Abstract
The ability to quickly and accurately perceive external emotional stimuli — events in the environment that evoke changes in feelings, physiology and behaviour — is vital for adaptive social interactions and effective decision making in everyday life. Contemporary theories of emotional perception emphasize the influence of top-down information (such as prior knowledge and context) in shaping the perception of emotional stimuli. However, experimental research has mainly focused on the automatic, bottom-up aspects that are driven by the stimuli themselves (such as salience). Research in the adjacent field of visual perception has used behavioural, computational and neuroimaging techniques to reveal how prior knowledge aids perception in a top-down manner. In this Review, we explore studies that leverage similar methods to demonstrate how top-down influences — including social and emotional attention, expectations and context — shape the perception of emotional stimuli. In doing so, we aim to promote the development of comprehensive models that incorporate top-down factors with bottom-up factors to explain the perception of emotional stimuli.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$59.00 per year
only $4.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Darwin, C. The Expression of the Emotions in Man and Animals (John Murray, 1872).
Izard, C. E. Emotion theory and research: highlights, unanswered questions, and emerging issues. Annu. Rev. Psychol. 60, 1–25 (2008).
Itti, L., Koch, C. & Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998).
Goudriaan, T. Māyā Divine and Human: A Study of Magic and its Religious Foundations in Sanskrit Texts, with Particular Attention to a Fragment on Viṣṇu’s Māyā preserved in Bali (Motilal Banarsidass, 1978).
Helmholtz, H. V. Treatise on Physiological Optics (Dover, 1860).
Gregory, R. L. Perceptions as hypotheses. Phil. Trans. R. Soc. Lond. B 290, 181–197 (1980).
Gilbert, C. D. & Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013).
Maunsell, J. H. & Newsome, W. T. Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10, 363–401 (1987).
Powers, W. T. Behavior: The Control of Perception (Aldine, 1973).
Kersten, D., Mamassian, P. & Yuille, A. Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271–304 (2004).
Knill, D. C. & Richards, W. Perception as Bayesian Inference (Cambridge Univ. Press, 1996).
Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).
Summerfield, C. & de Lange, F. P. Expectation in perceptual decision making: neural and computational mechanisms. Nat. Rev. Neurosci. 15, 745–756 (2014).
Itti, L. & Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001).
Loewenstein, G. F., Weber, E. U., Hsee, C. K. & Welch, N. Risk as feelings. Psychol. Bull. 127, 267–286 (2001).
Slovic, P. & Peters, E. Risk perception and affect. Curr. Dir. Psychol. Sci. 15, 322–325 (2006).
Bermpohl, F. et al. Dissociable networks for the expectancy and perception of emotional stimuli in the human brain. Neuroimage 30, 588–600 (2006).
Bermpohl, F. et al. Attentional modulation of emotional stimulus processing: an fMRI study using emotional expectancy. Hum. Brain Mapp. 27, 662–677 (2006).
O’Doherty, J. P., Deichmann, R., Critchley, H. D. & Dolan, R. J. Neural responses during anticipation of a primary taste reward. Neuron 33, 815–826 (2002).
Phelps, E. A. et al. Activation of the left amygdala to a cognitive representation of fear. Nat. Neurosci. 4, 437–441 (2001).
Moors, A., Boddez, Y. & De Houwer, J. The power of goal-directed processes in the causation of emotional and other actions. Emot. Rev. 9, 310–318 (2017).
Moors, A. & Fischer, M. Demystifying the role of emotion in behaviour: toward a goal-directed account. Cogn. Emot. 33, 94–100 (2019).
Folyi, T., Rohr, M. & Wentura, D. When emotions guide your attention in line with a context-specific goal: rapid utilization of visible and masked emotional faces for anticipatory attentional orienting. Emotion 20, 1206–1224 (2020).
Freeman, J. B. & Johnson, K. L. More than meets the eye: split-second social perception. Trends Cogn. Sci. 20, 362–374 (2016).
Briggs, F. Role of feedback connections in central visual processing. Annu. Rev. Vis. Sci. 6, 313–334 (2020).
Beck, A. T. Depression: Clinical, Experimental, and Theoretical Aspects (Staples, 1967).
Beck, A. T. Cognitive Therapy and the Emotional Disorders (Penguin, 1979).
Young, J. E., Klosko, J. S. & Weishaar, M. E. Schema Therapy: A Practitioner’s Guide (Guilford, 2006).
Richards, H. J., Benson, V., Donnelly, N. & Hadwin, J. A. Exploring the function of selective attention and hypervigilance for threat in anxiety. Clin. Psychol. Rev. 34, 1–13 (2014).
Brosch, T., Pourtois, G. & Sander, D. The perception and categorisation of emotional stimuli: a review. Cogn. Emot. 24, 377–400 (2010).
Chaiken, S. & Trope, Y. Dual-Process Theories in Social Psychology (Guilford Press, 1999).
Kahneman, D. Thinking, Fast and Slow (Macmillan, 2011).
Barrett, L. F., Ochsner, K. N. & Gross, J. J. in Social Psychology and the Unconscious: The Automaticity of Higher Mental Processes (ed. Bargh, J. A.) 173–217 (Psychology Press, 2007).
Braunstein, L. M., Gross, J. J. & Ochsner, K. N. Explicit and implicit emotion regulation: a multi-level framework. Soc. Cogn. Affect. Neurosci. 12, 1545–1557 (2017).
Ochsner, K. N. & Gross, J. J. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–249 (2005).
Mather, M. & Sutherland, M. R. Arousal-biased competition in perception and memory. Persp. Psychol. Sci. 6, 114–133 (2011).
Niedenthal, P. M. & Wood, A. Does emotion influence visual perception? Depends on how you look at it. Cogn. Emot. 33, 77–84 (2019).
Lorenzino, M. & Caudek, C. Task-irrelevant emotion facilitates face discrimination learning. Vis. Res. 108, 56–66 (2015).
Phelps, E. A., Ling, S. & Carrasco, M. Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychol. Sci. 17, 292–299 (2006).
Bocanegra, B. R. & Zeelenberg, R. Emotion improves and impairs early vision. Psychol. Sci. 20, 707–713 (2009).
Bocanegra, B. R. & Zeelenberg, R. Emotional cues enhance the attentional effects on spatial and temporal resolution. Psychon. Bull. Rev. 18, 1071–1076 (2011).
Bocanegra, B. R. & Zeelenberg, R. Emotion-induced trade-offs in spatiotemporal vision. J. Exp. Psychol. Gen. 140, 272–282 (2011).
Bocanegra, B. R. & Zeelenberg, R. Emotion potentiates response activation and inhibition in masked priming. Front. Integr. Neurosci. 6, 109 (2012).
Cooper, R. M. & Langton, S. R. Attentional bias to angry faces using the dot-probe task? It depends when you look for it. Behav. Res. Ther. 44, 1321–1329 (2006).
Zadra, J. R. & Clore, G. L. Emotion and perception: the role of affective information. Wiley Interdisc. Rev. Cogn. Sci. 2, 676–685 (2011).
Riener, C. R., Stefanucci, J. K., Proffitt, D. R. & Clore, G. An effect of mood on the perception of geographical slant. Cogn. Emot. 25, 174–182 (2011).
Lojowska, M., Gladwin, T. E., Hermans, E. J. & Roelofs, K. Freezing promotes perception of coarse visual features. J. Exp. Psychol. Gen. 144, 1080–1088 (2015).
Lojowska, M., Ling, S., Roelofs, K. & Hermans, E. J. Visuocortical changes during a freezing-like state in humans. NeuroImage 179, 313–325 (2018).
de Voogd, L. D., Hagenberg, E., Zhou, Y. J., de Lange, F. P. & Roelofs, K. Acute threat enhances perceptual sensitivity without affecting the decision criterion. Sci. Rep. 12, 9071 (2022).
Firestone, C. & Scholl, B. J. Cognition does not affect perception: evaluating the evidence for “top-down” effects. Behav. Brain Sci. 39, e229 (2016).
Glasgow, S., Imbriano, G., Jin, J. & Mohanty, A. Is threat detection Black and White? Race effects in threat-related perceptual decision-making. Emotion 22, 616–626 (2022).
Sussman, T. J., Szekely, A., Hajcak, G. & Mohanty, A. It’s all in the anticipation: how perception of threat is enhanced in anxiety. Emotion 16, 320 (2016).
Sussman, T. J., Weinberg, A., Szekely, A., Hajcak, G. & Mohanty, A. Here comes trouble: prestimulus brain activity predicts enhanced perception of threat. Cereb. Cortex 27, 2695–2707 (2017).
Glasgow, S., Imbriano, G., Jin, J., Zhang, X. & Mohanty, A. Threat and uncertainty in the face of perceptual decision-making in anxiety. J. Psychopathol. Clin. Sci. 131, 265–277 (2022).
Ozturk, S. et al. Knowledge of threat biases perceptual decision making in anxiety: evidence from signal detection theory and drift diffusion modeling. Biol. Psychiatry Glob. Open Sci. 4, 145–154 (2024).
Mohanty, A., Egner, T., Monti, J. M. & Mesulam, M.-M. Search for a threatening target triggers limbic guidance of spatial attention. J. Neurosci. 29, 10563–10572 (2009).
Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).
Maunsell, J. H. & Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 29, 317–322 (2006).
Summerfield, C. et al. Predictive codes for forthcoming perception in the frontal cortex. Science 314, 1311–1314 (2006).
Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. 13, 403–409 (2009).
Aviezer, H. et al. Angry, disgusted, or afraid? Studies on the malleability of emotion perception. Psychol. Sci. 19, 724–732 (2008).
Zinchenko, A., Geyer, T., Müller, H. J. & Conci, M. Affective modulation of memory-based guidance in visual search: dissociative role of positive and negative emotions. Emotion 20, 1301–1305 (2020).
Szekely, A., Rajaram, S. & Mohanty, A. Context learning for threat detection. Cogn. Emot. 31, 1525–1542 (2017).
Szekely, A., Rajaram, S. & Mohanty, A. Memory for dangers past: threat contexts produce more consistent learning than do non-threatening contexts. Cogn. Emot. 33, 1031–1040 (2019).
Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T. & Schwarzbach, J. Different time courses for visual perception and action priming. Proc. Natl Acad. Sci. USA 100, 6275–6280 (2003).
Schacter, D. L. & Buckner, R. L. Priming and the brain. Neuron 20, 185–195 (1998).
Dehaene, S. et al. Imaging unconscious semantic priming. Nature 395, 597–600 (1998).
MacLeod, C. & Rutherford, E. M. in Implicit and Explicit Mental Processes (eds. Kirsner, K. et al.) 233–254 (Erlbaum, 1997).
Oliva, A. & Torralba, A. The role of context in object recognition. Trends Cogn. Sci. 11, 520–527 (2007).
Bar, M. Visual objects in context. Nat. Rev. Neurosci. 5, 617–629 (2004).
Lynn, S. K. & Barrett, L. F. “Utilizing” signal detection theory. Psychol. Sci. 25, 1663–1673 (2014).
Locke, S. M. & Robinson, O. J. Affective bias through the lens of signal detection theory. Comput. Psychiatry 5, 4–20 (2021).
Lu, Z.-L. & Dosher, B. A. Characterizing observers using external noise and observer models: assessing internal representations with external noise. Psychol. Rev. 115, 44–82 (2008).
Smith, P. L. & Ratcliff, R. An integrated theory of attention and decision making in visual signal detection. Psychol. Rev. 116, 283–317 (2009).
Wyart, V., Nobre, A. C. & Summerfield, C. Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. Proc. Natl Acad. Sci. USA 109, 3593–3598 (2012).
Swets, J. A., Tanner, W. P. Jr & Birdsall, T. G. Decision processes in perception. Psychol. Rev. 68, 301–340 (1961).
O’Connell, R. G., Shadlen, M. N., Wong-Lin, K. & Kelly, S. P. Bridging neural and computational viewpoints on perceptual decision-making. Trends Neurosci. 41, 838–852 (2018).
Hanks, T. D. & Summerfield, C. Perceptual decision making in rodents, monkeys, and humans. Neuron 93, 15–31 (2017).
Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).
Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).
Dunovan, K. E., Tremel, J. J. & Wheeler, M. E. Prior probability and feature predictability interactively bias perceptual decisions. Neuropsychologia 61, 210–221 (2014).
Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W. & Forstmann, B. U. Bias in the brain: a diffusion model analysis of prior probability and potential payoff. J. Neurosci. 32, 2335–2343 (2012).
Cravo, A. M., Rohenkohl, G., Wyart, V. & Nobre, A. C. Endogenous modulation of low frequency oscillations by temporal expectations. J. Neurophysiol. 106, 2964–2972 (2011).
Friston, K. A theory of cortical responses. Phil. Trans. R. Soc. Lond. B 360, 815–836 (2005).
Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).
Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013).
Hesp, C., Smith, R., Allen, M., Friston, K. & Ramstead, M. Deeply felt affect: the emergence of valence in deep active inference. Neural Comput. 33, 398–446 (2019).
Smith, R. et al. Perceptual insensitivity to the modulation of interoceptive signals in depression, anxiety, and substance use disorders. Sci. Rep. 11, 2108 (2021).
Smith, R. et al. A Bayesian computational model reveals a failure to adapt interoceptive precision estimates across depression, anxiety, eating, and substance use disorders. PLOS Comput. Biol. 16, e1008484 (2020).
Seth, A. K. & Friston, K. J. Active interoceptive inference and the emotional brain. Phil. Trans. R. Soc. B 371, 20160007 (2016).
Rungratsameetaweemana, N. & Serences, J. T. Dissociating the impact of attention and expectation on early sensory processing. Curr. Opin. Psychol. 29, 181–186 (2019).
Jiang, J., Summerfield, C. & Egner, T. Attention sharpens the distinction between expected and unexpected percepts in the visual brain. J. Neurosci. 33, 18438–18447 (2013).
Feldman, H. & Friston, K. J. Attention, uncertainty, and free-energy. Front. Hum. Neurosci 4, 215 (2010).
Gordon, N., Tsuchiya, N., Koenig-Robert, R. & Hohwy, J. Expectation and attention increase the integration of top-down and bottom-up signals in perception through different pathways. PLoS Biol. 17, e3000233 (2019).
Jin, J., Jonas, K. & Mohanty, A. Linking the past to the future by predictive processing: implications for psychopathology. J. Psychopathol. Clin. Sci. 132, 249 (2023).
Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).
Floris, Pd. L., Dobromir, A. R., Tobias, H. D. & Hakwan, L. Prestimulus oscillatory activity over motor cortex reflects perceptual expectations. J. Neurosci. 33, 1400 (2013).
Carretie, L. Exogenous (automatic) attention to emotional stimuli: a review. Cogn. Affect. Behav. Neurosci. 14, 1228–1258 (2014).
Treisman, A. How the deployment of attention determines what we see. Vis. Cogn. 14, 411–443 (2006).
Bundesen, C. A theory of visual attention. Psychol. Rev. 97, 523–547 (1990).
Brown, C. R. H., Berggren, N. & Forster, S. Testing a goal-driven account of involuntary attentional capture by threat. Emotion 20, 572–589 (2020).
Frischen, A., Eastwood, J. D. & Smilek, D. Visual search for faces with emotional expressions. Psychol. Bull. 134, 662–676 (2008).
Hahn, S. & Gronlund, S. D. Top-down guidance in visual search for facial expressions. Psychon. Bull. Rev. 14, 159–165 (2007).
Vromen, J. M., Lipp, O. V., Remington, R. W. & Becker, S. I. Threat captures attention, but not automatically: top-down goals modulate attentional orienting to threat distractors. Attent. Percept. Psychophys. 78, 2266–2279 (2016).
Schupp, H. T., Junghöfer, M., Weike, A. I. & Hamm, A. O. The selective processing of briefly presented affective pictures: an ERP analysis. Psychophysiology 41, 441–449 (2004).
Schupp, H. T. et al. The facilitated processing of threatening faces: an ERP analysis. Emotion 4, 189–200 (2004).
Schupp, H. T. et al. Selective visual attention to emotion. J. Neurosci. 27, 1082–1089 (2007).
Imbriano, G., Sussman, T. J., Jin, J. & Mohanty, A. The role of imagery in threat-related perceptual decision making. Emotion 20, 1495–1501 (2020).
Hesselmann, G., Sadaghiani, S., Friston, K. J. & Kleinschmidt, A. Predictive coding or evidence accumulation? False inference and neuronal fluctuations. PLoS ONE 5, e9926 (2010).
Shibata, K. et al. The effects of feature attention on prestimulus cortical activity in the human visual system. Cereb. Cortex 18, 1664–1675 (2007).
Battistoni, E., Stein, T. & Peelen, M. V. Preparatory attention in visual cortex. Ann. NY Acad. Sci. 1396, 92–107 (2017).
Kloosterman, N. A., Kosciessa, J. Q., Lindenberger, U., Fahrenfort, J. J. & Garrett, D. D. Boosts in brain signal variability track liberal shifts in decision bias. eLife 9, e54201 (2020).
Liu, T. Feature-based attention: effects and control. Curr. Opin. Psychol. 29, 187–192 (2019).
Baluch, F. & Itti, L. Mechanisms of top-down attention. Trends Neurosci. 34, 210–224 (2011).
Amaral, D. & Price, J. Amygdalo‐cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol. 230, 465–496 (1984).
Catani, M., Jones, D. K., Donato, R. & Ffytche, D. H. Occipito‐temporal connections in the human brain. Brain 126, 2093–2107 (2003).
Morris, J. S. et al. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain J. Neurol. 121, 47–57 (1998).
Pourtois, G., Schettino, A. & Vuilleumier, P. Brain mechanisms for emotional influences on perception and attention: what is magic and what is not. Biol. Psychol. 92, 492–512 (2013).
Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).
Spaak, E., Watanabe, K., Funahashi, S. & Stokes, M. G. Stable and dynamic coding for working memory in primate prefrontal cortex. J. Neurosci. 37, 6503–6516 (2017).
Sreenivasan, K. K., Curtis, C. E. & D’Esposito, M. Revisiting the role of persistent neural activity during working memory. Trends Cogn. Sci. 18, 82–89 (2014).
Leon, M. I. & Shadlen, M. N. Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 24, 415–425 (1999).
Plassmann, H., O’doherty, J. & Rangel, A. Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J. Neurosci. 27, 9984–9988 (2007).
Dricu, M., Ceravolo, L., Grandjean, D. & Frühholz, S. Biased and unbiased perceptual decision-making on vocal emotions. Sci. Rep. 7, 16274 (2017).
Mohanty, A., Gitelman, D. R., Small, D. M. & Mesulam, M. M. The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts. Cereb. Cortex 18, 2604–2613 (2008).
Kastner, S., De Weerd, P., Desimone, R. & Ungerleider, L. G. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282, 108–111 (1998).
Mesulam, M. M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10, 309–325 (1981).
Mesulam, M.-M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Phil. Trans. R. Soc. Lond. B 354, 1325–1346 (1999).
Gitelman, D. R. et al. A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122, 1093–1106 (1999).
Gottlieb, J. From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron 53, 9–16 (2007).
Egner, T. et al. Neural integration of top-down spatial and feature-based information in visual search. J. Neurosci. 28, 6141–6151 (2008).
Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. Ann. Rev. Neurosci. 33, 1–21 (2010).
Ousdal, O. T. et al. The human amygdala encodes value and space during decision making. Neuroimage 101, 712–719 (2014).
Aue, T., Chauvigné, L. A., Bristle, M., Okon-Singer, H. & Guex, R. Expectancy influences on attention to threat are only weak and transient: behavioral and physiological evidence. Biol. Psychol. 121, 173–186 (2016).
Aue, T., Guex, R., Chauvigné, L. A. & Okon-Singer, H. Varying expectancies and attention bias in phobic and non-phobic individuals. Front. Hum. Neurosci. 7, 418 (2013).
Aue, T., Guex, R., Chauvigné, L. A. S., Okon-Singer, H. & Vuilleumier, P. Expectancies influence attention to neutral but not necessarily to threatening stimuli: an fMRI study. Emotion 19, 1244–1258 (2019).
Haddara, N. & Dobromir, R. Threat expectation does not improve perceptual discrimination despite causing heightened priority processing in the frontoparietal network. J. Neurosci. 44, e1219232023 (2024).
Rahnev, D., Lau, H. & de Lange, F. P. Prior expectation modulates the interaction between sensory and prefrontal regions in the human brain. J. Neurosci. 31, 10741–10748 (2011).
Esterman, M. & Yantis, S. Perceptual expectation evokes category-selective cortical activity. Cereb. Cortex 20, 1245–1253 (2010).
Peelen, M. V., Fei-Fei, L. & Kastner, S. Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature 460, 94–97 (2009).
Stokes, M., Thompson, R., Nobre, A. C. & Duncan, J. Shape-specific preparatory activity mediates attention to targets in human visual cortex. Proc. Natl Acad. Sci. USA 106, 19569–19574 (2009).
Kok, P., Jehee, J. F. M. & de Lange, F. P. Less is more: expectation sharpens representations in the primary visual cortex. Neuron 75, 265–270 (2012).
Barrett, L. F., Mesquita, B. & Gendron, M. Context in emotion perception. Curr. Dir. Psychol. Sci. 20, 286–290 (2011).
Aviezer, H., Ensenberg, N. & Hassin, R. R. The inherently contextualized nature of facial emotion perception. Curr. Opin. Psychol. 17, 47–54 (2017).
Gendron, M., Lindquist, K. A., Barsalou, L. & Barrett, L. F. Emotion words shape emotion percepts. Emotion 12, 314–325 (2012).
Nook, E. C., Lindquist, K. A. & Zaki, J. A new look at emotion perception: concepts speed and shape facial emotion recognition. Emotion 15, 569–578 (2015).
Brooks, J. A. & Freeman, J. B. Conceptual knowledge predicts the representational structure of facial emotion perception. Nat. Hum. Behav. 2, 581–591 (2018).
de Gelder, B. et al. Beyond the face: exploring rapid influences of context on face processing. Prog. Brain Res. 155, 37–48 (2006).
Wieser, M. J. & Brosch, T. Faces in context: a review and systematization of contextual influences on affective face processing. Front. Psychol. 3, 471 (2012).
Albright, T. D. On the perception of probable things: neural substrates of associative memory, imagery, and perception. Neuron 74, 227–245 (2012).
Turk-Browne, N. B., Jungé, J. & Scholl, B. J. The automaticity of visual statistical learning. J. Exp. Psychol. Gen. 134, 552–564 (2005).
Turk-Browne, N. B., Scholl, B. J., Johnson, M. K. & Chun, M. M. Implicit perceptual anticipation triggered by statistical learning. J. Neurosci. 30, 11177–11187 (2010).
Everaert, J., Koster, E. H. W. & Joormann, J. Finding patterns in emotional information: enhanced sensitivity to statistical regularities within negative information. Emotion 20, 426–435 (2020).
Chun, M. M. & Jiang, Y. Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cogn. Psychol. 36, 28–71 (1998).
Plate, R. C., Schapiro, A. C. & Waller, R. Emotional faces facilitate statistical learning. Affect. Sci. 3, 662–672 (2022).
Duncan, J. & Humphreys, G. W. Visual search and stimulus similarity. Psychol. Rev. 96, 433 (1989).
Olivers, C. N., Peters, J., Houtkamp, R. & Roelfsema, P. R. Different states in visual working memory: when it guides attention and when it does not. Trends Cogn. Sci. 15, 327–334 (2011).
Wolfe, J. M. Guided Search 2.0 a revised model of visual search. Psychon. Bull. Rev. 1, 202–238 (1994).
Geng, J. J. & Witkowski, P. Template-to-distractor distinctiveness regulates visual search efficiency. Curr. Opin. Psychol. 29, 119–125 (2019).
Bravo, M. J. & Farid, H. The specificity of the search template. J. Vis. 9, 34–34 (2009).
Yang, H. & Zelinsky, G. J. Visual search is guided to categorically-defined targets. Vis. Res. 49, 2095–2103 (2009).
Won, B.-Y., Haberman, J., Bliss-Moreau, E. & Geng, J. J. Flexible target templates improve visual search accuracy for faces depicting emotion. Atten. Percept. Psychophys. 82, 2909–2923 (2020).
Bywaters, M., Andrade, J. & Turpin, G. Determinants of the vividness of visual imagery: The effects of delayed recall, stimulus affect and individual differences. Memory 12, 479–488 (2004).
Asch, S. E. in Groups, Leadership and Men; Research in Human Relations (ed. Guetzkow, H.) 177–190 (Carnegie, 1951).
Hess, U., Adams, R. B. Jr., Grammer, K. & Kleck, R. E. Face gender and emotion expression: are angry women more like men? J. Vis. 9, 19.11–18 (2009).
Givon, E. et al. Are women truly “more emotional” than men? Sex differences in an indirect model-based measure of emotional feelings. Curr. Psychol. 42, 32469–32482 (2023).
Hugenberg, K. & Bodenhausen, G. V. Facing prejudice: implicit prejudice and the perception of facial threat. Psychol. Sci. 14, 640–643 (2003).
Hugenberg, K. & Bodenhausen, G. V. Ambiguity in social categorization: the role of prejudice and facial affect in race categorization. Psychol. Sci. 15, 342–345 (2004).
Freeman, J. B. & Ambady, N. A dynamic interactive theory of person construal. Psychol. Rev. 118, 247–279 (2011).
Becker, D. V., Kenrick, D. T., Neuberg, S. L., Blackwell, K. C., & Smith, D. M. The confounded nature of angry men and happy women. J. Person. Soc. Psychol. 92, 179–190 (2007).
Stolier, R. M. & Freeman, J. B. Neural pattern similarity reveals the inherent intersection of social categories. Nat. Neurosci. 19, 795–797 (2016).
Eberhardt, J. L., Goff, P. A., Purdie, V. J. & Davies, P. G. Seeing Black: race, crime, and visual processing. J. Person. Soc. Psychol. 87, 876–893 (2004).
Barnett, B. O., Brooks, J. A. & Freeman, J. B. Stereotypes bias face perception via orbitofrontal–fusiform cortical interaction. Soc. Cogn. Affect. Neurosci. 16, 302–314 (2020).
Brooks, J. A., Chikazoe, J., Sadato, N. & Freeman, J. B. The neural representation of facial-emotion categories reflects conceptual structure. Proc. Natl Acad. Sci. USA 116, 15861–15870 (2019).
Todd, A. R. et al. Category salience and racial bias in weapon identification: a diffusion modeling approach. J. Pers. Soc. Psychol. 120, 672–693 (2021).
Germar, M., Schlemmer, A., Krug, K., Voss, A. & Mojzisch, A. Social influence and perceptual decision making: a diffusion model analysis. Pers. Soc. Psychol. Bull. 40, 217–231 (2014).
Large, I., Pellicano, E., Mojzisch, A. & Krug, K. Developmental trajectory of social influence integration into perceptual decisions in children. Proc. Natl Acad. Sci. USA 116, 2713–2722 (2019).
Willroth, E. C., Koban, L. & Hilimire, M. R. Social information influences emotional experience and late positive potential response to affective pictures. Emotion 17, 572–576 (2017).
Lerche, V., Bucher, A. & Voss, A. Processing emotional expressions under fear of rejection: findings from diffusion model analyses. Emotion 21, 184–210 (2021).
Masuda, T., Wang, H., Ishii, K. & Ito, K. Do surrounding figures’ emotions affect judgment of the target figure’s emotion? Comparing the eye-movement patterns of European Canadians, Asian Canadians, Asian international students, and Japanese. Front. Integr. Neurosci. 6, 72 (2012).
Goldenberg, A., Weisz, E., Sweeny, T. D., Cikara, M. & Gross, J. J. The crowd-emotion-amplification effect. Psychol. Sci. 32, 437–450 (2021).
Andrew H. Chwe, J. & Freeman, J. B. Trustworthiness of crowds is gleaned in half a second. Soc. Psychol. Pers. Sci. 15, 351–359 (2024).
Ngai, H. H. T., Hsiao, J. H., Luhmann, C. C., Mohanty, A., & Jin, J. How is emotional evidence from multiple sources used in perceptual decision making? Psychophysiology 62, e14727 (2025).
Goldenberg, A., LaFollette, K. J., Huang, Z., Weisz, E. & Cikara, M. Judgment of crowds as emotional increases with the proportion of black faces. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/ys65p (2022).
Anderson, E., Siegel, E. H. & Barrett, L. F. What you feel influences what you see: the role of affective feelings in resolving binocular rivalry. J. Exp. Soc. Psychol 47, 856–860 (2011).
Ingle, D. Focal attention in the frog: behavioral and physiological correlates. Science 188, 1033–1035 (1975).
Nobre, A. C. & Stokes, M. G. Premembering experience: a hierarchy of time-scales for proactive attention. Neuron 104, 132–146 (2019).
American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (APA, 2013).
Gladwin, T. E., Möbius, M., McLoughlin, S. & Tyndall, I. Anticipatory versus reactive spatial attentional bias to threat. Br. J. Psychol. 110, 3–14 (2019).
Gladwin, T. E. & Vink, M. Spatial anticipatory attentional bias for threat: reliable individual differences with RT-based online measurement. Conscious. Cogn. 81, 102930 (2020).
Basanovic, J. & MacLeod, C. Does anxiety-linked attentional bias to threatening information reflect bias in the setting of attentional goals, or bias in the execution of attentional goals? Cogn. Emot. 31, 538–551 (2017).
Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).
Kube, T., Rozenkrantz, L., Rief, W. & Barsky, A. Understanding persistent physical symptoms: conceptual integration of psychological expectation models and predictive processing accounts. Clin. Psychol. Rev. 76, 101829 (2020).
Rief, W. & Joormann, J. Revisiting the cognitive model of depression: the role of expectations. Clin. Psychol. Eur. 1, 1–19 (2019).
Hempel, C. G. Philosophy of Natural Science (Prentice Hall, 1966).
Kagan, J. A trio of concerns. Persp. Psychol. Sci. 2, 361–376 (2007).
Kozak, M. J. & Miller, G. A. Hypothetical constructs versus intervening variables: a re-appraisal of the three-systems model of anxiety assessment. Behav. Assess. 4, 347–358 (1982).
Lang, P. J. in Research in Psychotherapy (ed. Shlien, J. M.) 90–102 (American Psychological Association, 1968).
Birbaumer, N. & Öhman, A. (eds) The Structure of Emotion: Physiological, Cognitive and Clinical Aspects (Hogrefe & Huber, 1993).
Miller, G. A. & Keller, J. Psychology and neuroscience: making peace. Curr. Dir. Psychol. Sci. 9, 212–215 (2000).
LeDoux, J. E. & Pine, D. S. Using neuroscience to help understand fear and anxiety: a two-system framework. Am. J. Psychiatry 173, 1083–1093 (2016).
Ekman, P. Are there basic emotions? Psychol. Rev. 99, 550–553 (1992).
Cowen, A. S. et al. Sixteen facial expressions occur in similar contexts worldwide. Nature 589, 251–257 (2021).
Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).
Ohman, A. & Mineka, S. Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol. Rev. 108, 483–522 (2001).
Vuilleumier, P. How brains beware: neural mechanisms of emotional attention. Trends Cogn. Sci. 9, 585–594 (2005).
Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).
Dolcos, F. et al. Neural correlates of emotion-attention interactions: from perception, learning, and memory to social cognition, individual differences, and training interventions. Neurosci. Biobehav. Rev. 108, 559–601 (2020).
Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J. & van IJzendoorn, M. H. Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychol. Bull. 133, 1–24 (2007).
LeDoux, J. Fear and the brain: where have we been, and where are we going? Biol. Psychiatry 44, 1229–1238 (1998).
Maclean, P. D. Psychosomatic disease and the “visceral brain”: recent developments bearing on the papez theory of emotion. Psychosom. Med. 11, 338–353 (1949).
Ohman, A. The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinology 30, 953–958 (2005).
Panksepp, J. Beyond a joke: from animal laughter to human joy? Science 308, 62–63 (2005).
Papez, J. W. A proposed mechanism of emotion. 1937. J. Neuropsychiatry Clin. Neurosci. 7, 103–112 (1995).
Vuilleumier, P. & Driver, J. Modulation of visual processing by attention and emotion: windows on causal interactions between human brain regions. Phil. Trans. R. Soc. Lond. B 362, 837–855 (2007).
Cisler, J. M. & Koster, E. H. Mechanisms of attentional biases towards threat in anxiety disorders: an integrative review. Clin. Psychol. Rev. 30, 203–216 (2010).
Bodenhausen, G. V., & Hugenberg, K. in Social Cognition: the Basis of Human Interaction (eds. Strack, F. & Förster, J.) 1–22 (Psychology Press, 2009).
Schachter, S. & Singer, J. Cognitive, social, and physiological determinants of emotional state. Psychol. Rev. 69, 379–399 (1962).
Lazarus, R. S. Progress on a cognitive-motivational-relational theory of emotion. Am. Psychol. 46, 819–834 (1991).
Scherer, K. R. The dynamic architecture of emotion: evidence for the component process model. Cogn. Emot. 23, 1307–1351 (2009).
Barrett, L. F. The theory of constructed emotion: an active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. 12, 1–23 (2017).
Russell, J. A. Core affect and the psychological construction of emotion. Psychol. Rev. 110, 145–172 (2003).
Wilkinson, S., Deane, G., Nave, K. & Clark, A. in The Value of Emotions for Knowledge (ed. Candiotto, L.) 101–119 (Springer International, 2019).
Faisal, A. A., Selen, L. P. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).
Aston, S., Nardini, M. & Beierholm, U. Different types of uncertainty in multisensory perceptual decision making. Phil. Trans. R Soc. Lond. B 378, 20220349 (2023).
Friston, K., Kilner, J. & Harrison, L. A free energy principle for the brain. J. Physiol. Paris 100, 70–87 (2006).
Gelman, A. et al. Bayesian Data Analysis 3rd edn (Taylor & Francis, 2013).
Pollack, I. & Decker, L. R. Confidence ratings, message reception, and the receiver operating characteristic. J. Acoust. Soc. Am. 30, 286–292 (1958).
Yeung, N. & Summerfield, C. Metacognition in human decision-making: confidence and error monitoring. Phil. Trans. R. Soc. B 367, 1310–1321 (2012).
Fleming, S. M., Dolan, R. J. & Frith, C. D. Metacognition: computation, biology and function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1280–1286 (2012).
Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).
Kiani, R. & Shadlen, M. N. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324, 759–764 (2009).
Balsdon, T., Mamassian, P. & Wyart, V. Separable neural signatures of confidence during perceptual decisions. eLife 10, e68491 (2021).
Bègue, I. et al. Confidence of emotion expression recognition recruits brain regions outside the face perception network. Soc. Cogn. Affect. Neurosci. 14, 81–95 (2019).
Koizumi, A., Mobbs, D. & Lau, H. Is fear perception special? Evidence at the level of decision-making and subjective confidence. Soc. Cogn. Affect. Neurosci. 11, 1772–1782 (2016).
Seth, A. K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 17, 565–573 (2013).
Critchley, H. D. & Garfinkel, S. N. Interoception and emotion. Curr. Opin. Psychol. 17, 7–14 (2017).
Engelen, T., Solcà, M. & Tallon-Baudry, C. Interoceptive rhythms in the brain. Nat. Neurosci. 26, 1670–1684 (2023).
Garfinkel, S. N. et al. Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. J. Neurosci. 34, 6573–6582 (2014).
Zelano, C. et al. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 36, 12448–12467 (2016).
Park, H.-D., Correia, S., Ducorps, A. & Tallon-Baudry, C. Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nat. Neurosci. 17, 612–618 (2014).
Marshall, A. C., Gentsch, A., Schröder, L. & Schütz-Bosbach, S. Cardiac interoceptive learning is modulated by emotional valence perceived from facial expressions. Soc. Cogn. Affect. Neurosci. 13, 677–686 (2018).
Marshall, A. C., Gentsch, A. & Schütz-Bosbach, S. Interoceptive cardiac expectations to emotional stimuli predict visual perception. Emotion 20, 1113–1126 (2020).
Marshall, A. C., Gentsch, A., Jelinčić, V. & Schütz-Bosbach, S. Exteroceptive expectations modulate interoceptive processing: repetition-suppression effects for visual and heartbeat evoked potentials. Sci. Rep. 7, 16525 (2017).
Acknowledgements
The authors thank the members of the Neuroscience of Emotion, Cognition and Psychopathology laboratory at Stony Brook University.
Author information
Authors and Affiliations
Contributions
A.M. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Psychology thanks the anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mohanty, A., Freeman, J. & Jin, J. Top-down influences on the perception of emotional stimuli. Nat Rev Psychol 4, 388–403 (2025). https://doi.org/10.1038/s44159-025-00446-w
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s44159-025-00446-w