Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Top-down influences on the perception of emotional stimuli

Abstract

The ability to quickly and accurately perceive external emotional stimuli — events in the environment that evoke changes in feelings, physiology and behaviour — is vital for adaptive social interactions and effective decision making in everyday life. Contemporary theories of emotional perception emphasize the influence of top-down information (such as prior knowledge and context) in shaping the perception of emotional stimuli. However, experimental research has mainly focused on the automatic, bottom-up aspects that are driven by the stimuli themselves (such as salience). Research in the adjacent field of visual perception has used behavioural, computational and neuroimaging techniques to reveal how prior knowledge aids perception in a top-down manner. In this Review, we explore studies that leverage similar methods to demonstrate how top-down influences — including social and emotional attention, expectations and context — shape the perception of emotional stimuli. In doing so, we aim to promote the development of comprehensive models that incorporate top-down factors with bottom-up factors to explain the perception of emotional stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Perception of emotional stimuli.
Fig. 2: Experimental paradigms for studying top-down influences on emotion perception.
Fig. 3: Computational mechanisms of top-down influences on emotion perception.

Similar content being viewed by others

References

  1. Darwin, C. The Expression of the Emotions in Man and Animals (John Murray, 1872).

  2. Izard, C. E. Emotion theory and research: highlights, unanswered questions, and emerging issues. Annu. Rev. Psychol. 60, 1–25 (2008).

    Article  Google Scholar 

  3. Itti, L., Koch, C. & Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998).

    Article  Google Scholar 

  4. Goudriaan, T. Māyā Divine and Human: A Study of Magic and its Religious Foundations in Sanskrit Texts, with Particular Attention to a Fragment on Viṣṇu’s Māyā preserved in Bali (Motilal Banarsidass, 1978).

  5. Helmholtz, H. V. Treatise on Physiological Optics (Dover, 1860).

  6. Gregory, R. L. Perceptions as hypotheses. Phil. Trans. R. Soc. Lond. B 290, 181–197 (1980).

    Article  Google Scholar 

  7. Gilbert, C. D. & Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013).

    Article  PubMed  Google Scholar 

  8. Maunsell, J. H. & Newsome, W. T. Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10, 363–401 (1987).

    Article  PubMed  Google Scholar 

  9. Powers, W. T. Behavior: The Control of Perception (Aldine, 1973).

  10. Kersten, D., Mamassian, P. & Yuille, A. Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271–304 (2004).

    Article  PubMed  Google Scholar 

  11. Knill, D. C. & Richards, W. Perception as Bayesian Inference (Cambridge Univ. Press, 1996).

  12. Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).

    Article  PubMed  Google Scholar 

  13. Summerfield, C. & de Lange, F. P. Expectation in perceptual decision making: neural and computational mechanisms. Nat. Rev. Neurosci. 15, 745–756 (2014).

    Article  PubMed  Google Scholar 

  14. Itti, L. & Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001).

    Article  PubMed  Google Scholar 

  15. Loewenstein, G. F., Weber, E. U., Hsee, C. K. & Welch, N. Risk as feelings. Psychol. Bull. 127, 267–286 (2001).

    Article  PubMed  Google Scholar 

  16. Slovic, P. & Peters, E. Risk perception and affect. Curr. Dir. Psychol. Sci. 15, 322–325 (2006).

    Article  Google Scholar 

  17. Bermpohl, F. et al. Dissociable networks for the expectancy and perception of emotional stimuli in the human brain. Neuroimage 30, 588–600 (2006).

    Article  PubMed  Google Scholar 

  18. Bermpohl, F. et al. Attentional modulation of emotional stimulus processing: an fMRI study using emotional expectancy. Hum. Brain Mapp. 27, 662–677 (2006).

    Article  PubMed  Google Scholar 

  19. O’Doherty, J. P., Deichmann, R., Critchley, H. D. & Dolan, R. J. Neural responses during anticipation of a primary taste reward. Neuron 33, 815–826 (2002).

    Article  PubMed  Google Scholar 

  20. Phelps, E. A. et al. Activation of the left amygdala to a cognitive representation of fear. Nat. Neurosci. 4, 437–441 (2001).

    Article  PubMed  Google Scholar 

  21. Moors, A., Boddez, Y. & De Houwer, J. The power of goal-directed processes in the causation of emotional and other actions. Emot. Rev. 9, 310–318 (2017).

    Article  Google Scholar 

  22. Moors, A. & Fischer, M. Demystifying the role of emotion in behaviour: toward a goal-directed account. Cogn. Emot. 33, 94–100 (2019).

    Article  PubMed  Google Scholar 

  23. Folyi, T., Rohr, M. & Wentura, D. When emotions guide your attention in line with a context-specific goal: rapid utilization of visible and masked emotional faces for anticipatory attentional orienting. Emotion 20, 1206–1224 (2020).

    Article  PubMed  Google Scholar 

  24. Freeman, J. B. & Johnson, K. L. More than meets the eye: split-second social perception. Trends Cogn. Sci. 20, 362–374 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Briggs, F. Role of feedback connections in central visual processing. Annu. Rev. Vis. Sci. 6, 313–334 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Beck, A. T. Depression: Clinical, Experimental, and Theoretical Aspects (Staples, 1967).

  27. Beck, A. T. Cognitive Therapy and the Emotional Disorders (Penguin, 1979).

  28. Young, J. E., Klosko, J. S. & Weishaar, M. E. Schema Therapy: A Practitioner’s Guide (Guilford, 2006).

  29. Richards, H. J., Benson, V., Donnelly, N. & Hadwin, J. A. Exploring the function of selective attention and hypervigilance for threat in anxiety. Clin. Psychol. Rev. 34, 1–13 (2014).

    Article  PubMed  Google Scholar 

  30. Brosch, T., Pourtois, G. & Sander, D. The perception and categorisation of emotional stimuli: a review. Cogn. Emot. 24, 377–400 (2010).

    Article  Google Scholar 

  31. Chaiken, S. & Trope, Y. Dual-Process Theories in Social Psychology (Guilford Press, 1999).

  32. Kahneman, D. Thinking, Fast and Slow (Macmillan, 2011).

  33. Barrett, L. F., Ochsner, K. N. & Gross, J. J. in Social Psychology and the Unconscious: The Automaticity of Higher Mental Processes (ed. Bargh, J. A.) 173–217 (Psychology Press, 2007).

  34. Braunstein, L. M., Gross, J. J. & Ochsner, K. N. Explicit and implicit emotion regulation: a multi-level framework. Soc. Cogn. Affect. Neurosci. 12, 1545–1557 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ochsner, K. N. & Gross, J. J. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–249 (2005).

    Article  PubMed  Google Scholar 

  36. Mather, M. & Sutherland, M. R. Arousal-biased competition in perception and memory. Persp. Psychol. Sci. 6, 114–133 (2011).

    Article  Google Scholar 

  37. Niedenthal, P. M. & Wood, A. Does emotion influence visual perception? Depends on how you look at it. Cogn. Emot. 33, 77–84 (2019).

    Article  PubMed  Google Scholar 

  38. Lorenzino, M. & Caudek, C. Task-irrelevant emotion facilitates face discrimination learning. Vis. Res. 108, 56–66 (2015).

    Article  PubMed  Google Scholar 

  39. Phelps, E. A., Ling, S. & Carrasco, M. Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychol. Sci. 17, 292–299 (2006).

    Article  PubMed  Google Scholar 

  40. Bocanegra, B. R. & Zeelenberg, R. Emotion improves and impairs early vision. Psychol. Sci. 20, 707–713 (2009).

    Article  PubMed  Google Scholar 

  41. Bocanegra, B. R. & Zeelenberg, R. Emotional cues enhance the attentional effects on spatial and temporal resolution. Psychon. Bull. Rev. 18, 1071–1076 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bocanegra, B. R. & Zeelenberg, R. Emotion-induced trade-offs in spatiotemporal vision. J. Exp. Psychol. Gen. 140, 272–282 (2011).

    Article  PubMed  Google Scholar 

  43. Bocanegra, B. R. & Zeelenberg, R. Emotion potentiates response activation and inhibition in masked priming. Front. Integr. Neurosci. 6, 109 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cooper, R. M. & Langton, S. R. Attentional bias to angry faces using the dot-probe task? It depends when you look for it. Behav. Res. Ther. 44, 1321–1329 (2006).

    Article  PubMed  Google Scholar 

  45. Zadra, J. R. & Clore, G. L. Emotion and perception: the role of affective information. Wiley Interdisc. Rev. Cogn. Sci. 2, 676–685 (2011).

    Article  Google Scholar 

  46. Riener, C. R., Stefanucci, J. K., Proffitt, D. R. & Clore, G. An effect of mood on the perception of geographical slant. Cogn. Emot. 25, 174–182 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lojowska, M., Gladwin, T. E., Hermans, E. J. & Roelofs, K. Freezing promotes perception of coarse visual features. J. Exp. Psychol. Gen. 144, 1080–1088 (2015).

    Article  PubMed  Google Scholar 

  48. Lojowska, M., Ling, S., Roelofs, K. & Hermans, E. J. Visuocortical changes during a freezing-like state in humans. NeuroImage 179, 313–325 (2018).

    Article  PubMed  Google Scholar 

  49. de Voogd, L. D., Hagenberg, E., Zhou, Y. J., de Lange, F. P. & Roelofs, K. Acute threat enhances perceptual sensitivity without affecting the decision criterion. Sci. Rep. 12, 9071 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Firestone, C. & Scholl, B. J. Cognition does not affect perception: evaluating the evidence for “top-down” effects. Behav. Brain Sci. 39, e229 (2016).

    Article  PubMed  Google Scholar 

  51. Glasgow, S., Imbriano, G., Jin, J. & Mohanty, A. Is threat detection Black and White? Race effects in threat-related perceptual decision-making. Emotion 22, 616–626 (2022).

    Article  PubMed  Google Scholar 

  52. Sussman, T. J., Szekely, A., Hajcak, G. & Mohanty, A. It’s all in the anticipation: how perception of threat is enhanced in anxiety. Emotion 16, 320 (2016).

    Article  PubMed  Google Scholar 

  53. Sussman, T. J., Weinberg, A., Szekely, A., Hajcak, G. & Mohanty, A. Here comes trouble: prestimulus brain activity predicts enhanced perception of threat. Cereb. Cortex 27, 2695–2707 (2017).

    PubMed  Google Scholar 

  54. Glasgow, S., Imbriano, G., Jin, J., Zhang, X. & Mohanty, A. Threat and uncertainty in the face of perceptual decision-making in anxiety. J. Psychopathol. Clin. Sci. 131, 265–277 (2022).

    Article  PubMed  Google Scholar 

  55. Ozturk, S. et al. Knowledge of threat biases perceptual decision making in anxiety: evidence from signal detection theory and drift diffusion modeling. Biol. Psychiatry Glob. Open Sci. 4, 145–154 (2024).

    Article  PubMed  Google Scholar 

  56. Mohanty, A., Egner, T., Monti, J. M. & Mesulam, M.-M. Search for a threatening target triggers limbic guidance of spatial attention. J. Neurosci. 29, 10563–10572 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  PubMed  Google Scholar 

  58. Maunsell, J. H. & Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 29, 317–322 (2006).

    Article  PubMed  Google Scholar 

  59. Summerfield, C. et al. Predictive codes for forthcoming perception in the frontal cortex. Science 314, 1311–1314 (2006).

    Article  PubMed  Google Scholar 

  60. Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. 13, 403–409 (2009).

    Article  PubMed  Google Scholar 

  61. Aviezer, H. et al. Angry, disgusted, or afraid? Studies on the malleability of emotion perception. Psychol. Sci. 19, 724–732 (2008).

    Article  PubMed  Google Scholar 

  62. Zinchenko, A., Geyer, T., Müller, H. J. & Conci, M. Affective modulation of memory-based guidance in visual search: dissociative role of positive and negative emotions. Emotion 20, 1301–1305 (2020).

    Article  PubMed  Google Scholar 

  63. Szekely, A., Rajaram, S. & Mohanty, A. Context learning for threat detection. Cogn. Emot. 31, 1525–1542 (2017).

    Article  PubMed  Google Scholar 

  64. Szekely, A., Rajaram, S. & Mohanty, A. Memory for dangers past: threat contexts produce more consistent learning than do non-threatening contexts. Cogn. Emot. 33, 1031–1040 (2019).

    Article  PubMed  Google Scholar 

  65. Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T. & Schwarzbach, J. Different time courses for visual perception and action priming. Proc. Natl Acad. Sci. USA 100, 6275–6280 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schacter, D. L. & Buckner, R. L. Priming and the brain. Neuron 20, 185–195 (1998).

    Article  PubMed  Google Scholar 

  67. Dehaene, S. et al. Imaging unconscious semantic priming. Nature 395, 597–600 (1998).

    Article  PubMed  Google Scholar 

  68. MacLeod, C. & Rutherford, E. M. in Implicit and Explicit Mental Processes (eds. Kirsner, K. et al.) 233–254 (Erlbaum, 1997).

  69. Oliva, A. & Torralba, A. The role of context in object recognition. Trends Cogn. Sci. 11, 520–527 (2007).

    Article  PubMed  Google Scholar 

  70. Bar, M. Visual objects in context. Nat. Rev. Neurosci. 5, 617–629 (2004).

    Article  PubMed  Google Scholar 

  71. Lynn, S. K. & Barrett, L. F. “Utilizing” signal detection theory. Psychol. Sci. 25, 1663–1673 (2014).

    Article  PubMed  Google Scholar 

  72. Locke, S. M. & Robinson, O. J. Affective bias through the lens of signal detection theory. Comput. Psychiatry 5, 4–20 (2021).

    Article  Google Scholar 

  73. Lu, Z.-L. & Dosher, B. A. Characterizing observers using external noise and observer models: assessing internal representations with external noise. Psychol. Rev. 115, 44–82 (2008).

    Article  PubMed  Google Scholar 

  74. Smith, P. L. & Ratcliff, R. An integrated theory of attention and decision making in visual signal detection. Psychol. Rev. 116, 283–317 (2009).

    Article  PubMed  Google Scholar 

  75. Wyart, V., Nobre, A. C. & Summerfield, C. Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. Proc. Natl Acad. Sci. USA 109, 3593–3598 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Swets, J. A., Tanner, W. P. Jr & Birdsall, T. G. Decision processes in perception. Psychol. Rev. 68, 301–340 (1961).

    Article  PubMed  Google Scholar 

  77. O’Connell, R. G., Shadlen, M. N., Wong-Lin, K. & Kelly, S. P. Bridging neural and computational viewpoints on perceptual decision-making. Trends Neurosci. 41, 838–852 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hanks, T. D. & Summerfield, C. Perceptual decision making in rodents, monkeys, and humans. Neuron 93, 15–31 (2017).

    Article  PubMed  Google Scholar 

  79. Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  PubMed  Google Scholar 

  81. Dunovan, K. E., Tremel, J. J. & Wheeler, M. E. Prior probability and feature predictability interactively bias perceptual decisions. Neuropsychologia 61, 210–221 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W. & Forstmann, B. U. Bias in the brain: a diffusion model analysis of prior probability and potential payoff. J. Neurosci. 32, 2335–2343 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cravo, A. M., Rohenkohl, G., Wyart, V. & Nobre, A. C. Endogenous modulation of low frequency oscillations by temporal expectations. J. Neurophysiol. 106, 2964–2972 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Friston, K. A theory of cortical responses. Phil. Trans. R. Soc. Lond. B 360, 815–836 (2005).

    Article  Google Scholar 

  85. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    Article  PubMed  Google Scholar 

  86. Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013).

    Article  PubMed  Google Scholar 

  87. Hesp, C., Smith, R., Allen, M., Friston, K. & Ramstead, M. Deeply felt affect: the emergence of valence in deep active inference. Neural Comput. 33, 398–446 (2019).

    Article  Google Scholar 

  88. Smith, R. et al. Perceptual insensitivity to the modulation of interoceptive signals in depression, anxiety, and substance use disorders. Sci. Rep. 11, 2108 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Smith, R. et al. A Bayesian computational model reveals a failure to adapt interoceptive precision estimates across depression, anxiety, eating, and substance use disorders. PLOS Comput. Biol. 16, e1008484 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Seth, A. K. & Friston, K. J. Active interoceptive inference and the emotional brain. Phil. Trans. R. Soc. B 371, 20160007 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rungratsameetaweemana, N. & Serences, J. T. Dissociating the impact of attention and expectation on early sensory processing. Curr. Opin. Psychol. 29, 181–186 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Jiang, J., Summerfield, C. & Egner, T. Attention sharpens the distinction between expected and unexpected percepts in the visual brain. J. Neurosci. 33, 18438–18447 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Feldman, H. & Friston, K. J. Attention, uncertainty, and free-energy. Front. Hum. Neurosci 4, 215 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gordon, N., Tsuchiya, N., Koenig-Robert, R. & Hohwy, J. Expectation and attention increase the integration of top-down and bottom-up signals in perception through different pathways. PLoS Biol. 17, e3000233 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jin, J., Jonas, K. & Mohanty, A. Linking the past to the future by predictive processing: implications for psychopathology. J. Psychopathol. Clin. Sci. 132, 249 (2023).

    Article  PubMed  Google Scholar 

  96. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Article  PubMed  Google Scholar 

  97. Floris, Pd. L., Dobromir, A. R., Tobias, H. D. & Hakwan, L. Prestimulus oscillatory activity over motor cortex reflects perceptual expectations. J. Neurosci. 33, 1400 (2013).

    Article  Google Scholar 

  98. Carretie, L. Exogenous (automatic) attention to emotional stimuli: a review. Cogn. Affect. Behav. Neurosci. 14, 1228–1258 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Treisman, A. How the deployment of attention determines what we see. Vis. Cogn. 14, 411–443 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bundesen, C. A theory of visual attention. Psychol. Rev. 97, 523–547 (1990).

    Article  PubMed  Google Scholar 

  101. Brown, C. R. H., Berggren, N. & Forster, S. Testing a goal-driven account of involuntary attentional capture by threat. Emotion 20, 572–589 (2020).

    Article  PubMed  Google Scholar 

  102. Frischen, A., Eastwood, J. D. & Smilek, D. Visual search for faces with emotional expressions. Psychol. Bull. 134, 662–676 (2008).

    Article  PubMed  Google Scholar 

  103. Hahn, S. & Gronlund, S. D. Top-down guidance in visual search for facial expressions. Psychon. Bull. Rev. 14, 159–165 (2007).

    Article  PubMed  Google Scholar 

  104. Vromen, J. M., Lipp, O. V., Remington, R. W. & Becker, S. I. Threat captures attention, but not automatically: top-down goals modulate attentional orienting to threat distractors. Attent. Percept. Psychophys. 78, 2266–2279 (2016).

    Article  Google Scholar 

  105. Schupp, H. T., Junghöfer, M., Weike, A. I. & Hamm, A. O. The selective processing of briefly presented affective pictures: an ERP analysis. Psychophysiology 41, 441–449 (2004).

    Article  PubMed  Google Scholar 

  106. Schupp, H. T. et al. The facilitated processing of threatening faces: an ERP analysis. Emotion 4, 189–200 (2004).

    Article  PubMed  Google Scholar 

  107. Schupp, H. T. et al. Selective visual attention to emotion. J. Neurosci. 27, 1082–1089 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Imbriano, G., Sussman, T. J., Jin, J. & Mohanty, A. The role of imagery in threat-related perceptual decision making. Emotion 20, 1495–1501 (2020).

    Article  PubMed  Google Scholar 

  109. Hesselmann, G., Sadaghiani, S., Friston, K. J. & Kleinschmidt, A. Predictive coding or evidence accumulation? False inference and neuronal fluctuations. PLoS ONE 5, e9926 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Shibata, K. et al. The effects of feature attention on prestimulus cortical activity in the human visual system. Cereb. Cortex 18, 1664–1675 (2007).

    Article  PubMed  Google Scholar 

  111. Battistoni, E., Stein, T. & Peelen, M. V. Preparatory attention in visual cortex. Ann. NY Acad. Sci. 1396, 92–107 (2017).

    Article  PubMed  Google Scholar 

  112. Kloosterman, N. A., Kosciessa, J. Q., Lindenberger, U., Fahrenfort, J. J. & Garrett, D. D. Boosts in brain signal variability track liberal shifts in decision bias. eLife 9, e54201 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Liu, T. Feature-based attention: effects and control. Curr. Opin. Psychol. 29, 187–192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Baluch, F. & Itti, L. Mechanisms of top-down attention. Trends Neurosci. 34, 210–224 (2011).

    Article  PubMed  Google Scholar 

  115. Amaral, D. & Price, J. Amygdalo‐cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol. 230, 465–496 (1984).

    Article  PubMed  Google Scholar 

  116. Catani, M., Jones, D. K., Donato, R. & Ffytche, D. H. Occipito‐temporal connections in the human brain. Brain 126, 2093–2107 (2003).

    Article  PubMed  Google Scholar 

  117. Morris, J. S. et al. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain J. Neurol. 121, 47–57 (1998).

    Article  Google Scholar 

  118. Pourtois, G., Schettino, A. & Vuilleumier, P. Brain mechanisms for emotional influences on perception and attention: what is magic and what is not. Biol. Psychol. 92, 492–512 (2013).

    Article  PubMed  Google Scholar 

  119. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    Article  PubMed  Google Scholar 

  120. Spaak, E., Watanabe, K., Funahashi, S. & Stokes, M. G. Stable and dynamic coding for working memory in primate prefrontal cortex. J. Neurosci. 37, 6503–6516 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sreenivasan, K. K., Curtis, C. E. & D’Esposito, M. Revisiting the role of persistent neural activity during working memory. Trends Cogn. Sci. 18, 82–89 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Leon, M. I. & Shadlen, M. N. Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 24, 415–425 (1999).

    Article  PubMed  Google Scholar 

  123. Plassmann, H., O’doherty, J. & Rangel, A. Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J. Neurosci. 27, 9984–9988 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Dricu, M., Ceravolo, L., Grandjean, D. & Frühholz, S. Biased and unbiased perceptual decision-making on vocal emotions. Sci. Rep. 7, 16274 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mohanty, A., Gitelman, D. R., Small, D. M. & Mesulam, M. M. The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts. Cereb. Cortex 18, 2604–2613 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kastner, S., De Weerd, P., Desimone, R. & Ungerleider, L. G. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282, 108–111 (1998).

    Article  PubMed  Google Scholar 

  127. Mesulam, M. M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10, 309–325 (1981).

    Article  PubMed  Google Scholar 

  128. Mesulam, M.-M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Phil. Trans. R. Soc. Lond. B 354, 1325–1346 (1999).

    Article  Google Scholar 

  129. Gitelman, D. R. et al. A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122, 1093–1106 (1999).

    Article  PubMed  Google Scholar 

  130. Gottlieb, J. From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron 53, 9–16 (2007).

    Article  PubMed  Google Scholar 

  131. Egner, T. et al. Neural integration of top-down spatial and feature-based information in visual search. J. Neurosci. 28, 6141–6151 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. Ann. Rev. Neurosci. 33, 1–21 (2010).

    Article  PubMed  Google Scholar 

  133. Ousdal, O. T. et al. The human amygdala encodes value and space during decision making. Neuroimage 101, 712–719 (2014).

    Article  PubMed  Google Scholar 

  134. Aue, T., Chauvigné, L. A., Bristle, M., Okon-Singer, H. & Guex, R. Expectancy influences on attention to threat are only weak and transient: behavioral and physiological evidence. Biol. Psychol. 121, 173–186 (2016).

    Article  PubMed  Google Scholar 

  135. Aue, T., Guex, R., Chauvigné, L. A. & Okon-Singer, H. Varying expectancies and attention bias in phobic and non-phobic individuals. Front. Hum. Neurosci. 7, 418 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Aue, T., Guex, R., Chauvigné, L. A. S., Okon-Singer, H. & Vuilleumier, P. Expectancies influence attention to neutral but not necessarily to threatening stimuli: an fMRI study. Emotion 19, 1244–1258 (2019).

    Article  PubMed  Google Scholar 

  137. Haddara, N. & Dobromir, R. Threat expectation does not improve perceptual discrimination despite causing heightened priority processing in the frontoparietal network. J. Neurosci. 44, e1219232023 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Rahnev, D., Lau, H. & de Lange, F. P. Prior expectation modulates the interaction between sensory and prefrontal regions in the human brain. J. Neurosci. 31, 10741–10748 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Esterman, M. & Yantis, S. Perceptual expectation evokes category-selective cortical activity. Cereb. Cortex 20, 1245–1253 (2010).

    Article  PubMed  Google Scholar 

  140. Peelen, M. V., Fei-Fei, L. & Kastner, S. Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature 460, 94–97 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Stokes, M., Thompson, R., Nobre, A. C. & Duncan, J. Shape-specific preparatory activity mediates attention to targets in human visual cortex. Proc. Natl Acad. Sci. USA 106, 19569–19574 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kok, P., Jehee, J. F. M. & de Lange, F. P. Less is more: expectation sharpens representations in the primary visual cortex. Neuron 75, 265–270 (2012).

    Article  PubMed  Google Scholar 

  143. Barrett, L. F., Mesquita, B. & Gendron, M. Context in emotion perception. Curr. Dir. Psychol. Sci. 20, 286–290 (2011).

    Article  Google Scholar 

  144. Aviezer, H., Ensenberg, N. & Hassin, R. R. The inherently contextualized nature of facial emotion perception. Curr. Opin. Psychol. 17, 47–54 (2017).

    Article  PubMed  Google Scholar 

  145. Gendron, M., Lindquist, K. A., Barsalou, L. & Barrett, L. F. Emotion words shape emotion percepts. Emotion 12, 314–325 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Nook, E. C., Lindquist, K. A. & Zaki, J. A new look at emotion perception: concepts speed and shape facial emotion recognition. Emotion 15, 569–578 (2015).

    Article  PubMed  Google Scholar 

  147. Brooks, J. A. & Freeman, J. B. Conceptual knowledge predicts the representational structure of facial emotion perception. Nat. Hum. Behav. 2, 581–591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. de Gelder, B. et al. Beyond the face: exploring rapid influences of context on face processing. Prog. Brain Res. 155, 37–48 (2006).

    Article  PubMed  Google Scholar 

  149. Wieser, M. J. & Brosch, T. Faces in context: a review and systematization of contextual influences on affective face processing. Front. Psychol. 3, 471 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Albright, T. D. On the perception of probable things: neural substrates of associative memory, imagery, and perception. Neuron 74, 227–245 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Turk-Browne, N. B., Jungé, J. & Scholl, B. J. The automaticity of visual statistical learning. J. Exp. Psychol. Gen. 134, 552–564 (2005).

    Article  PubMed  Google Scholar 

  152. Turk-Browne, N. B., Scholl, B. J., Johnson, M. K. & Chun, M. M. Implicit perceptual anticipation triggered by statistical learning. J. Neurosci. 30, 11177–11187 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Everaert, J., Koster, E. H. W. & Joormann, J. Finding patterns in emotional information: enhanced sensitivity to statistical regularities within negative information. Emotion 20, 426–435 (2020).

    Article  PubMed  Google Scholar 

  154. Chun, M. M. & Jiang, Y. Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cogn. Psychol. 36, 28–71 (1998).

    Article  PubMed  Google Scholar 

  155. Plate, R. C., Schapiro, A. C. & Waller, R. Emotional faces facilitate statistical learning. Affect. Sci. 3, 662–672 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Duncan, J. & Humphreys, G. W. Visual search and stimulus similarity. Psychol. Rev. 96, 433 (1989).

    Article  PubMed  Google Scholar 

  157. Olivers, C. N., Peters, J., Houtkamp, R. & Roelfsema, P. R. Different states in visual working memory: when it guides attention and when it does not. Trends Cogn. Sci. 15, 327–334 (2011).

    PubMed  Google Scholar 

  158. Wolfe, J. M. Guided Search 2.0 a revised model of visual search. Psychon. Bull. Rev. 1, 202–238 (1994).

    Article  PubMed  Google Scholar 

  159. Geng, J. J. & Witkowski, P. Template-to-distractor distinctiveness regulates visual search efficiency. Curr. Opin. Psychol. 29, 119–125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Bravo, M. J. & Farid, H. The specificity of the search template. J. Vis. 9, 34–34 (2009).

    Article  Google Scholar 

  161. Yang, H. & Zelinsky, G. J. Visual search is guided to categorically-defined targets. Vis. Res. 49, 2095–2103 (2009).

    Article  PubMed  Google Scholar 

  162. Won, B.-Y., Haberman, J., Bliss-Moreau, E. & Geng, J. J. Flexible target templates improve visual search accuracy for faces depicting emotion. Atten. Percept. Psychophys. 82, 2909–2923 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Bywaters, M., Andrade, J. & Turpin, G. Determinants of the vividness of visual imagery: The effects of delayed recall, stimulus affect and individual differences. Memory 12, 479–488 (2004).

    Article  PubMed  Google Scholar 

  164. Asch, S. E. in Groups, Leadership and Men; Research in Human Relations (ed. Guetzkow, H.) 177–190 (Carnegie, 1951).

  165. Hess, U., Adams, R. B. Jr., Grammer, K. & Kleck, R. E. Face gender and emotion expression: are angry women more like men? J. Vis. 9, 19.11–18 (2009).

    Article  Google Scholar 

  166. Givon, E. et al. Are women truly “more emotional” than men? Sex differences in an indirect model-based measure of emotional feelings. Curr. Psychol. 42, 32469–32482 (2023).

  167. Hugenberg, K. & Bodenhausen, G. V. Facing prejudice: implicit prejudice and the perception of facial threat. Psychol. Sci. 14, 640–643 (2003).

    Article  PubMed  Google Scholar 

  168. Hugenberg, K. & Bodenhausen, G. V. Ambiguity in social categorization: the role of prejudice and facial affect in race categorization. Psychol. Sci. 15, 342–345 (2004).

    Article  PubMed  Google Scholar 

  169. Freeman, J. B. & Ambady, N. A dynamic interactive theory of person construal. Psychol. Rev. 118, 247–279 (2011).

    Article  PubMed  Google Scholar 

  170. Becker, D. V., Kenrick, D. T., Neuberg, S. L., Blackwell, K. C., & Smith, D. M. The confounded nature of angry men and happy women. J. Person. Soc. Psychol. 92, 179–190 (2007).

    Article  Google Scholar 

  171. Stolier, R. M. & Freeman, J. B. Neural pattern similarity reveals the inherent intersection of social categories. Nat. Neurosci. 19, 795–797 (2016).

    Article  PubMed  Google Scholar 

  172. Eberhardt, J. L., Goff, P. A., Purdie, V. J. & Davies, P. G. Seeing Black: race, crime, and visual processing. J. Person. Soc. Psychol. 87, 876–893 (2004).

    Article  Google Scholar 

  173. Barnett, B. O., Brooks, J. A. & Freeman, J. B. Stereotypes bias face perception via orbitofrontal–fusiform cortical interaction. Soc. Cogn. Affect. Neurosci. 16, 302–314 (2020).

    Article  PubMed Central  Google Scholar 

  174. Brooks, J. A., Chikazoe, J., Sadato, N. & Freeman, J. B. The neural representation of facial-emotion categories reflects conceptual structure. Proc. Natl Acad. Sci. USA 116, 15861–15870 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Todd, A. R. et al. Category salience and racial bias in weapon identification: a diffusion modeling approach. J. Pers. Soc. Psychol. 120, 672–693 (2021).

    Article  PubMed  Google Scholar 

  176. Germar, M., Schlemmer, A., Krug, K., Voss, A. & Mojzisch, A. Social influence and perceptual decision making: a diffusion model analysis. Pers. Soc. Psychol. Bull. 40, 217–231 (2014).

    Article  PubMed  Google Scholar 

  177. Large, I., Pellicano, E., Mojzisch, A. & Krug, K. Developmental trajectory of social influence integration into perceptual decisions in children. Proc. Natl Acad. Sci. USA 116, 2713–2722 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Willroth, E. C., Koban, L. & Hilimire, M. R. Social information influences emotional experience and late positive potential response to affective pictures. Emotion 17, 572–576 (2017).

    Article  PubMed  Google Scholar 

  179. Lerche, V., Bucher, A. & Voss, A. Processing emotional expressions under fear of rejection: findings from diffusion model analyses. Emotion 21, 184–210 (2021).

    Article  PubMed  Google Scholar 

  180. Masuda, T., Wang, H., Ishii, K. & Ito, K. Do surrounding figures’ emotions affect judgment of the target figure’s emotion? Comparing the eye-movement patterns of European Canadians, Asian Canadians, Asian international students, and Japanese. Front. Integr. Neurosci. 6, 72 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Goldenberg, A., Weisz, E., Sweeny, T. D., Cikara, M. & Gross, J. J. The crowd-emotion-amplification effect. Psychol. Sci. 32, 437–450 (2021).

    Article  PubMed  Google Scholar 

  182. Andrew H. Chwe, J. & Freeman, J. B. Trustworthiness of crowds is gleaned in half a second. Soc. Psychol. Pers. Sci. 15, 351–359 (2024).

    Article  Google Scholar 

  183. Ngai, H. H. T., Hsiao, J. H., Luhmann, C. C., Mohanty, A., & Jin, J. How is emotional evidence from multiple sources used in perceptual decision making? Psychophysiology 62, e14727 (2025).

    Article  PubMed  Google Scholar 

  184. Goldenberg, A., LaFollette, K. J., Huang, Z., Weisz, E. & Cikara, M. Judgment of crowds as emotional increases with the proportion of black faces. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/ys65p (2022).

  185. Anderson, E., Siegel, E. H. & Barrett, L. F. What you feel influences what you see: the role of affective feelings in resolving binocular rivalry. J. Exp. Soc. Psychol 47, 856–860 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Ingle, D. Focal attention in the frog: behavioral and physiological correlates. Science 188, 1033–1035 (1975).

    Article  PubMed  Google Scholar 

  187. Nobre, A. C. & Stokes, M. G. Premembering experience: a hierarchy of time-scales for proactive attention. Neuron 104, 132–146 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (APA, 2013).

  189. Gladwin, T. E., Möbius, M., McLoughlin, S. & Tyndall, I. Anticipatory versus reactive spatial attentional bias to threat. Br. J. Psychol. 110, 3–14 (2019).

    Article  PubMed  Google Scholar 

  190. Gladwin, T. E. & Vink, M. Spatial anticipatory attentional bias for threat: reliable individual differences with RT-based online measurement. Conscious. Cogn. 81, 102930 (2020).

    Article  PubMed  Google Scholar 

  191. Basanovic, J. & MacLeod, C. Does anxiety-linked attentional bias to threatening information reflect bias in the setting of attentional goals, or bias in the execution of attentional goals? Cogn. Emot. 31, 538–551 (2017).

    Article  PubMed  Google Scholar 

  192. Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Kube, T., Rozenkrantz, L., Rief, W. & Barsky, A. Understanding persistent physical symptoms: conceptual integration of psychological expectation models and predictive processing accounts. Clin. Psychol. Rev. 76, 101829 (2020).

    Article  PubMed  Google Scholar 

  194. Rief, W. & Joormann, J. Revisiting the cognitive model of depression: the role of expectations. Clin. Psychol. Eur. 1, 1–19 (2019).

    Article  Google Scholar 

  195. Hempel, C. G. Philosophy of Natural Science (Prentice Hall, 1966).

  196. Kagan, J. A trio of concerns. Persp. Psychol. Sci. 2, 361–376 (2007).

    Article  Google Scholar 

  197. Kozak, M. J. & Miller, G. A. Hypothetical constructs versus intervening variables: a re-appraisal of the three-systems model of anxiety assessment. Behav. Assess. 4, 347–358 (1982).

    Google Scholar 

  198. Lang, P. J. in Research in Psychotherapy (ed. Shlien, J. M.) 90–102 (American Psychological Association, 1968).

  199. Birbaumer, N. & Öhman, A. (eds) The Structure of Emotion: Physiological, Cognitive and Clinical Aspects (Hogrefe & Huber, 1993).

  200. Miller, G. A. & Keller, J. Psychology and neuroscience: making peace. Curr. Dir. Psychol. Sci. 9, 212–215 (2000).

    Article  Google Scholar 

  201. LeDoux, J. E. & Pine, D. S. Using neuroscience to help understand fear and anxiety: a two-system framework. Am. J. Psychiatry 173, 1083–1093 (2016).

    Article  PubMed  Google Scholar 

  202. Ekman, P. Are there basic emotions? Psychol. Rev. 99, 550–553 (1992).

    Article  PubMed  Google Scholar 

  203. Cowen, A. S. et al. Sixteen facial expressions occur in similar contexts worldwide. Nature 589, 251–257 (2021).

    Article  PubMed  Google Scholar 

  204. Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Ohman, A. & Mineka, S. Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol. Rev. 108, 483–522 (2001).

    Article  PubMed  Google Scholar 

  206. Vuilleumier, P. How brains beware: neural mechanisms of emotional attention. Trends Cogn. Sci. 9, 585–594 (2005).

    Article  PubMed  Google Scholar 

  207. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  PubMed  Google Scholar 

  208. Dolcos, F. et al. Neural correlates of emotion-attention interactions: from perception, learning, and memory to social cognition, individual differences, and training interventions. Neurosci. Biobehav. Rev. 108, 559–601 (2020).

    Article  PubMed  Google Scholar 

  209. Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J. & van IJzendoorn, M. H. Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychol. Bull. 133, 1–24 (2007).

    Article  PubMed  Google Scholar 

  210. LeDoux, J. Fear and the brain: where have we been, and where are we going? Biol. Psychiatry 44, 1229–1238 (1998).

    Article  PubMed  Google Scholar 

  211. Maclean, P. D. Psychosomatic disease and the “visceral brain”: recent developments bearing on the papez theory of emotion. Psychosom. Med. 11, 338–353 (1949).

    Article  PubMed  Google Scholar 

  212. Ohman, A. The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinology 30, 953–958 (2005).

    Article  PubMed  Google Scholar 

  213. Panksepp, J. Beyond a joke: from animal laughter to human joy? Science 308, 62–63 (2005).

    Article  PubMed  Google Scholar 

  214. Papez, J. W. A proposed mechanism of emotion. 1937. J. Neuropsychiatry Clin. Neurosci. 7, 103–112 (1995).

    Article  PubMed  Google Scholar 

  215. Vuilleumier, P. & Driver, J. Modulation of visual processing by attention and emotion: windows on causal interactions between human brain regions. Phil. Trans. R. Soc. Lond. B 362, 837–855 (2007).

    Article  Google Scholar 

  216. Cisler, J. M. & Koster, E. H. Mechanisms of attentional biases towards threat in anxiety disorders: an integrative review. Clin. Psychol. Rev. 30, 203–216 (2010).

    Article  PubMed  Google Scholar 

  217. Bodenhausen, G. V., & Hugenberg, K. in Social Cognition: the Basis of Human Interaction (eds. Strack, F. & Förster, J.) 1–22 (Psychology Press, 2009).

  218. Schachter, S. & Singer, J. Cognitive, social, and physiological determinants of emotional state. Psychol. Rev. 69, 379–399 (1962).

    Article  PubMed  Google Scholar 

  219. Lazarus, R. S. Progress on a cognitive-motivational-relational theory of emotion. Am. Psychol. 46, 819–834 (1991).

    Article  PubMed  Google Scholar 

  220. Scherer, K. R. The dynamic architecture of emotion: evidence for the component process model. Cogn. Emot. 23, 1307–1351 (2009).

    Article  Google Scholar 

  221. Barrett, L. F. The theory of constructed emotion: an active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. 12, 1–23 (2017).

    Article  PubMed  Google Scholar 

  222. Russell, J. A. Core affect and the psychological construction of emotion. Psychol. Rev. 110, 145–172 (2003).

    Article  PubMed  Google Scholar 

  223. Wilkinson, S., Deane, G., Nave, K. & Clark, A. in The Value of Emotions for Knowledge (ed. Candiotto, L.) 101–119 (Springer International, 2019).

  224. Faisal, A. A., Selen, L. P. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Aston, S., Nardini, M. & Beierholm, U. Different types of uncertainty in multisensory perceptual decision making. Phil. Trans. R Soc. Lond. B 378, 20220349 (2023).

    Article  Google Scholar 

  226. Friston, K., Kilner, J. & Harrison, L. A free energy principle for the brain. J. Physiol. Paris 100, 70–87 (2006).

    Article  PubMed  Google Scholar 

  227. Gelman, A. et al. Bayesian Data Analysis 3rd edn (Taylor & Francis, 2013).

  228. Pollack, I. & Decker, L. R. Confidence ratings, message reception, and the receiver operating characteristic. J. Acoust. Soc. Am. 30, 286–292 (1958).

    Article  Google Scholar 

  229. Yeung, N. & Summerfield, C. Metacognition in human decision-making: confidence and error monitoring. Phil. Trans. R. Soc. B 367, 1310–1321 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Fleming, S. M., Dolan, R. J. & Frith, C. D. Metacognition: computation, biology and function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1280–1286 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).

    Article  PubMed  Google Scholar 

  232. Kiani, R. & Shadlen, M. N. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324, 759–764 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Balsdon, T., Mamassian, P. & Wyart, V. Separable neural signatures of confidence during perceptual decisions. eLife 10, e68491 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Bègue, I. et al. Confidence of emotion expression recognition recruits brain regions outside the face perception network. Soc. Cogn. Affect. Neurosci. 14, 81–95 (2019).

    Article  PubMed  Google Scholar 

  235. Koizumi, A., Mobbs, D. & Lau, H. Is fear perception special? Evidence at the level of decision-making and subjective confidence. Soc. Cogn. Affect. Neurosci. 11, 1772–1782 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Seth, A. K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 17, 565–573 (2013).

    Article  PubMed  Google Scholar 

  237. Critchley, H. D. & Garfinkel, S. N. Interoception and emotion. Curr. Opin. Psychol. 17, 7–14 (2017).

    Article  PubMed  Google Scholar 

  238. Engelen, T., Solcà, M. & Tallon-Baudry, C. Interoceptive rhythms in the brain. Nat. Neurosci. 26, 1670–1684 (2023).

    Article  PubMed  Google Scholar 

  239. Garfinkel, S. N. et al. Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. J. Neurosci. 34, 6573–6582 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Zelano, C. et al. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 36, 12448–12467 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Park, H.-D., Correia, S., Ducorps, A. & Tallon-Baudry, C. Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nat. Neurosci. 17, 612–618 (2014).

    Article  PubMed  Google Scholar 

  242. Marshall, A. C., Gentsch, A., Schröder, L. & Schütz-Bosbach, S. Cardiac interoceptive learning is modulated by emotional valence perceived from facial expressions. Soc. Cogn. Affect. Neurosci. 13, 677–686 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Marshall, A. C., Gentsch, A. & Schütz-Bosbach, S. Interoceptive cardiac expectations to emotional stimuli predict visual perception. Emotion 20, 1113–1126 (2020).

    Article  PubMed  Google Scholar 

  244. Marshall, A. C., Gentsch, A., Jelinčić, V. & Schütz-Bosbach, S. Exteroceptive expectations modulate interoceptive processing: repetition-suppression effects for visual and heartbeat evoked potentials. Sci. Rep. 7, 16525 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Neuroscience of Emotion, Cognition and Psychopathology laboratory at Stony Brook University.

Author information

Authors and Affiliations

Authors

Contributions

A.M. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Aprajita Mohanty.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks the anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, A., Freeman, J. & Jin, J. Top-down influences on the perception of emotional stimuli. Nat Rev Psychol 4, 388–403 (2025). https://doi.org/10.1038/s44159-025-00446-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44159-025-00446-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing