar outdoor environments. J. Exp. Psychol. Learn. Mem. Cogn. 44, 631–644 (2018).

    Article  PubMed  Google Scholar 

  63. Zhou, R. & Mou, W. Superior cognitive mapping through single landmark-related learning than through boundary-related learning. J. Exp. Psychol. Learn. Mem. Cogn. 42, 1316–1323 (2016).

    Article  PubMed  Google Scholar 

  64. Zhou, R. & Mou, W. The effects of cue placement on the relative dominance of boundaries and landmark arrays in goal localization. Q. J. Exp. Psychol. 72, 2614–2631 (2019).

    Article  Google Scholar 

  65. Cheng, K. & Newcombe, N. S. Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychon. Bull. Rev. 12, 1–23 (2005).

    Article  PubMed  Google Scholar 

  66. Doeller, C. F., King, J. A. & Burgess, N. Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc. Natl Acad. Sci. USA 105, 5915–5920 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mou, W. & Zhang, L. Dissociating position and heading estimations: rotated visual orientation cues perceived after walking reset headings but not positions. Cognition 133, 553–571 (2014). This study showed that a rotated distal wall could override heading estimates from path integration without affecting position estimates.

    Article  PubMed  Google Scholar 

  68. Zhang, L. & Mou, W. Piloting systems reset path integration systems during position estimation. J. Exp. Psychol. Learn. Mem. Cogn. 43, 472–491 (2017).

    Article  PubMed  Google Scholar 

  69. Etienne, A. S., Maurer, R. & Séguinot, V. Path integration in mammals and its interaction with visual landmarks. J. Exp. Biol. 199, 201–209 (1996).

    Article  PubMed  Google Scholar 

  70. Wehner, R., Michel, B. & Antonsen, P. Visual navigation in insects: coupling of egocentric and geocentric information. J. Exp. Biol. 199, 129–140 (1996).

    Article  PubMed  Google Scholar 

  71. Etienne, A. S., Maurer, R., Boulens, V., Levy, A. & Rowe, T. Resetting the path integrator: a basic condition for route-based navigation. J. Exp. Biol. 207, 1491–1508 (2004).

    Article  PubMed  Google Scholar 

  72. Wang, R. F. & Brockmole, J. R. Human navigation in nested environments. J. Exp. Psychol. Learn. Mem. Cogn. 29, 398–404 (2003). This article showed that people might not be able to encode global orientations between two environments inside and outside a building.

    Article  PubMed  Google Scholar 

  73. Montello, D. R. Scale and multiple psychologies of space. In Spatial Information Theory: a Theoretical Basis for GIS (Eur. Conf. Proc. COSIT'93) (eds Frank, A. U. & Campari, I.) 312–321 (Springer, 1993).

  74. Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F. & Epstein, R. A. Variations in cognitive maps: understanding individual differences in navigation. J. Exp. Psychol. Learn. Mem. Cogn. 40, 669–682 (2014).

    Article  PubMed  Google Scholar 

  75. Jacobs, L. F. & Schenk, F. Unpacking the cognitive map: the parallel map theory of hippocampal function. Psychol. Rev. 110, 285–315 (2003).

    Article  PubMed  Google Scholar 

  76. Knierim, J. J., Neunuebel, J. P. & Deshmukh, S. S. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames. Phil. Trans. R. Soc. Lond. B 369, 20130369 (2014).

    Article  Google Scholar 

  77. Lei, X., Mou, W. & Zhang, L. Developing global spatial representations through across-boundary navigation. J. Exp. Psychol. Learn. Mem. Cogn. 46, 1–23 (2020).

    Article  PubMed  Google Scholar 

  78. Wang, R. F. Building a cognitive map by assembling multiple path integration systems. Psychon. Bull. Rev. 23, 692–702 (2016).

    Article  PubMed  Google Scholar 

  79. Mueller, M. & Wehner, R. Path integration provides a scaffold for landmark learning in desert ants. Curr. Biol. 20, 1368–1371 (2010).

    Article  Google Scholar 

  80. Holmes, C. A., Newcombe, N. S. & Shipley, T. F. Move to learn: integrating spatial information from multiple viewpoints. Cognition 178, 7–25 (2018).

    Article  PubMed  Google Scholar 

  81. Han, X. & Becker, S. One spatial map or many? Spatial coding of connected environments. J. Exp. Psychol. Learn. Mem. Cogn. 40, 511–531 (2014).

    Article  PubMed  Google Scholar 

  82. Richardson, A. E., Montello, D. R. & Hegarty, M. Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Mem. Cogn. 27, 741–750 (1999).

    Article  Google Scholar 

  83. Zhang, H., Zherdeva, K. & Ekstrom, A. D. Different “routes” to a cognitive map: dissociable forms of spatial knowledge derived from route and cartographic map learning. Mem. Cogn. 42, 1106–1117 (2014).

    Article  Google Scholar 

  84. Starrett, M. J., Huffman, D. J. & Ekstrom, A. D. Combining egoformative and alloformative cues in a novel tabletop navigation task. Psychol. Res. 87, 1644–1664 (2023).

    Article  PubMed  Google Scholar 

  85. Greenauer, N. & Waller, D. Micro- and macroreference frames: specifying the relations between spatial categories in memory. J. Exp. Psychol. Learn. Mem. Cogn. 36, 938–957 (2010).

    Article  PubMed  Google Scholar 

  86. Mou, W. & McNamara, T. P. Intrinsic frames of reference in spatial memory. J. Exp. Psychol. Learn. Mem. Cogn. 28, 162–170 (2002).

    Article  PubMed  Google Scholar 

  87. Roskos-Ewoldsen, B., McNamara, T. P., Shelton, A. L. & Carr, W. Mental representations of large and small spatial layouts are orientation dependent. J. Exp. Psychol. Learn. Mem. Cogn. 24, 215 (1998).

    Article  PubMed  Google Scholar 

  88. Shelton, A. L. & McNamara, T. P. Multiple views of spatial memory. Psychon. Bull. Rev. 4, 102–106 (1997).

    Article  Google Scholar 

  89. Shelton, A. L. & McNamara, T. P. Systems of spatial reference in human memory. Cogn. Psychol. 43, 274–310 (2001).

    Article  PubMed  Google Scholar 

  90. Shelton, A. L. & McNamara, T. P. Spatial memory and perspective taking. Mem. Cogn. 32, 416–426 (2004).

    Article  Google Scholar 

  91. Yamamoto, N. & Shelton, A. L. Visual and proprioceptive representations in spatial memory. Mem. Cogn. 33, 140–150 (2005).

    Article  Google Scholar 

  92. Yamamoto, N. & Shelton, A. L. Integrating object locations in the memory representation of a spatial layout. Vis. Cogn. 16, 140–143 (2008).

    Google Scholar 

  93. Kelly, J. W. & McNamara, T. P. Spatial memories of virtual environments: how egocentric experience, intrinsic structure, and extrinsic structure interact. Psychon. Bull. Rev. 15, 322–327 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kelly, J. W. & McNamara, T. P. Reference frames during the acquisition and development of spatial memories. Cognition 116, 409–420 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Levine, M., Jankovic, I. N. & Palij, M. Principles of spatial problem solving. J. Exp. Psychol. Gen. 111, 157 (1982).

    Article  Google Scholar 

  96. Palij, M., Levine, M. & Kahan, T. The orientation of cognitive maps. Bull. Psychon. Soc. 22, 105–108 (1984).

    Article  Google Scholar 

  97. McNamara, T. P. How are the locations of objects in the environment represented in memory? In Int. Conf. on Spatial Cognition III (Spatial Cognition 2002). Lecture Notes in Computer Science (eds Freksa, C. et al.) Vol. 2685, 174–191 (Springer, 2003).

  98. Montello, D. R. & Pick, H. L. Integrating knowledge of vertically aligned large-scale spaces. Environ. Behav. 25, 457–484 (1993).

    Article  Google Scholar 

  99. Foo, P., Warren, W. H., Duchon, A. & Tarr, M. J. Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. J. Exp. Psychol. Learn. Mem. Cogn. 31, 195–215 (2005).

    Article  PubMed  Google Scholar 

  100. Tsagris, M., Beneki, C. & Hassani, H. On the folded normal distribution. Mathematics 2, 12–28 (2014).

    Article  Google Scholar 

  101. Huffman, D. J. & Ekstrom, A. D. Which way is the bookstore? A closer look at the judgments of relative directions task. Spat. Cogn. Comput. 19, 93–129 (2019).

    Article  PubMed  Google Scholar 

  102. Du, Y. K., McAvan, A. S., Zheng, J. & Ekstrom, A. D. Spatial memory distortions for the shapes of walked paths occur in violation of physically experienced geometry. PLoS ONE 18, e0281739 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Warren, W. H., Rothman, D. B., Schnapp, B. H. & Ericson, J. D. Wormholes in virtual space: from cognitive maps to cognitive graphs. Cognition 166, 152–163 (2017).

    Article  PubMed  Google Scholar 

  104. McNamara, T. P. in Handbook of Spatial Cognition (eds Waller, D. & Nadel L.), 173–190 (American Psychological Association, 2013).

  105. McNamara, T. P. in Cognitive Psychology of Memory (ed. Wixted, J. T.) 337–355 (Academic/Elsevier, 2017).

  106. Klatzky, R. L. in Spatial Cognition: an Interdisciplinary Approach to Representing and Processing Spatial Knowledge (eds Freksa, C. et al.) Lecture Notes in Computer Science Vol. 1404, 1–17 (Springer, 1998).

  107. Mou, W., McNamara, T. P., Valiquette, C. M. & Rump, B. Allocentric and egocentric updating of spatial memories. J. Exp. Psychol. Learn. Mem. Cogn. 30, 142–157 (2004).

    Article  PubMed  Google Scholar 

  108. Nadel, L. in Handbook of Spatial Cognition (eds Waller, D. & Nadel L.) 155–171 (American Psychological Association, 2013). A summary of the features of cognitive maps from a neuroscience perspective.

  109. O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978).

  110. Chrastil, E. R. & Warren, W. H. Active and passive spatial learning in human navigation: acquisition of survey knowledge. J. Exp. Psychol. Learn. Mem. Cogn. 39, 1520–1537 (2013).

    Article  PubMed  Google Scholar 

  111. Frankenstein, J., Mohler, B. J., Bulthoff, H. H. & Meilinger, T. Is the map in our head oriented north? Psychol. Sci. 23, 120–125 (2012).

    Article  PubMed  Google Scholar 

  112. Ishikawa, T. & Montello, D. R. Spatial knowledge acquisition from direct experience in the environment: individual differences in the development of metric knowledge and the integration of separately learned places. Cogn. Psychol. 52, 93–129 (2006).

    Article  PubMed  Google Scholar 

  113. Marchette, S. A., Yerramsetti, A., Burns, T. J. & Shelton, A. L. Spatial memory in the real world: long-term representations of everyday environments. Mem. Cogn. 39, 1401–1408 (2011).

    Article  Google Scholar 

  114. McNamara, T. P., Rump, B. & Werner, S. Egocentric and geocentric frames of reference in memory of large-scale space. Psychon. Bull. Rev. 10, 589–595 (2003).

    Article  PubMed  Google Scholar 

  115. Meilinger, T., Riecke, B. E. & Bulthoff, H. H. Local and global reference frames for environmental spaces. Q. J. Exp. Psychol. 67, 542–569 (2014).

    Article  Google Scholar 

  116. Meilinger, T., Strickrodt, M. & Bülthoff, H. H. Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation. Cognition 155, 77–95 (2016).

    Article  PubMed  Google Scholar 

  117. Mou, W., McNamara, T. P. & Zhang, L. Global frames of reference organize configural knowledge of paths. Cognition 129, 180–193 (2013).

    Article  PubMed  Google Scholar 

  118. Starrett, M. J., Stokes, J. D., Huffman, D. J., Ferrer, E. & Ekstrom, A. D. Learning-dependent evolution of spatial representations in large-scale virtual environments. J. Exp. Psychol. Learn. Mem. Cogn. 45, 497–514 (2019).

    Article  PubMed  Google Scholar 

  119. Waller, D., Loomis, J. M. & Haun, D. B. M. Body-based senses enhance knowledge of directions in large-scale environments. Psychon. Bull. Rev. 11, 157–163 (2004).

    Article  PubMed  Google Scholar 

  120. Yerramsetti, A., Marchette, S. A. & Shelton, A. L. Accessibility versus accuracy in retrieving spatial memory: evidence for suboptimal assumed headings. J. Exp. Psychol. Learn. Mem. Cogn. 39, 1106–1114 (2013).

    Article  PubMed  Google Scholar 

  121. Strickrodt, M., Bulthoff, H. H. & Meilinger, T. Memory for navigable space is flexible and not restricted to exclusive local or global memory units. J. Exp. Psychol. Learn. Mem. Cogn. 45, 993–1013 (2019).

    Article  PubMed  Google Scholar 

  122. He, C., Boone, A. P. & Hegarty, M. Measuring configural spatial knowledge: individual differences in correlations between pointing and shortcutting. Psychon. Bull. Rev. 30, 1802–1813 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Taube, J. S., Valerio, S. & Yoder, R. M. Is navigation in virtual reality with FMRI really navigation. J. Cogn. Neurosci. 25, 1008–1019 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mou, W. et al. Frames of reference in mobile augmented reality displays. J. Exp. Psychol. Appl. 10, 238–244 (2004).

    Article  PubMed  Google Scholar 

  125. Rieser, J. J., Pick, H. L., Ashmead, D. H. & Garing, A. E. Calibration of human locomotion and models of perceptual–motor organization. J. Exp. Psychol. Hum. Percept. Perform. 21, 480–497 (1995).

    Article  PubMed  Google Scholar 

  126. Tcheang, L., Bulthoff, H. H. & Burgess, N. Visual influence on path integration in darkness indicates a multimodal representation of large-scale space. Proc. Natl Acad. Sci. USA 108, 1152–1157 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zisch, F. E. et al. Real and virtual environments have comparable spatial memory distortions after scale and geometric transformations. Spat. Cogn. Comput. 24, 115–143 (2024).

    Article  Google Scholar 

  128. Chakraborty, S., Kane, A., Gagnon, H., McNamara, T. & Bodenheimer, B. Comparative effectiveness of an omnidirectional treadmill versus natural walking for navigating in virtual environments. In ACM Symp. on Applied Perception (SAP24) (eds McDonnell, R. et al.) 1–10 (Association for Computing Machinery, 2024).

  129. Hejtmanek, L., Starrett, M., Ferrer, E. & Ekstrom, A. D. How much of what we learn in virtual reality transfers to real-world navigation? Multisens. Res. 33, 479–503 (2020).

    Article  PubMed  Google Scholar 

  130. Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S. & Golledge, R. G. Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychol. Sci. 9, 293–298 (1998).

    Article  Google Scholar 

  131. Rieser, J. J. Access to knowledge of spatial structure at novel points of observation. J. Exp. Psychol. Learn. Mem. Cogn. 15, 1157–1165 (1989).

    Article  PubMed  Google Scholar 

  132. Ruddle, R. A. & Lessels, S. The benefits of using a walking interface to navigate virtual environments. ACM Trans. Comput. Hum. Interact. 16, 5 (2009).

    Article  Google Scholar 

  133. Ruddle, R. A., Volkova, E. & Buelthoff, H. H. Walking improves your cognitive map in environments that are large-scale and large in extent. ACM Trans. Comput. Hum. Interaction 18, 10 (2011).

    Article  Google Scholar 

  134. Ruddle, R. A., Volkova, E., Mohler, B. & Bulthoff, H. H. The effect of landmark and body-based sensory information on route knowledge. Mem. Cogn. 39, 686–699 (2011).

    Article  Google Scholar 

  135. Shine, J. P., Valdes-Herrera, J. P., Hegarty, M. & Wolbers, T. The human retrosplenial cortex and thalamus code head direction in a global reference frame. J. Neurosci. 36, 6371–6381 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kelly, J. W., Avraamides, M. N. & Loomis, J. M. Sensorimotor alignment effects in the learning environment and in novel environments. J. Exp. Psychol. Learn. Mem. Cogn. 33, 1092–1107 (2007).

    Article  PubMed  Google Scholar 

  137. Sholl, M. J. Cognitive maps as orienting schemata. J. Exp. Psychol. Learn. Mem. Cogn. 13, 615 (1987).

    Article  PubMed  Google Scholar 

  138. Sholl, M. J., Kenny, R. J. & DellaPorta, K. A. Allocentric-heading recall and its relation to self-reported sense-of-direction. J. Exp. Psychol. Learn. Mem. Cogn. 32, 516–533 (2006).

    Article  PubMed  Google Scholar 

  139. Burte, H. & Hegarty, M. Alignment effects and allocentric-headings within a relative heading task. In Proc. Int. Conf. on Spatial Cognition IX (Spatial Cognition 2014) (eds Freksa, C. et al.) Lecture Notes in Computer Science Vol. 8684, 46–61 (Springer, 2014).

  140. Allison, C., Wood, A. P. & Redhead, E. S. Interaction of orientation cues within a nested virtual environment. J. Environ. Psychol. 95, 102259 (2024).

    Article  Google Scholar 

  141. Marchette, S. A., Vass, L. K., Ryan, J. & Epstein, R. A. Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe. Nat. Neurosci. 17, 1598–1606 (2014). This article demonstrated that participants might struggle to encode the spatial relationships between the orientations of two rooms using path integration only.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Lei, X. & Mou, W. Updating self-location by self-motion and visual cues in familiar multiscale spaces. J. Exp. Psychol. Learn. Mem. Cogn. 47, 1439–1452 (2021).

    Article  PubMed  Google Scholar 

  143. Lei, X. & Mou, W. Developing global spatial memories by one-shot across-boundary navigation. J. Exp. Psychol. Learn. Mem. Cogn. 48, 798–812 (2022).

    Article  PubMed  Google Scholar 

  144. Lei, X. & Mou, W. Visual re-anchoring in misaligned local spaces impairs global path integration. J. Exp. Psychol. Learn. Mem. Cogn. 49, 728–742 (2023). This article showed that misleading visual cues can override otherwise accurate global orientation based on path integration across boundaries.

    Article  PubMed  Google Scholar 

  145. He, Q., McNamara, T. P., Bodenheimer, B. & Klippel, A. Acquisition and transfer of spatial knowledge during wayfinding. J. Exp. Psychol. Learn. Mem. Cogn. 45, 1364–1386 (2019).

    Article  PubMed  Google Scholar 

  146. Lei, X., Mou, W. & McNamara, T. P. The influence of environmental geometry and spatial symmetry on spatial updating during locomotion. J. Exp. Psychol. Learn. Mem. Cogn. 49, 714–727 (2023).

    Article  PubMed  Google Scholar 

  147. Chen, Y. & Mou, W. Path integration, rather than being suppressed, is used to update spatial views in familiar environments with constantly available landmarks. Cognition 242, 105662 (2024).

    Article  PubMed  Google Scholar 

  148. Zhao, M. & Warren, W. H. Environmental stability modulates the role of path integration in human navigation. Cognition 142, 96–109 (2015). This article demonstrated that path integration can be impaired by misleading visual landmarks.

    Article  PubMed  Google Scholar 

  149. Chen, Y. & Mou, W. Disrupted orientation after path integration by absence of anticipated prevalent spatial views. J. Exp. Psychol. Learn. Mem. Cogn. https://doi.org/10.1037/xlm0001439 (2025).

  150. Zhang, L. & Mou, W. Selective resetting position and heading estimations while driving in a large-scale immersive virtual environment. Exp. Brain Res. 237, 335–350 (2019).

    Article  PubMed  Google Scholar 

  151. Zhang, L., Mou, W., Lei, X. & Du, Y. Cue combination used to update the navigator’s self-localization, not the home location. J. Exp. Psychol. Learn. Mem. Cogn. 46, 2314–2339 (2020). This article demonstrated that participants maintained their position estimates but lost their orientation estimates after spinning in place.

    Article  PubMed  Google Scholar 

  152. Khobkhun, F., Hollands, M. & Richards, J. The effect of different turn speeds on whole-body coordination in younger and older healthy adults. Sensors 21, 2827 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Coutrot, A. et al. Entropy of city street networks linked to future spatial navigation ability. Nature 604, 104–110 (2022).

    Article  PubMed  Google Scholar 

  154. Zhang, H., Mou, W., McNamara, T. P. & Wang, L. Connecting spatial memories of two nested spaces. J. Exp. Psychol. Learn. Mem. Cogn. 40, 191–202 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSERC and Alberta Innovates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Mou  (牟炜民).

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Arne Ekstrom, Edward Redhead and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, W. Representing place locations and orientations in cognitive maps. Nat Rev Psychol 4, 347–360 (2025). https://doi.org/10.1038/s44159-025-00442-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44159-025-00442-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing