Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Numerical cognition in birds

Abstract

Avian species are one of the most diverse and adaptable groups of animals: there are far more species of birds than of mammals, and they occupy a broad range of habitats. Birds and mammals split from a common ancestor over 300 million years ago. Yet certain bird species can perform complex mental tasks, including numerical problems, at levels similar to — and in some cases surpassing — primates, including great apes. Birds thus offer a privileged perspective on the cognitive functions underlying numerical abilities and their evolution. Moreover, birds provide excellent models for studying the ontogenetic development and neural mechanisms underlying numerical computations. In this Review, we provide a comprehensive picture of the contribution of avian studies to understanding numerical cognition, including behavioural laboratory studies, field studies and neurobiological investigations. We also critically examine the methodologies, interpretations and limitations of selected key studies. By synthesizing current knowledge and situating it within the broader field of cognitive research, we highlight the importance of a comparative perspective in understanding the role of evolutionary convergence in the emergence of cognitive functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental paradigms to study avian numerical cognition under controlled conditions.
Fig. 2: The phylogenetic relationship between avian orders.
Fig. 3: Ecological studies of avian numerical cognition.
Fig. 4: Avian and mammalian brains.
Fig. 5: Number cell response tuning curves.

Similar content being viewed by others

References

  1. Koehler, O. Vom Erlernen unbenannter Anzahlen bei Vögeln. Naturwissenschaften 29, 201–218 (1941).

    Article  Google Scholar 

  2. Dawson, B. V. Counting in jackdaws. Behaviour 18, 229–238 (1961).

    Article  Google Scholar 

  3. Pastore, N. Number sense and ‘counting’ ability in the canary. Z. Tierpsychol. 18, 561–573 (1961).

    Article  Google Scholar 

  4. Koehler, O. Ability of birds to count. Nature 168, 373–375 (1951).

    Article  Google Scholar 

  5. Marold, E. Versuche an Wellensittichen zur Frage des “Zähl”-Vermögens. Z. Tierpsychol. 3, 170–223 (1939).

    Article  Google Scholar 

  6. Pfungst, O. Das Pferd des Herrn von Osten: Der kluge Hans. Ein Beitrag zur experimentellen Tier- und Menschen-Psychologie (J. A. Barth, 1907).

  7. Boysen, S. T. & Capaldi, E. J. The Development of Numerical Competence: Animal and Human Models (Psychology Press, 1993).

  8. Haun, D. B. M., Jordan, F. M., Vallortigara, G. & Clayton, N. S. Origins of spatial, temporal and numerical cognition: insights from comparative psychology. Trends Cogn. Sci. 14, 552–560 (2010).

    Article  PubMed  Google Scholar 

  9. Güntürkün, O., Pusch, R. & Rose, J. Why birds are smart. Trends Cogn. Sci. 28, 197–209 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Swenson, L. C. One versus two discrimination by whitenecked ravens (Corvus cryptoleucus) with non-number dimensions varied. Anim. Behav. 18, 454–460 (1970).

    Article  PubMed  Google Scholar 

  11. Smirnova, A. A., Lazareva, O. F. & Zorina, Z. A. Use of number by crows: investigation by matching and oddity learning. J. Exp. Anal. Behav. 73, 163–176 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Emmerton, J. & Renner, J. C. Scalar effects in the visual discrimination of numerosity by pigeons. Learn. Behav. 34, 176–192 (2006).

    Article  PubMed  Google Scholar 

  13. Rugani, R., Vallortigara, G. & Regolin, L. The use of proportion by young domestic chicks (Gallus gallus). Anim. Cogn. 18, 605–616 (2015). This article shows that domestic chicks can learn to select stimuli according to the proportion of red and green.

    Article  PubMed  Google Scholar 

  14. Rugani, R., McCrink, K., de Hevia, M.-D., Vallortigara, G. & Regolin, L. Ratio abstraction over discrete magnitudes by newly hatched domestic chicks (Gallus gallus). Sci. Rep. 6, 30114 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Roberts, W. A., MacDonald, H. & Lo, K. H. Pigeons play the percentages: computation of probability in a bird. Anim. Cogn. 21, 575–581 (2018).

    Article  PubMed  Google Scholar 

  16. Garland, A., Low, J. & Burns, K. C. Large quantity discrimination by North Island robins (Petroica longipes). Anim. Cogn. 15, 1129–1140 (2012). This article uses an interesting approach to test food quantity discrimination in the wild.

    Article  PubMed  Google Scholar 

  17. Lyon, B. E. Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature 422, 495–499 (2003).

    Article  PubMed  Google Scholar 

  18. Harper, D. G. C. Competitive foraging in mallards: ‘ideal free’ ducks. Anim. Behav. 30, 575–584 (1982). This article shows how different (numerical) factors need to be taken into account when birds make foraging decisions.

    Article  Google Scholar 

  19. Scarf, D., Hayne, H. & Colombo, M. Pigeons on par with primates in numerical competence. Science 334, 1664–1664 (2011).

    Article  PubMed  Google Scholar 

  20. Güntürkün, O. & Bugnyar, T. Cognition without cortex. Trends Cogn. Sci. 20, 291–303 (2016).

    Article  PubMed  Google Scholar 

  21. Dugas-Ford, J. & Ragsdale, C. W. Levels of homology and the problem of neocortex. Annu. Rev. Neurosci. 38, 351–368 (2015).

    Article  PubMed  Google Scholar 

  22. Bai, Y. et al. A review of brain-inspired cognition and navigation technology for mobile robots. Cyborg Bionic Syst. 5, 0128 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koehler, O. “Zähl”-Versuche an einem Kolkraben und Vergleichsversuche an Menschen. Z. Tierpsychol. 5, 575–712 (1943).

    Article  Google Scholar 

  24. Spelke, E. S. Principles of object perception. Cogn. Sci. 14, 29–56 (1990).

    Article  Google Scholar 

  25. Feigenson, L., Carey, S. & Hauser, M. The representations underlying infants’ choice of more: object files versus analog magnitudes. Psychol. Sci. 13, 150–156 (2002).

    Article  PubMed  Google Scholar 

  26. Cantlon, J. F. & Brannon, E. M. Shared system for ordering small and large numbers in monkeys and humans. Psychol. Sci. 17, 401–406 (2006).

    Article  PubMed  Google Scholar 

  27. Cordes, S., Gelman, R., Gallistel, C. R. & Whalen, J. Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychon. Bull. Rev. 8, 698–707 (2001).

    Article  PubMed  Google Scholar 

  28. Gallistel, C. R. & Gelman, R. Preverbal and verbal counting and computation. Cognition 44, 43–74 (1992).

    Article  PubMed  Google Scholar 

  29. Vallortigara, G., Chiandetti, C., Rugani, R., Sovrano, V. A. & Regolin, L. Animal cognition. Wiley Interdisc. Rev. Cogn. Sci. 1, 882–893 (2010).

    Article  Google Scholar 

  30. Davis, H. & Pérusse, R. Numerical competence in animals: definitional issues, current evidence, and a new research agenda. Behav. Brain Sci. 11, 561–579 (1988). This article provides basic definitions and concepts for the field of numerical cognition.

    Article  Google Scholar 

  31. Rugani, R., Castiello, U., Priftis, K., Spoto, A. & Sartori, L. What is a number? The interplay between number and continuous magnitudes. Behav. Brain Sci. 40, e187 (2017).

    Article  PubMed  Google Scholar 

  32. Bogale, B. A., Kamata, N., Mioko, K. & Sugita, S. Quantity discrimination in jungle crows, Corvus macrorhynchos. Anim. Behav. 82, 635–641 (2011).

    Article  Google Scholar 

  33. Gebuis, T., Cohen Kadosh, R. & Gevers, W. Sensory-integration system rather than approximate number system underlies numerosity processing: a critical review. Acta Psychol. 171, 17–35 (2016).

    Article  Google Scholar 

  34. Wu, P., Zhu, J., He, Q., Wang, Z. & Shi, L. Visual numerical cognition in pigeons: conformity to the Weber–Fechner law. Anim. Cogn. 28, 39 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  35. McCrink, K. & Wynn, K. Ratio abstraction by 6-month-old infants. Psychol. Sci. 18, 740–745 (2007).

    Article  PubMed  Google Scholar 

  36. Coburn, C. A. & Yerkes, R. M. A study of the behavior of the crow Corvus americanus Aud. by the multiple choice method. J. Anim. Behav. 5, 75–114 (1915).

    Article  Google Scholar 

  37. Davis, H. & Bradford, S. Counting behavior by rats in a simulated natural environment. Ethology 73, 265–280 (1986).

    Article  Google Scholar 

  38. Suzuki, K. & Kobayashi, T. Numerical competence in rats (Rattus norvegicus): Davis and Bradford (1986) extended. J. Comp. Psychol. 114, 73–85 (2000).

    Article  PubMed  Google Scholar 

  39. Chittka, L. & Geiger, K. Can honey bees count landmarks? Anim. Behav. 49, 159–164 (1995).

    Article  Google Scholar 

  40. Dacke, M. & Srinivasan, M. V. Evidence for counting in insects. Anim. Cogn. 11, 683–689 (2008).

    Article  PubMed  Google Scholar 

  41. Rugani, R., Kelly, D. M., Szelest, I., Regolin, L. & Vallortigara, G. Is it only humans that count from left to right? Biol. Lett. 6, 290–292 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rugani, R., Regolin, L. & Vallortigara, G. Rudimental numerical competence in 5-day-old domestic chicks (Gallus gallus): identification of ordinal position. J. Exp. Psychol. Anim. Behav. Process. 33, 21–31 (2007). This study showed that birds (domestic chicks) can identify objects based on their ordinal position within a sequence under various conditions.

    Article  PubMed  Google Scholar 

  43. Rugani, R., Vallortigara, G., Vallini, B. & Regolin, L. Asymmetrical number-space mapping in the avian brain. Neurobiol. Learn. Mem. 95, 231–238 (2010).

    Article  PubMed  Google Scholar 

  44. Vámos, T. I. F., Tello-Ramos, M. C., Hurly, T. A. & Healy, S. D. Numerical ordinality in a wild nectarivore. Proc. R. Soc. B 287, 20201269 (2020). This article provides an example of an ordinal task (identifying an object according to its ordinal position within a sequence) in the wild using artificial flowers.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brannon, E. M. & Terrace, H. S. Ordering of the numerosities 1 to 9 by monkeys. Science 282, 746–749 (1998).

    Article  PubMed  Google Scholar 

  46. Wynn, K. Addition and subtraction by human infants. Nature 358, 749–750 (1992).

    Article  PubMed  Google Scholar 

  47. Garland, A. & Low, J. Addition and subtraction in wild New Zealand robins. Behav. Process. 109, 103–110 (2014). This article uses an interesting approach to test for mental arithmetic in the wild.

    Article  Google Scholar 

  48. Pepperberg, I. M. Grey parrot (Psittacus erithacus) numerical abilities: addition and further experiments on a zero-like concept. J. Comp. Psychol. 120, 1–11 (2006).

    Article  PubMed  Google Scholar 

  49. Liao, D. A., Brecht, K. F., Veit, L. & Nieder, A. Crows “count” the number of self-generated vocalizations. Science 384, 874–877 (2024).

    Article  PubMed  Google Scholar 

  50. Moyer, R. S. & Landauer, T. K. Time required for judgements of numerical inequality. Nature 215, 1519–1520 (1967).

    Article  PubMed  Google Scholar 

  51. Rugani, R., Regolin, L. & Vallortigara, G. Imprinted numbers: newborn chicks’ sensitivity to number vs. continuous extent of objects they have been reared with. Dev. Sci. 13, 790–797 (2010).

    Article  PubMed  Google Scholar 

  52. Rugani, R., Fontanari, L., Simoni, E., Regolin, L. & Vallortigara, G. Arithmetic in newborn chicks. Proc. R. Soc. B 276, 2451–2460 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nieder, A. The adaptive value of numerical competence. Trends Ecol. Evol. 35, 605–617 (2020).

    Article  PubMed  Google Scholar 

  54. Hunt, S., Low, J. & Burns, K. C. Adaptive numerical competency in a food-hoarding songbird. Proc. R. Soc. B 275, 2373–2379 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Guigueno, M. F., Coto, M. A. & Sherry, D. F. Brood-parasitic female cowbirds have better numerical abilities than males on a task resembling nest prospecting behaviour. Biol. Lett. 21, 20240670 (2025).

    Article  PubMed  Google Scholar 

  56. Krebs, J. R. Colonial nesting and social feeding as strategies for exploiting food resources in the great blue heron (Ardea Herodias). Behaviour 51, 99–134 (1974).

    Article  Google Scholar 

  57. Tornick, J. K., Callahan, E. S. & Gibson, B. M. An investigation of quantity discrimination in Clark’s nutcrackers (Nucifraga columbiana). J. Comp. Psychol. 129, 17–25 (2015).

    Article  PubMed  Google Scholar 

  58. Kelly, E. M. Counting on your friends: the role of social environment on quantity discrimination. Behav. Process. 128, 9–16 (2016).

    Article  Google Scholar 

  59. Rahman, N. A. A., Fadzly, N., Dzakwan, N. M. & Zulkifli, N. H. The numerical competency of two bird species (Corvus splendens and Acridotheres tristis). Trop. Life Sci. Res. 25, 95–103 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. Gallistel, C. R. The Organization of Learning viii, 648 (MIT Press, 1990).

  61. Hunter, H., Blackburn, G., Ashton, B. J. & Ridley, A. R. Group size affects spontaneous quantity discrimination performance in wild Western Australian magpies (Gymnorhina tibicen dorsalis). Anim. Cogn. 28, 41 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Elgar, M. A. Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. Biol. Rev. Camb. Phil. Soc. 64, 13–33 (1989).

    Article  Google Scholar 

  63. Bahr, D. B. & Bekoff, M. Predicting flock vigilance from simple passerine interactions: modelling with cellular automata. Anim. Behav. 58, 831–839 (1999).

    Article  PubMed  Google Scholar 

  64. Bekoff, M. Vigilance, flock size, and flock geometry: information gathering by western evening grosbeaks (Aves, Fringillidae). Ethology 99, 150–161 (1995).

    Article  Google Scholar 

  65. Li, C., Zhou, L., Li, H. & Jiang, Z. Effects of foraging mode and group pattern on vigilance behavior in water birds: a case study of mallard and black-winged stilt. Belg. J. Zool. 141, 45–54 (2011).

    Article  Google Scholar 

  66. Thompson, N. S. Counting and communication in crows. Commun. Behav. Biol. 31, 223–225 (1968).

    Google Scholar 

  67. Templeton, C. N., Greene, E. & Davis, K. Allometry of alarm calls: black-capped chickadees encode information about predator size. Science 308, 1934–1937 (2005).

    Article  PubMed  Google Scholar 

  68. Seddon, N. & Tobias, J. A. Communal singing in the cooperatively breeding subdesert mesite monias benschi: evidence of numerical assessment? J. Avian Biol. 34, 72–80 (2003).

    Article  Google Scholar 

  69. Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lambert, M. L., Jacobs, I., Osvath, M. & von Bayern, A. M. P. Birds of a feather? Parrot and corvid cognition compared. Behaviour 156, 505–594 (2019).

    Article  Google Scholar 

  71. Pika, S., Sima, M. J., Blum, C. R., Herrmann, E. & Mundry, R. Ravens parallel great apes in physical and social cognitive skills. Sci. Rep. 10, 20617 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sol, D. et al. Neuron numbers link innovativeness with both absolute and relative brain size in birds. Nat. Ecol. Evol. 6, 1381–1389 (2022).

    Article  PubMed  Google Scholar 

  73. Jarvis, E. D. et al. Avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. 6, 151–159 (2005).

    Article  PubMed  Google Scholar 

  74. Butler, A. B., Reiner, A. & Karten, H. J. Evolution of the amniote pallium and the origins of mammalian neocortex. Ann. NY Acad. Sci. 1225, 14–27 (2011).

    Article  PubMed  Google Scholar 

  75. Karten, H. J. Vertebrate brains and evolutionary connectomics: on the origins of the mammalian ‘neocortex’. Phil. Trans. R. Soc. B 370, 20150060 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Puelles, L. Current status of the hypothesis of a claustro-insular homolog in sauropsids. Brain. Behav. Evol. 96, 212–241 (2022).

    Article  PubMed  Google Scholar 

  77. Stacho, M. et al. A cortex-like canonical circuit in the avian forebrain. Science 369, eabc5534 (2020).

    Article  PubMed  Google Scholar 

  78. Rueda-Alaña, E. et al. Evolutionary convergence of sensory circuits in the pallium of amniotes. Science 387, eadp3411 (2025).

    Article  PubMed  Google Scholar 

  79. Zaremba, B. et al. Developmental origins and evolution of pallial cell types and structures in birds. Science 387, eadp5182 (2025).

    Article  PubMed  Google Scholar 

  80. Gattoni, G. & Tosches, M. A. Constrained roads to complex brains. Science 387, 716–717 (2025).

    Article  PubMed  Google Scholar 

  81. Hecker, N. et al. Enhancer-driven cell type comparison reveals similarities between the mammalian and bird pallium. Science 387, eadp3957 (2025).

    Article  PubMed  Google Scholar 

  82. Clark, W. J. & Colombo, M. The functional architecture, receptive field characteristics, and representation of objects in the visual network of the pigeon brain. Prog. Neurobiol. 195, 101781 (2020).

    Article  PubMed  Google Scholar 

  83. Bischof, H.-J. et al. Multiple visual field representations in the visual Wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata). PLoS ONE 11, e0154927 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Watanabe, S., Mayer, U. & Bischof, H.-J. Pattern discrimination is affected by entopallial but not by hippocampal lesions in zebra finches. Behav. Brain Res. 190, 201–205 (2008).

    Article  PubMed  Google Scholar 

  85. Watanabe, S., Mayer, U. & Bischof, H.-J. Visual Wulst analyses “where” and entopallium analyses “what” in the zebra finch visual system. Behav. Brain Res. 222, 51–56 (2011).

    Article  PubMed  Google Scholar 

  86. Lorenzi, E., Perrino, M. & Vallortigara, G. Numerosities and other magnitudes in the brains: a comparative view. Front. Psychol. 12, 641994 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Messina, A. et al. Response to change in the number of visual stimuli in zebrafish: a behavioural and molecular study. Sci. Rep. 10, 5769 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Messina, A. et al. Neurons in the dorso-central division of zebrafish pallium respond to change in visual numerosity. Cereb. Cortex 32, 418–428 (2022).

    Article  PubMed  Google Scholar 

  89. Kovas, Y. et al. Brain correlates of non-symbolic numerosity estimation in low and high mathematical ability children. PLoS ONE 4, e4587 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Collins, A. G. E., Ciullo, B., Frank, M. J. & Badre, D. Working memory load strengthens reward prediction errors. J. Neurosci. 37, 4332–4342 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lorenzi, E., Perrino, M., Messina, A., Zanon, M. & Vallortigara, G. Innate responses to numerousness reveal neural activation in different brain regions in newly-hatched visually naïve chicks. Heliyon 10, e34162 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Roitman, J. D., Brannon, E. M. & Platt, M. L. Monotonic coding of numerosity in macaque lateral intraparietal area. PLoS Biol. 5, e208 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Welford, A. T. The measurement of sensory-motor performance: survey and reappraisal of twelve years’ progress. Ergonomics 3, 189–230 (1960).

    Article  Google Scholar 

  94. Nieder, A. & Merten, K. A labeled-line code for small and large numerosities in the monkey prefrontal cortex. J. Neurosci. 27, 5986–5993 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sawamura, H., Shima, K. & Tanji, J. Numerical representation for action in the parietal cortex of the monkey. Nature 415, 918–922 (2002).

    Article  PubMed  Google Scholar 

  96. Nieder, A. Supramodal numerosity selectivity of neurons in primate prefrontal and posterior parietal cortices. Proc. Natl Acad. Sci. 109, 11860–11865 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Güntürkün, O. The avian ‘prefrontal cortex’ and cognition. Curr. Opin. Neurobiol. 15, 686–693 (2005).

    Article  PubMed  Google Scholar 

  98. Güntürkün, O., von Eugen, K., Packheiser, J. & Pusch, R. Avian pallial circuits and cognition: a comparison to mammals. Curr. Opin. Neurobiol. 71, 29–36 (2021).

    Article  PubMed  Google Scholar 

  99. Ditz, H. M. & Nieder, A. Neurons selective to the number of visual items in the corvid songbird endbrain. Proc. Natl Acad. Sci. 112, 7827–7832 (2015). This article describes the presence of number-sensitive neurons in corvids that, like other bird species, lack a neocortex.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ditz, H. M. & Nieder, A. Numerosity representations in crows obey the Weber–Fechner law. Proc. R. Soc. B 283, 20160083 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wagener, L. & Nieder, A. Categorical representation of abstract spatial magnitudes in the executive telencephalon of crows. Curr. Biol. 33, 2151–2162.e5 (2023).

    Article  PubMed  Google Scholar 

  102. Kobylkov, D., Mayer, U., Zanon, M. & Vallortigara, G. Number neurons in the nidopallium of young domestic chicks. Proc. Natl Acad. Sci. 119, e2201039119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wagener, L., Loconsole, M., Ditz, H. M. & Nieder, A. Neurons in the endbrain of numerically naive crows spontaneously encode visual numerosity. Curr. Biol. 28, 1090–1094 (2018).

    Article  PubMed  Google Scholar 

  104. Kirschhock, M. E. & Nieder, A. Number selective sensorimotor neurons in the crow translate perceived numerosity into number of actions. Nat. Commun. 13, 6913 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kirschhock, M. E. & Nieder, A. Association neurons in the crow telencephalon link visual signs to numerical values. Proc. Natl Acad. Sci. 120, e2313923120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ditz, H. M., Fechner, J. & Nieder, A. Cell-type specific pallial circuits shape categorical tuning responses in the crow telencephalon. Commun. Biol. 5, 269 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Diester, I. & Nieder, A. Complementary contributions of prefrontal neuron classes in abstract numerical categorization. J. Neurosci. 28, 7737–7747 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Reiner, A. Could theropod dinosaurs have evolved to a human level of intelligence? J. Comp. Neurol. 531, 975–1006 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tinbergen, N. On aims and methods of ethology. Z. Tierpsychol. 20, 410–433 (1963).

    Article  Google Scholar 

  110. Chiandetti, C. & Vallortigara, G. in Field and Laboratory Methods in Animal Cognition: a Comparative Guide (eds Amici, F. & Bueno-Guerra, N.) 97–118 (Cambridge Univ. Press, 2018).

  111. Gottlieb, G. & Lickliter, R. The various roles of animal models in understanding human development. Soc. Dev. 13, 311–325 (2004).

    Article  Google Scholar 

  112. Lickliter, R. The influence of prenatal experience on behavioral and social development: the benefits and limitations of an animal model. Dev. Psychopathol. 30, 871–880 (2018).

    Article  PubMed  Google Scholar 

  113. Butterworth, B. The development of arithmetical abilities. J. Child. Psychol. Psychiatry 46, 3–18 (2005).

    Article  PubMed  Google Scholar 

  114. de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S. & Streri, A. Representations of space, time, and number in neonates. Proc. Natl Acad. Sci. USA. 111, 4809–4813 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rugani, R., Regolin, L. & Vallortigara, G. Discrimination of small numerosities in young chicks. J. Exp. Psychol. Anim. Behav. Process. 34, 388–399 (2008).

    Article  PubMed  Google Scholar 

  116. Feigenson, L., Carey, S. & Spelke, E. Infants’ discrimination of number vs. continuous extent. Cogn. Psychol. 44, 33–66 (2002).

    Article  PubMed  Google Scholar 

  117. Rugani, R. Towards numerical cognition’s origin: insights from day-old domestic chicks. Phil. Trans. R. Soc. B 373, 20160509 (2018).

    Article  PubMed Central  Google Scholar 

  118. Berger, A., Tzur, G. & Posner, M. I. Infant brains detect arithmetic errors. Proc. Natl Acad. Sci. 103, 12649–12653 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Christodoulou, J., Lac, A. & Moore, D. S. Babies and math: a meta-analysis of infants’ simple arithmetic competence. Dev. Psychol. 53, 1405–1417 (2017).

    Article  PubMed  Google Scholar 

  120. Feigenson, L. & Carey, S. Tracking individuals via object-files: evidence from infants’ manual search. Dev. Sci. 6, 568–584 (2003).

    Article  Google Scholar 

  121. Starr, A. B., Libertus, M. E. & Brannon, E. M. Infants show ratio-dependent number discrimination regardless of set size. Infancy https://doi.org/10.1111/infa.12008 (2013).

  122. Spelke, E. S. & Kinzler, K. D. Core knowledge. Dev. Sci. 10, 89–96 (2007).

    Article  PubMed  Google Scholar 

  123. Feigenson, L., Dehaene, S. & Spelke, E. Core systems of number. Trends Cogn. Sci. 8, 307–314 (2004).

    Article  PubMed  Google Scholar 

  124. Libertus, M. E. & Brannon, E. M. Stable individual differences in number discrimination in infancy. Dev. Sci. 13, 900–906 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Scarf, D. & Colombo, M. Knowledge of the ordinal position of list items in pigeons. J. Exp. Psychol. Anim. Behav. Process. 37, 483–487 (2011).

    Article  PubMed  Google Scholar 

  126. Pepperberg, I. M. Grey parrot numerical competence: a review. Anim. Cogn. 9, 377–391 (2006). This review summarizes the achievements and abilities of one of the most outstanding bird subjects in animal cognition research.

    Article  PubMed  Google Scholar 

  127. Ujfalussy, D. J., Miklósi, Á., Bugnyar, T. & Kotrschal, K. Role of mental representations in quantity judgments by jackdaws (Corvus monedula). J. Comp. Psychol. 128, 11–20 (2014).

    Article  PubMed  Google Scholar 

  128. Pepperberg, I. M. & Carey, S. Grey parrot number acquisition: the inference of cardinal value from ordinal position on the numeral list. Cognition 125, 219–232 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Pepperberg, I. M. & Gordon, J. D. Number comprehension by a grey parrot (Psittacus erithacus), including a zero-like concept. J. Comp. Psychol. 119, 197–209 (2005).

    Article  PubMed  Google Scholar 

  130. Kirschhock, M. E., Ditz, H. M. & Nieder, A. Behavioral and neuronal representation of numerosity zero in the crow. J. Neurosci. 41, 4889–4896 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nieder, A. Absolute numerosity discrimination as a case study in comparative vertebrate intelligence. Front. Psychol. 11, 1843 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Agrillo, C. in The Oxford Handbook of Numerical Cognition (eds. Kadosh, R. C. & Dowker, A.) 214–236 (Oxford Univ. Press, 2015).

  133. Uller, C. in Computation, Cognition, and Pylyshyn (eds Dedrick, D. & Trick, L.) 219–243 (The MIT Press, 2009).

  134. Meng, W. Editorial: application and research progress of avian models in neuroscience. Front. Mol. Neurosci. 16, 1319308 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Marino, L. Thinking chickens: a review of cognition, emotion, and behavior in the domestic chicken. Anim. Cogn. 20, 127–147 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Galton, F. Visualised numerals. Nature 21, 252–256 (1880).

    Article  Google Scholar 

  137. Shaki, S., Fischer, M. H. & Petrusic, W. M. Reading habits for both words and numbers contribute to the SNARC effect. Psychon. Bull. Rev. 16, 328–331 (2009).

    Article  PubMed  Google Scholar 

  138. Zebian, S. Linkages between number concepts, spatial thinking, and directionality of writing: the SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. J. Cogn. Cult. 5, 165–190 (2005).

    Article  Google Scholar 

  139. Brugger, P. Animal behavior. Chicks with a number sense. Science 347, 477–478 (2015).

    Article  PubMed  Google Scholar 

  140. Rugani, R., Vallortigara, G., Priftis, K. & Regolin, L. Numerical magnitude, rather than individual bias, explains spatial numerical association in newborn chicks. eLife 9, e54662 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. de Hevia, M. D., Veggiotti, L., Streri, A. & Bonn, C. D. At birth, humans associate ‘few’ with left and ‘many’ with right. Curr. Biol. 27, 3879–3884.e2 (2017).

    Article  PubMed  Google Scholar 

  142. Di Giorgio, E. et al. A mental number line in human newborns. Dev. Sci. 22, e12801 (2019).

    Article  PubMed  Google Scholar 

  143. Giurfa, M., Marcout, C., Hilpert, P., Thevenot, C. & Rugani, R. An insect brain organizes numbers on a left-to-right mental number line. Proc. Natl Acad. Sci. 119, e2203584119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Beran, M. J., French, K., Smith, T. R. & Parrish, A. E. Limited evidence of number-space mapping in rhesus monkeys (Macaca mulatta) and capuchin monkeys (Sapajus apella). J. Comp. Psychol. 133, 281–293 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Triki, Z. & Bshary, R. Cleaner fish Labroides dimidiatus discriminate numbers but fail a mental number line test. Anim. Cogn. 21, 99–107 (2018).

    Article  PubMed  Google Scholar 

  146. Loconsole, M., Regolin, L. & Rugani, R. Asymmetric number–space association leads to more efficient processing of congruent information in domestic chicks. Front. Behav. Neurosci. 17, 1115662 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Rugani, R., Rosa Salva, O. & Regolin, L. Lateralized mechanisms for encoding of object. Behavioral evidence from an animal model: the domestic chick (Gallus gallus). Front. Psychol. 5, 150 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Rugani, R., Vallortigara, G., Priftis, K. & Regolin, L. Number-space mapping in the newborn chick resembles humans’ mental number line. Science 347, 534–536 (2015).

    Article  PubMed  Google Scholar 

  149. Vallortigara, G. Comparative cognition of number and space: the case of geometry and of the mental number line. Phil. Trans. R. Soc. B 373, 20170120 (2018).

    Article  PubMed Central  Google Scholar 

  150. Felisatti, A., Laubrock, J., Shaki, S. & Fischer, M. H. A biological foundation for spatial-numerical associations: the brain’s asymmetric frequency tuning. Ann. NY Acad. Sci. 1477, 44–53 (2020).

    Article  PubMed  Google Scholar 

  151. Cowan, W. M., Adamson, L. & Powell, T. P. An experimental study of the avian visual system. J. Anat. 95, 545–563 (1961).

    PubMed  PubMed Central  Google Scholar 

  152. Andrew, R. J. Neural and Behavioral Plasticity: The Use of the Domestic Chick as a Model (Oxford Univ. Press, 1991).

  153. Mihrshahi, R. The corpus callosum as an evolutionary innovation. J. Exp. Zool. B 306, 8–17 (2006).

    Article  Google Scholar 

  154. Andrew, R. J. Origins of asymmetry in the CNS. Semin. Cell Dev. Biol. 20, 485–490 (2009).

    Article  PubMed  Google Scholar 

  155. Chiandetti, C. & Vallortigara, G. Distinct effect of early and late embryonic light-stimulation on chicks’ lateralization. Neuroscience 414, 1–7 (2019).

    Article  PubMed  Google Scholar 

  156. Chiandetti, C. Pseudoneglect and embryonic light stimulation in the avian brain. Behav. Neurosci. 125, 775–782 (2011).

    Article  PubMed  Google Scholar 

  157. Güntürkün, O., Hellmann, B., Melsbach, G. & Prior, H. Asymmetries of representation in the visual system of pigeons. Neuroreport 9, 4127–4130 (1998).

    Article  PubMed  Google Scholar 

  158. Morandi-Raikova, A. & Mayer, U. Selective activation of the right hippocampus during navigation by spatial cues in domestic chicks (Gallus gallus). Neurobiol. Learn. Mem. 177, 107344 (2021).

    Article  PubMed  Google Scholar 

  159. Morandi-Raikova, A. & Mayer, U. The effect of monocular occlusion on hippocampal c-Fos expression in domestic chicks (Gallus gallus). Sci. Rep. 10, 7205 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Manns, M. & Ströckens, F. Functional and structural comparison of visual lateralization in birds — similar but still different. Front. Psychol. 5, 206 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Rogers, L. J. Light experience and asymmetry of brain function in chickens. Nature 297, 223–225 (1982).

    Article  PubMed  Google Scholar 

  162. Rogers, L. J. & Sink, H. S. Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure. Exp. Brain Res. 70, 378–384 (1988).

    Article  PubMed  Google Scholar 

  163. Rogers, L. J. & Deng, C. Light experience and lateralization of the two visual pathways in the chick. Behav. Brain Res. 98, 277–287 (1999).

    Article  PubMed  Google Scholar 

  164. Costalunga, G., Kobylkov, D., Rosa Salva, O., Vallortigara, G. & Mayer, U. Light-incubation effects on lateralisation of single unit responses in the visual Wulst of domestic chicks. Brain Struct. Funct. 227, 497–513 (2022).

    Article  PubMed  Google Scholar 

  165. Costalunga, G. et al. Responses in the left and right entopallium are differently affected by light stimulation in embryo. iScience 27, 109268 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Vallortigara, G., Cozzutti, C., Tommasi, L. & Rogers, L. J. How birds use their eyes: opposite left-right specialization for the lateral and frontal visual hemifield in the domestic chick. Curr. Biol. 11, 29–33 (2001).

    Article  PubMed  Google Scholar 

  167. Vallortigara, G. & Rogers, L. J. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 28, 575–633 (2005).

    Article  PubMed  Google Scholar 

  168. Rugani, R., Macchinizzi, M., Zhang, Y. & Regolin, L. Hatching with numbers: pre-natal light exposure affects number sense and the mental number line in young domestic chicks. eLife 14, RP106356 (2025).

    Google Scholar 

  169. Loconsole, M. & Regolin, L. Are prime numbers special? Insights from the life sciences. Biol. Direct 17, 11 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Sinha, S. The Fibonacci numbers and its amazing applications. Int. J. Eng. Sci. Invent. 6, 7–14 (2019).

    Google Scholar 

  171. Lehmann-Ziebarth, N. et al. Evolution of periodicity in periodical cicadas. Ecology 86, 3200–3211 (2005).

    Article  Google Scholar 

  172. Sacks, O. W. The Man Who Mistook His Wife for a Hat (Picador, 1986).

  173. Anderson, M., O’Connor, N. & Hermelin, B. A specific calculating ability. Intelligence 26, 383–403 (1998).

    Article  Google Scholar 

  174. Hermelin, B. & O’Connor, N. Factors and primes: a specific numerical ability. Psychol. Med. 20, 163–169 (1990).

    Article  PubMed  Google Scholar 

  175. Welling, H. Prime number identification in idiots savants: can they calculate them? J. Autism Dev. Disord. 24, 199–207 (1994).

    Article  PubMed  Google Scholar 

  176. Vallortigara, G. in The Oxford Handbook of Comparative Cognition (eds Wasserman, E. A. & Zentall, T. R.) 48–66 (Oxford Univ. Press, 2012).

  177. Clara, E., Regolin, L. & Vallortigara, G. Preference for symmetry is experience dependent in newborn chicks (Gallus gallus). J. Exp. Psychol. Anim. Behav. Process. 33, 12–20 (2007).

    Article  PubMed  Google Scholar 

  178. Forsman, A. & Herrström, J. Asymmetry in size, shape, and color impairs the protective value of conspicuous color patterns. Behav. Ecol. 15, 141–147 (2004).

    Article  Google Scholar 

  179. Loconsole, M., De Agrò, M. & Regolin, L. Young chicks rely on symmetry/asymmetry in perceptual grouping to discriminate sets of elements. Proc. R. Soc. B 288, 20211570 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Jackson, P. S. & Bateson, P. P. Imprinting and exploration of slight novelty in chicks. Nature 251, 609–610 (1974).

    Article  PubMed  Google Scholar 

  181. Rugani, R., Cavazzana, A., Vallortigara, G. & Regolin, L. One, two, three, four, or is there something more? Numerical discrimination in day-old domestic chicks. Anim. Cogn. 16, 557–564 (2013).

    Article  PubMed  Google Scholar 

  182. Rugani, R., Vallortigara, G. & Regolin, L. From small to large: numerical discrimination by young domestic chicks (Gallus gallus). J. Comp. Psychol. 128, 163–171 (2014).

    Article  PubMed  Google Scholar 

  183. Wertheimer, M. in A Source Book of Gestalt Psychology (ed. Ellis, W. D.) 71–88 (Kegan Paul, Trench, Trubner & Company, 1938).

  184. Geraci, A., Loconsole, M. & Regolin, L. A symmetry-based mechanism for perceptual grouping in preverbal infants. Sci. Rep. 15, 5035 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Szabó, E. et al. Young domestic chicks spontaneously represent the absence of objects. eLife 11, e67208 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Pepperberg, I. M. in Mathematical Cognition and Learning (eds Geary, D. C. et al.) 67–89 (Elsevier, 2015).

  187. Pepperberg, I. M. Numerical competence in an African gray parrot (Psittacus erithacus). J. Comp. Psychol. 108, 36–44 (1994).

    Article  Google Scholar 

  188. Merritt, D. J., Rugani, R. & Brannon, E. M. Empty sets as part of the numerical continuum: conceptual precursors to the zero concept in rhesus monkeys. J. Exp. Psychol. Gen. 138, 258–269 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Nieder, A. Representing something out of nothing: the dawning of zero. Trends Cogn. Sci. 20, 830–842 (2016).

    Article  PubMed  Google Scholar 

  190. Pepperberg, I. M. Proficient performance of a conjunctive, recursive task by an African gray parrot (Psittacus erithacus). J. Comp. Psychol. 106, 295–305 (1992).

    Article  PubMed  Google Scholar 

  191. Pepperberg, I. M. A review of the model/rival (M/R) technique for training interspecies communication and its use in behavioral research. Animals 11, 2479 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Pepperberg, I. M. Animal language studies: what happened? Psychon. Bull. Rev. 24, 181–185 (2017).

    Article  PubMed  Google Scholar 

  193. Pepperberg, I. M. & Sherman, D. V. Use of two-trainer interactive modeling as a potential means to engender social behavior in children with various disabilities. Int. J. Comp. Psychol. 15, 138–153 (2002).

    Article  Google Scholar 

  194. Pepperberg, I. M. & Sherman, D. Proposed use of two-part interactive modeling as a means to increase functional skills in children with a variety of disabilities. Teach. Learn. Med. 12, 213–220 (2000).

    Article  PubMed  Google Scholar 

  195. Wynne, C. Psychology’s pet subject. Nature 455, 864–865 (2008).

    Article  Google Scholar 

  196. Pepperberg, I. M. The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots (Harvard Univ. Press, 2009).

Download references

Acknowledgements

The authors acknowledge support from PRIN (Progetti di Rilevante Interesse Nazionale - Projects of Relevant National Interest) 2022 PNRR (Piano Nazionale di Ripresa e Resilienza - National Plan for Recovery and Resilience) (grant P2022TKY7B to L.R. and R.R.) and PRIN 2022 (grant 202254RHRT to R.R.). This project was supported by funding from the European Research Council under the European Union’s Horizon 2020 Research and Innovation programme (grant 833504 SPANUMBRA). M.L. was funded by the European Union (NextGenerationEU) and by the University of Padua under the 2023 STARS Grants@Unipd programme (project CROSS).

Author information

Authors and Affiliations

Authors

Contributions

L.R., M.L., O.R.-S. and R.R. conceptualized the review. L.R., M.L., O.R.-S., K.B., M.M., A.F. and R.R. performed the literature search. O.R.-S., K.B., M.M. and R.R. created drafts of the figures. L.R., M.L., O.R.-S. and R.R. wrote the initial draft of the manuscript. All authors critically reviewed the manuscript and approved its final version.

Corresponding author

Correspondence to L. Regolin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regolin, L., Loconsole, M., Rosa-Salva, O. et al. Numerical cognition in birds. Nat Rev Psychol 4, 576–590 (2025). https://doi.org/10.1038/s44159-025-00480-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44159-025-00480-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing